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Abstract

This work concerns the occurrence of Hopf bifurcations in delay differential equations (DDE). Such bifurcations
are associated with the occurrence of pure imaginary characteristic roots in a linearized DDE. In this work
we seek the exact analytical conditions for pure imaginary roots, and we compare them with the approximate
conditions obtained by using the two variable expansion perturbation method. This method characteristically
gives rise to a “slow flow” which contains delayed variables. In analyzing such approximate slow flows, we
compare the exact treatment of the slow flow with a further approximation based on replacing the delayed
variables in the slow flow with non-delayed variables, thereby reducing the DDE slow flow to an ODE. By
comparing these three approaches we are able to assess the accuracy of making the various approximations. We
apply this comparison to a linear harmonic oscillator with delayed self-feedback.
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Introduction

It is known that ordinary differential equations (ODEs) are used as models to better understand
phenomenon occurring in biology, physics and engineering. Although these models present a good ap-
proximation of the observed phenomenon, in many cases they fail to capture the rich dynamics observed
in natural or technological systems. Another approach which has gained interest in modeling systems is
the inclusion of time delay terms in the differential equations resulting in delay-differential equations
(DDEs). DDE’s have found application in many systems, including rotating machine tool vibrations [1],
gene copying dynamics [2], laser dynamics [3] and many other examples.

Despite their simple appearance, delay-differential equations (DDEs) have several features that
make their analysis a challenging task. For example, when investigating a delay-differential equation
(DDE) by use of a perturbation method, one is often confronted with a slow flow which contains delay
terms. It is often argued that since the parameter of perturbation, call it €, is small, € << 1, the delay
terms which appear in the slow flow may be replaced by the same term without delay, see e.g. [3—10]. The
purpose of the present paper is to compare the exact Hopf bifurcation curves to the approximate curves
obtained by analyzing the slow flow. In particular, we compare the exact treatment of the approximate
slow flow with a treatment involving a further approximation based on replacing the slow flow delay
terms with terms without delay. We consider the case of a linear delay differential equation and look for
the smallest delay 7" such that the following system has pure imaginary eigenvalues, a setup for a Hopf,
depending on the nonlinear terms (omitted here):

x'+x=¢€kxy, where x;=x(t—-T) (1)

To this aim we adopt three methods. The first method consists of solving for the exact solution
of the characteristic equation. In the second and third methods, we use a perturbation method, the two
variables expansion method, to produce a slow flow. In the second method we keep the delayed variables
in the slow flow, while in the third method we replace the delayed variables by non-delayed variables.
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1. First method

For the first method we adopt an exact treatment of eq. (1) without assuming € is small. To begin
we assume a solution to eq. (1) in the form

x =exp(r?) (2)
Substituting eq. (2) into eq. (1) yields

r?+1—keexp(—rT) =0 3)

It is known that for a Hopf bifurcation to occur the real parts of a pair of eigenvalues of the
characteristic equation, i.e. r’s of eq. (3), must cross the imaginary axis leading to a changing of sign of
this pair of eigenvalues (Rand [11], Strogatz [12]). In other words the origin, which is an equilibrium
point for eq. (1), changes stability from source to sink or vice-versa. Therefore to find the critical delay
T, causing a Hopf bifurcation, we set r = i@ giving

l—a)z—ke‘cosa)tzo, sinwt =0 4

Solving the second equation in eq. (4), we obtain w7, = nw, n=1,2,3,.... However since we
are only interested in the smallest delay T causing Hopf bifurcation, we only consider the two solutions
w7, = 7 and 27. Replacing these two solutions in the first equation in eq. (4) and solving for w and T
we obtain:

0w = 1+ke 5
T T

Ty = —=——m— 6
o +/1+ke ©

and

o = V1—ke @)
27 2n

T, = —=—e 8
() vV1—ke ®)

Note that eq. (6) and eq. (8) are exact values for the delay 7" for which a Hopf bifurcation may
occur. In the two next sections we consider the parameter € in eq. (1) to be small, i.e. € << 1, and we use
a perturbation method to derive a slow flow. We note that using the two variable expansion method gives
the same slow flow as would be obtained by using the averaging method [13].

