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Abstract

Evolutionary dynamics combines game theory and nonlinear dynamics to model competition in biological and
social situations. The replicator equation is a standard paradigm in evolutionary dynamics. The growth rate of
each strategy is its excess fitness: the deviation of its fitness from the average. The game-theoretic aspect of the
model lies in the choice of fitness function, which is determined by a payoff matrix.

Previous work by Ruelas and Rand investigated the Rock-Paper-Scissors replicator dynamics problem with
periodic forcing of the payoff coefficients. This work extends the previous to consider the case of quasiperiodic
forcing. This model may find applications in biological or social systems where competition is affected by cyclical
processes on different scales, such as days/years or weeks/years.

We study the quasiperiodically forced Rock-Paper-Scissors problem using numerical simulation, and Floquet
theory and harmonic balance. We investigate the linear stability of the interior equilibrium point; we find that
the region of stability in frequency space has fractal boundary.
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1 Introduction

The field of evolutionary dynamics combines game theory and nonlinear dynamics to model population shifts due to
competition in biological and social situations. One standard paradigm [9, 3] uses the replicator equation,

ẋi = xi(fi(x)− φ), i = 1, . . . , n (1)

where xi is the frequency, or relative abundance, of strategy i; the unit vector x is the vector of frequencies; fi(x) is
the fitness of strategy i; and φ is the average fitness, defined by

φ =
∑
i

xifi(x). (2)

The replicator equation can be derived [10] from an exponential model of population growth,

ξ̇i = ξifi, i = 1, . . . , n (3)

where ξi is the population of strategy i, assuming that fi depends only on the frequencies: fi = fi(x). The derivation
consists of a simple change of variables: xi ≡ ξi/p where p =

∑
i ξi is the total population.

The game-theoretic component of the replicator model lies in the choice of fitness functions. Define the payoff
matrix A = (aij) where aij is the expected reward for a strategy i individual vs. a strategy j individual. We assume
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the population is well-mixed, so that any individual competes against each strategy at a rate proportional to that
strategy’s frequency in the population. Then the fitness fi is the total expected payoff for strategy i vs. all strategies:

fi(x) = (Ax)i =
∑
j

aijxj . (4)

In this work, we generalize the replicator model to systems in which the payoff coefficients are quasiperiodic
functions of time. Previous work by Ruelas and Rand [7, 8] investigated the Rock-Paper-Scissors replicator dynamics
problem with periodic forcing of the payoff coefficients. We also consider a forced Rock-Paper-Scissors system. The
quasiperiodically forced replicator model may find applications in biological or social systems where competition is
affected by cyclical processes on different scales, such as days/years or weeks/years.

2 The model

2.1 Rock-Paper-Scissors games with quasiperiodic forcing

Rock-Paper-Scissors (RPS) games are a class of three-strategy evolutionary games in which each strategy is neutral
vs. itself, and has a positive expected payoff vs. one of the other strategies and a negative expected payoff vs. the
remaining strategy. The payoff matrix is thus

A =

 0 −b2 a1
a2 0 −b3
−b1 a3 0

 . (5)

We perturb off of the canonical case, a1 = · · · = b3 = 1, by taking

A =

 0 −1− F (t) 1 + F (t)
1 0 −1
−1 1 0

 (6)

where the forcing function F is given by

F (t) = ε((1− δ) cosω1t+ δ cosω2t). (7)

For ease of notation, write (x1, x2, x3) = (x, y, z). The dynamics occur in the simplex

S ≡ {(x, y, z) ∈ R |x, y, z ∈ [0, 1]} (8)

but since x, y, z are the frequencies of the three strategies, and hence x + y + z = 1, we can eliminate z using
z = 1− x− y. Therefore, the region of interest is T , the projection of S into the x− y plane:

T ≡ {(x, y) ∈ R |x, y, x+ y ∈ [0, 1]}. (9)

See Figure 1. Thus the replicator equation (1) becomes

ẋ = −x(x+ 2y − 1)(1 + (x− 1)F (t)) (10)

ẏ = y(2x+ y − 1− x(x+ 2y − 1)F (t)) (11)

Note that ẋ = 0 when x = 0, ẏ = 0 when y = 0, and

ẋ+ ẏ = (x+ y − 1)(xF (t)(x+ 2y − 1)− x+ y) (12)

so that ẋ+ ẏ = 0 when x+y = 1, which means that x+y = 1 is an invariant manifold. This shows that the boundary
of T is invariant, so trajectories cannot escape the region of interest.

