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a b s t r a c t

A new model of coupled oscillators is proposed and investigated. All phase variables and
parameters are integer-valued. The model is shown to exhibit two types of motions, those
which involve periodic phase differences, and those which involve drift. Traditional
dynamical concepts such as stability, bifurcation and chaos are examined for this class of
integer-valued systems. Numerical results are presented for systems of two and three
oscillators. This work has application in digital technology.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

A common model for coupled oscillators takes the form [4,11,1–3,10,9,5,8,6]
d
dt

hi ¼ xi þ a
XN

k¼1

sinðhk � hiÞ; i ¼ 1;2; . . . ;N ð1Þ
Here t is time, represented as a continuously flowing real number, hi(t) is a real number representing the phase of oscil-
lator i at time t, xi is the uncoupled frequency of oscillator i, and a is a coupling constant. In this paper we consider the fol-
lowing extension of Eq. (1), in which all quantities are integers:
hnþ1
i ¼ hn

i þxi þ a
XN

k¼1

sgnðhn
k � hn

i Þ; i ¼ 1;2; . . . ;N ð2Þ
Here time n is treated as an integer f0;1;2;3; . . .g; hn
i is an integer representing the phase of oscillator i at time n, and

quantities xi and a have the same meaning as they did in Eq. (1), except here they are integers.
Applications of this integer model occur in digital technology, including synchronization and digital communications

[12,7]. For example, a system of coupled digital oscillators has been suggested as a building block for a digital secure-com-
munications system [13].

2. The two oscillator case

In the case of two oscillators, the continuous model (1) may be easily analyzed by defining the phase-difference / as [9,6]
/ ¼ h2 � h1 ð3Þ
. All rights reserved.
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whereupon Eq. (1) give
Table 1
Periods
entries

a

d
dt

/ ¼ x2 �x1 � 2a sin / ð4Þ
Equilibria of Eq. (4) are known as phase-locked solutions and occur if and only if
jx2 �x1j 6 2jaj ð5Þ
In the case that Eq. (5) does not hold, the behavior of system (1) is described as drift.
In the case of the digital system (2), we find that the phase-difference (3) satisfies the equation:
/nþ1 ¼ /n þx2 �x1 � 2a sgnð/nÞ ð6Þ
Simulation of Eq. (2) for a system of two oscillators shows that if Eq. (5) is satisfied, Eq. (6) exhibits a periodic solution
with period T called a T � cycle (see Table 1). Note that some entries involve two periods. Each period corresponds to a dif-
ferent attractive steady state, each of which has its own basin of attraction.

To illustrate this we choose the case that a = 1 and X = x2 �x1 = 0, i.e., both oscillators have the same uncoupled fre-
quency (see Figs. 1 and 2). Here we have chosen both oscillators to have a frequency of xi = 0, which is equivalent to imag-
ining that we are attached to a coordinate system which rotates with oscillator 1, thus making x1 = 0. Since the frequency of
both oscillators is zero, the movement of the oscillators will be due only to the coupling between them. In one time interval,
the oscillator that is ahead will move back one segment and the oscillator that is behind will move ahead one. If, initially, the
oscillators are an odd number of segments apart, as in Fig. 1, then they will move closer together until they are on consec-
utive segments, thus exhibiting a 2-cycle, switching places each time interval. If, instead, the oscillators are an even number
of periodic motions obtained in the case of two oscillators with coupling coefficient a and various X = x2 �x1. The symbol1 represents drift. Multiple
correspond to different attractive steady states, each corresponding to different initial conditions. Results obtained by computer simulation.

3 1, 2 6 3 2, 4 3, 6 6 1 1
2 1, 2 4 2, 4 4 1 1 1 1
1 1, 2 2 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7
X

Fig. 1. Here both oscillators have frequency xi = 0. The steady state depends on the initial conditions (cf. Fig. 2).