2. Second Method

The two variable method posits that the solution depends on two time variables, x(&, 1), where
& =t and 1 = et. Then we have

xg=x(t—T)=x(E—-T,n—¢€T) )
Dropping terms of O(£?), eq.(1) becomes
Xeg +2€xey +x=¢€kx(§ —T,n—€T) (10)
Expanding x in a power series in €, x = xo + €x1 + O(&?), and collecting terms, we obtain
Lxy = Xoee +x0=0 (1D

Lxy =kxo(§ —T,n—eT) (12)

(From eq.(11) we have that

x0(,n) =A(n)cosG +B(n)sing (13)
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In eq.(12) we will need xo(§ —T,n — €T):
x0(E—T,n—¢eT)=A cos(§ —T)+Bysin(§ —T) (14)

where Ay = A(n —€T) and B, = B(n —€T).
Substituting (13) and (14) into (12) and eliminating resonant terms gives the slow flow:

A

;’n _ _gAd SinT — gBdcosT (15)
dB  k k

22 _IB sinT+-A T 1
an 5BasinT +5Acos (16)

where Ay = A(n —€T) and B; = B(n — €T). We set
A=aexp(An), B=bexp(An), As=aexp(An—€AT), By =bexp(An—¢eAT) (17)
where a and b are constants. This gives

—A —%exp(—A€eT)sinT  —%exp(—AeT)cosT al |0 (18)
Kexp(—2A€T)cosT —A —Lexp(—A€T)sinT b| |0

For a nontrivial solution (a,b) we require the determinant to vanish:

2 2
(—)L—Iz{exp(—/'LsT)sinT> —i—kZexp(—Z?LST)coszT:O (19)

We set A = i for a Hopf bifurcation and use Euler’s formula exp(—iweT) = cos weT —isin weT.
Separating real and imaginary parts we obtain

4k* cos2e T + 16kwsin T sinewT — 160> + 40> =0 (20)
—4k?sin2e T + 16k sin T coseoT + 1600 = 0 @29

At this stage we adopt the technique used in [13] to analytically solve for the pair (w,T"). Following
[13] we obtain the exact solutions of eqs.(20)-(21), giving the delay for which Hopf bifurcation occurs

T
TIery = —7; 22
' 14-¢€k/2 @2)
lek/2| < 1
27
TIer,=—77; 2
* 1—¢€k/2 @3)

We note that the denominator of eqs. (22), (23) are just the Taylor expansions to the first order
of the exact frequency given by eqs.(5),(7). In the next section we replace the delayed variables in
egs. (15),(16), i.e. A; and By, by the non-delayed variables A and B.

3. Third Method
The slow flow given by eqs. (15),(16) is replaced by a slow flow with no delayed variables such

that:
dA k k
an = _EA sinT — EBcosT (24)
dB k k
an = —EBsinT+§AcosT (25)
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Figure 1. Critical delay vs. the feedback magnitude k. Top: blue (Biftool), red eq. (6), black eq. (22),
magenta eq. (28). Bottom: blue (Biftool), red eq. (8), black eq. (23), magenta eq. (29). Parameter € =0.1.

In order to find the critical delay we proceed as in the previous section. The corresponding
characteristic equation has the form:

k2
A2+ kA sin7 + 7 =0 (26)

For a Hopf bifurcation, we require imaginary roots of the characteristic equation. This gives
ksinT =0 27
Solving the above equation for the critical delay T we obtain:

T, = m (28)
T, = on (29)

Figure 1 shows a plot of the Hopfs in the k — T parameter plane. From the figure we remark that
the exact delay that is obtained from solving eq. (19) agrees with the numerical Hopf bifurcation curves
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(blue) that is obtained by using the DDE-BIFTOOL continuation software [14—16]. The Hopf curves
given by the second method offer a good approximation to the numerical Hopf curves, in particular for
small values of the feedback magnitude k. However, the curves obtained from the third method do not
agree with the numerical Hopf curves.

Conclusions

When a DDE with delayed self-feedack is treated using a perturbation method (such as the two
variable expansion method, multiple scales, or averaging), the resulting slow flow typically involves
delayed variables. In this work we compared the behavior of the resulting DDE slow flow with a related
ODE slow flow obtained by replacing the delayed variables in the slow flow with non-delayed variables
and comparing the resulting approximate critical delays causing Hopf bifurcation with the exact analytical
Hopf curves. We studied a sample system based on the harmonic oscillator with delayed self-feedback,
eq.(1). We found that replacing the delayed variables in the slow flow by non-delayed variables fails
to give a good approximation. However, keeping the delayed variables in the slow flow gives better results.
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