It is known [4] that in the unperturbed case (ε = 0) there is an equilibrium point at (x, y) = ( 1
3 ,

1
3 ), and the

interior of T is filled with periodic orbits. We see from equations (10)-(11) that this interior equilibrium point persists
when ε 6= 0. Numerical integration suggests that the Lyapunov stability of motions around the equilibrium point
depends sensitively on the values of ω1 and ω2. See Figure 2. We investigate the stability of the interior equilibrium
using Floquet theory and harmonic balance, as well as by numerical methods.
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Figure 1: A curve in S and its projection in T

2.2 Linearization

To study the linear stability of the equilibrium point, we set x = u + 1
3 , y = v + 1

3 , substitute these into (10)-(11)
and linearize, to obtain

u̇ = −1

9
(u+ 2v)(3 + 2F (t)) (13)

v̇ =
1

9
(F (t)(u+ 2v) + 3(2u+ v)). (14)

The linearized system (13)-(14) can also be written [6] as a single second-order equation on u, by differentiating (13)
and substituting in expressions for v̇ from (14) and v from (13). This gives us

g(t)ü− ġ(t)u̇− 1

9
g2(t)u = 0 (15)

where
g(t) = −3− 2F (t) = −3− 2ε((1− δ) cosω1t+ δ cosω2t). (16)

Now that we have a linear system with coefficients that are functions of time, we use Floquet theory to determine
the stability of the origin.

3 Floquet theory

Floquet theory is concerned with systems of differential equations of the form

dx

dt
= M(t)x, M(t+ T ) = M(t). (17)

We have the system (13)-(14), which can be written as[
u̇
v̇

]
=

1

9

[
g(t) 2g(t)

1
2 (9− g(t)) −g(t)

] [
u
v

]
≡ B(t)

[
u
v

]
(18)

where g(t) is as in (16).
In general, B(t) is not periodic, since ω1 and ω2 are rationally independent. However, the set of points for which

ω1 and ω2 are rationally dependent is dense in the ω1 − ω2 plane, and solutions of (18) must vary continuously with
ω1 and ω2, so it is reasonable to consider only the case that F (t), and hence g(t) and B(t), are in fact periodic.
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Figure 2: Numerical solutions for x(t) with identical initial conditions x(0) = y(0) = 0.33 and parameters ε = 0.9, δ =
0.6, but with different ω1, ω2

Assume that ω2 = a
bω1 in lowest terms, where a and b are relatively prime integers. Then we can make the

change of variables τ = ω1t, so ω2t = a
b τ . Since a and b are relatively prime, we see that F , and hence g and B, have

period T = 2πb in τ . Thus (18) becomes[
u′

v′

]
=

1

ω1
B(τ)

[
u
v

]
, B(τ + 2πb) = B(τ) (19)

where u′ indicates du/dτ . This has the same form as (17), so we can apply the results of Floquet theory.
Suppose that there is a fundamental solution matrix of (19),

X(τ) =

[
u1(τ) u2(τ)
v1(τ) v2(τ)

]
(20)

where [
u1(0)
v1(0)

]
=

[
1
0

]
,

[
u2(0)
v2(0)

]
=

[
0
1

]
. (21)

Then the Floquet matrix is C = X(T ) = X(2πb), and stability is determined by the eigenvalues of C:

λ2 − (trC)λ+ detC = 0. (22)

We can show [5] that detC = 1, as follows. Define the Wronskian

W (τ) = detX(τ) = u1(τ)v2(τ)− u2(τ)v1(τ). (23)

Notice that W (0) = detX(0) = 1. Then taking the time derivative of W and using (19) gives

dW

dτ
= u′1(τ)v2(τ) + u1(τ)v′2(τ)− u′2(τ)v1(τ)− u2(τ)v′1(τ)

=
1

9ω1

(
g(τ)(u1 + 2v1)v2 +

1

2
u1(9u2 − (u2 + 2v2)g(τ))

−g(τ)(u2 + 2v2)v1 −
1

2
u2(9u1 − (u1 + 2v1)g(τ))

)
= 0. (24)

This shows that W (τ) = 1 for all τ , and in particular W (T ) = detC = 1. Therefore,

λ =
trC ±

√
trC2 − 4

2
(25)

which means [5] that the transition between stable and unstable solutions occurs when |trC| = 2, and this corresponds
to periodic solutions of period T = 2πb or 2T = 4πb.

Given the period of the solutions on the transition curves in the ω1 − ω2 plane, we use harmonic balance to
approximate those transition curves.



4 Harmonic balance

We seek solutions to (15) of period 4πb in τ :

u =

∞∑
k=0

αk cos

(
kτ

2b

)
+ βk sin

(
kτ

2b

)
. (26)

Since ω2 = a
bω1 where a and b are relatively prime, any integer k can be written as na + mb for some integers n

and m [11, 2]. That is, there is a one-to-one correspondence between integers k and ordered pairs (m,n). We can
therefore write the solution as

u =

∞∑
m=0

∞∑
n=−∞

αmn cos

(
ma+ nb

2b
τ

)
+ βmn sin

(
ma+ nb

2b
τ

)
(27)

=

∞∑
m=0

∞∑
n=−∞

αmn cos

(
mω2 + nω1

2
t

)
+ βmn sin

(
mω2 + nω1

2
t

)
. (28)

We substitute a truncated version of (28) into (15), expand the trigonometric functions and collect like terms. This
results in cosine terms whose coefficients are functions of the αmn, and sine terms whose coefficients are functions of
the βmn. Let the coefficient matrices of these two sets of terms be Q and R, respectively. In order for a nontrivial
solution to exist, the determinants of both coefficient matrices must vanish [5]. We solve the equations detQ = 0
and detR = 0 for relations between ω1 and ω2. This gives the approximate transition curves seen in Figure 3.