Fig. 2. Here both oscillators have frequency xi = 0. The steady state depends on the initial conditions (cf. Fig. 1).
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of segments apart, as shown in Fig. 2, then they will move closer together until they eventually land on the same segment
and remain in place, thus exhibiting a 1-cycle.

3. The three oscillator case

In the case of three oscillators with a = 1, we obtain Table 2. We see that the dynamics becomes more complex as the
number of oscillators increases and that even 6-cycles are possible without increasing the coupling coefficient, see Fig. 3.

4. The N-oscillator case

In investigating the dynamics of N digital oscillators, we define /i as the position of oscillator i relative to that of oscillator
1:
Table 2
Periods
X3 = x3

Note sy

X3
/i ¼ hi � h1 ð7Þ
Note that /1 = 0. In this case Eq. (2) give
/nþ1
i ¼ /n

i þxi �x1 þ a
XN

k¼1

ðsgnð/n
k � /n

i Þ � sgn/n
kÞ; i ¼ 2;3; . . . N: ð8Þ
The following Theorem relates the distance a periodic T-cycle moves after one period of T time intervals.

Theorem. Suppose there are N oscillators (N P 2) and that they are T-periodic with respect to Eq. (8). Define K to be the distance
moved by the oscillators after one period. Then
K ¼ T
N

XN

i¼1

xi ð9Þ
That is, K equals the period times the average uncoupled frequency.
of periodic motions obtained in the case of three oscillators with coupling coefficient a = 1, for various frequency differences X2 = x2 �x1,
�x1. The symbol1 represents drift. Multiple entries correspond to different attractive steady states, each corresponding to different initial conditions.

mmetry involving an invariance under the interchanging of X2 and X3. Results obtained by computer simulation.

5 1 1 1 1 1 1
4 1 1 1 1 1 1
3 1, 2 6 6 1, 2 1 1
2 3, 6 2, 4 3, 6 6 1 1
1 3, 6 3, 6 2, 4 6 1 1
0 1, 2 3, 6 3, 6 1, 2 1 1

0 1 2 3 4 5
X2

Fig. 3. A 6-cycle resulting from a three oscillator system with frequencies x1 = 0 (black), x2 = 0 (white), x3 = 1 (cross).
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As an example, take the system shown in Fig. 3. There the number of oscillators N = 3, the period of the motion is T = 6,
and the average frequency of the oscillators is 1/3, giving the phase distance traveled in one period as K = 2, in agreement
with Fig. 3.

We begin the proof by writing Eq. (2) with n = T.
hTþ1
i ¼ hT

i þxi þ a
XN

k¼1

sgnðhT
k � hT

i Þ ð10Þ
Define, Sn
i ¼ a

PN
k¼1sgnðhn

k � hn
i Þ. Then
hTþ1
i ¼ hT

i þxi þ ST
i ð11Þ

¼ hT�1
i þ 2xi þ ST�1

i þ ST
i ð12Þ

¼ � � � ð13Þ

¼ h1
i þ Txi þ

XT�1

j¼0

ST�j
i : ð14Þ
Moving h1
i to the left hand side of Eq. (14) and summing over i, we have
XN

i¼1

ðhTþ1
i � h1

i Þ ¼ T
XN

i¼1

xi þ
XN

i¼1

XT�1

j¼0

ST�j
i : ð15Þ
Changing the order of summation in the last term of Eq. (15) and noting that
PN

i¼1Sn
i ¼ 0 gives
XN

i¼1

ðhTþ1
i � h1

i Þ ¼ T
XN

i¼1

xi ð16Þ
Since we have a period T motion, hTþ1
i � h1

i , being the distance traveled by hi after one period, is the same for all oscillators i,
and thus equal to K. Therefore
NK ¼ T
XN

i¼1

xi ð17Þ

K ¼ T
N

XN

i¼1

xi ð18Þ
5. Discussion

The system investigated in this work, Eq. (2), is an integer-valued version of the real-valued system (1). The question
arises, how do familiar dynamical concepts such as stability, bifurcation and chaos, which occur in typical nonlinear dynam-
ical systems such as (1), apply to the integer-valued system (2)?

To begin with, we note that the system (2) is nonlinear. The sine function, which is the source of nonlinearity in system
(1), has been replaced in (2) by the sgn function, which is also nonlinear.

A related difference between systems (1) and (2) is the topology of the phase space. For system (2) it is N copies of the
integers Z, while for system (1), the phase space is an N dimensional torus (because sine is a periodic function).

As shown in Tables 1 and 2, the system (2), when written in the form (8), exhibits a variety of periodic motions. By com-
parison with system (1), we are led to ask if these motions are stable? The answer is that traditional definitions of stability
must be re-examined for integer-valued systems such as (2). Most stability definitions, such as Lyapunov stability, orbital
stability and structural stability [6] involve comparing the behavior of the given motion with that of a slightly displaced mo-
tion, i.e., with a motion which lies in a neighborhood of the given motion. The problem with system (2) is that it lacks the
notion of a neighborhood.

Nevertheless Figs. 1 and 2 show periodic motions which are attractive, a property which is often associated with stability.
Therefore we propose the following definitions:

A periodic motion M in Eq. (8):

� is said to be attractive if there exists an initial condition which does not lie on M and which generates a motion which
lands on M in finite time.
� is said to be isolated if it is not attractive, i.e., if the only motions which land on M in finite time are motions which start on M.

As an example of an isolated periodic motion, consider the system with N = 2 oscillators, coupling constant a = 1, and fre-
quencies x1 = 0 and x2 = 2. Suppose that at time n = 0 oscillator 1 is located at phase p and oscillator 2 is at phase q > p + 3.
Then at time n = 1, oscillator 1 will be advanced to position p + 1 by the coupling term, whereas oscillator 2, which would be
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located at q + 2 in the absence of coupling, is moved back to q + 1 by the coupling term. Thus the phase difference between
oscillator 1 and oscillator 2 remains constant and we have a phase-locked motion with period T = 1. However since p and
q > p + 3 are arbitrary, a portion of the phase space is filled with periodic motions, and every initial condition therein lies
on one such periodic motion. Each of these motions is therefore isolated. This is reminiscent of the phase portrait of a con-
servative oscillator in two dimensions, for example x0 = y and y0 = �x, where the phase space is filled with periodic motions,
none of which are attractive.

We define the diameter D of a configuration of N oscillators as the maximum distance between any two of them:
D ¼ maxfjhi � hjj; i; j ¼ 1;2; . . . ;Ng ð19Þ
A motion is said to drift if the diameter D approaches 1 as time n approaches 1.
Bifurcations, which can occur in system (1), involve qualitative changes in the system’s dynamical behavior due to con-

tinuous changes in the parameters. Since all the parameters in system (2) are integers, a continuous change in parameters is
not possible, and we cannot speak of bifurcations in system (2).

Can chaos occur in system (2)? A common criterion for chaos is sensitive dependence on initial conditions [9]. That is, one
compares the motion resulting from two slightly different initial conditions, and asks if they continue to remain close to one
another as time t approaches 1. This concept cannot be applied to system (2) because initial conditions cannot be chosen
arbitrarily close to one another.

Finally, we note that non-drifting aperiodic motions cannot occur in system (8). This is because if the motion is confined
to a finite region of phase space (as in a non-drifting motion), then eventually every point in this region will have been ex-
hausted and some point will have to be repeated, thus leading to a periodic motion.

6. Conclusion

We have proposed a new model for coupled digital oscillators, Eq. (2), which is a generalization of a well-known contin-
uous-time model of coupled phase-only oscillators, Eq. (1). It has been shown that the new model exhibits two types of mo-
tions, those which involve periodic phase differences, and those which involve drift. In the case of the former, Tables 1 and 2
show a variety of attractive periodic motions, the period of which depends on the uncoupled oscillator frequencies xi and
the coupling parameter a. For some parameters there exist multiple attractive periodic motions, each with its own basin of
attraction. This work is expected to have application in digital technology.
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