It has been shown [7, 6] that in a periodically forced RPS system (i.e. δ = 0 in our model) there are tongues of
instability emerging from ω1 = 2/n

√
3 in the ω1 − ε plane. Our harmonic balance analysis is consistent with this:

we observe bands of instability around ω1 = 2/
√

3 and ω2 = 2/
√

3, which get broader as ε increases. We also see
narrower regions of instability along the lines nω1 +mω2 = 2/

√
3, for each n,m used in the truncated solution (28).

Thus the boundary of the region of instability exhibits self-similarity when we consider ω1, ω2 ∈ [0, 21−k] for
k = 0, 1, . . . .

5 Numerical integration

In order to check the results of the harmonic balance method, we generate an approximate stability diagram by
numerical integration of the linearized system (15).

For randomly chosen parameters (ω1, ω2) ∈ [0, 2], we choose random initial conditions (u(0), u̇(0)) on the unit
circle - since the system is linear, the amplitude of the initial condition needs only to be consistent between trials.
We then integrate the system for 1000 time steps using ode45 in Matlab. This is an explicit Runge-Kutta (4,5)
method that is recommended in the Matlab documentation for most non-stiff problems. We considered a motion
to be unstable if max |u(t)| > 10. The set of points (ω1, ω2) corresponding to unstable motions were plotted using
matplotlib.pyplot in Python. See Figure 4. Each plot in Figure 4 contains approximately 5× 104 points.

We note that the unstable regions given by numerical integration appear to be consistent with the transition
curves predicted by harmonic balance (Figure 3). The regions of instability around ω1 = 2/

√
3 and ω2 = 2/

√
3 are

visible for all tested values of ε and δ, and as ε increases, more tongues of the form nω1 + mω2 = 2/
√

3 become
visible.

6 Lyapunov exponents

A second, and more informative, numerical approach for determining stability is the computation of approximate
Lyapunov exponents. This is a measure of a solution’s rate of divergence from the equilibrium point [1], and is
defined as

λ = lim sup
t→∞

1

t
ln |u(t)|. (29)

If the limit is finite, then u(t) ∼ eλt or smaller as t→∞. A positive Lyapunov exponent indicates that the solution
is unstable.



0.0 0.5 1.0 1.5 2.0

Ω1

0.5

1.0

1.5

2.0

Ω2

(a) ε = 0.5, δ = 0.6

0.0 0.5 1.0 1.5 2.0
Ω1

0.5

1.0

1.5

2.0

Ω2

(b) ε = 0.9, δ = 0.6

0.0 0.5 1.0 1.5 2.0
Ω1

0.5

1.0

1.5

2.0

Ω2

(c) ε = 1.3, δ = 0.6

Figure 3: Transition curves predicted by harmonic balance with −5 ≤ m ≤ 5, 0 ≤ n ≤ 5 for various values of ε
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Figure 4: Plots of unstable points in the (ω1, ω2) plane for various values of ε



We do not find any negative Lyapunov exponents, but note [5] that the system (15) can be converted to a Hill’s
equation

z̈ − z
(

4g(t)3 + 27ġ(t)2 − 18g(t)g̈(t)

36g(t)2

)
= 0 (30)

by making the change of variables u =
√
g(t)z. Since

√
g(t) is bounded, u is bounded if and only if z is bounded.

And since there is no dissipation in (30), stable solutions correspond to λ = 0.
We approximate the Lyapunov exponents numerically by integrating as above, and taking

λ ≈ sup
900<t<1000

1

t
ln |u(t)|. (31)

See Figure 5. The shape of the unstable region is the same as in Figure 4, but this method allows us to see a sharp
increase in unstable solutions’ rate of growth along the line ω1 = ω2.

7 Conclusion

The replicator equation with quasiperiodic perturbation may be used to model biological or social systems where
competition is affected by cyclical processes on different scales. We have investigated the linear stability of the interior
equilibrium point for RPS systems with quasiperiodic perturbation, using Floquet theory and harmonic balance, as
well as numerical integration and numerical computation of Lyapunov exponents. We find that stability depends
sensitively on the frequencies ω1 and ω2, and that the region of instability in the ω1−ω2 plane exhibits self-similarity.
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(a) ε = 0.5, δ = 0.6. Contours between λ = 0 and λ = 0.04. (b) ε = 0.9, δ = 0.6. Contours between λ = 0 and λ = 0.08.

(c) ε = 1.3, δ = 0.6. Contours between λ = 0 and λ = 0.12. (d) Detail view: ε = 1.3, δ = 0.6. Contours as in (c).

Figure 5: Contour plot of Lyapunov exponents in the (ω1, ω2) plane for various values of ε


