
Available online at www.sciencedirect.com

International Journal of Non-Linear Mechanics 39 (2004) 1079–1091

Non-linear dynamics of a system of coupled oscillators with
essential sti#ness non-linearities
Alexander F. Vakakisa;b, Richard H. Randc;∗

aDivision of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens,
P.O.Box 64042, GR-157 10 Zografos, Greece

bDepartment of Mechanical and Industrial Engineering, University of Illinois, 1206 W. Green Street, Urbana, IL 61801, USA
cDepartment of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA

Received 8 November 2002; received in revised form 21 April 2003; accepted 2 June 2003

Abstract

We study the resonant dynamics of a two-degree-of-freedom system composed of a linear oscillator weakly coupled to
a strongly non-linear one, with an essential (non-linearizable) cubic sti#ness non-linearity. For the undamped system this
leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in
detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic
motions (non-linear normal modes—NNMs), as well as, asynchronous periodic motions (elliptic orbits—EOs). Furthermore,
we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the
damped dynamics gets ‘captured’ in the neighborhood of a damped NNM before ‘escaping’ and becoming an oscillation
with exponentially decaying amplitude. In turn, these resonance captures may lead to passive non-linear energy pumping
phenomena from the linear to the non-linear oscillator. Thus, sustained resonance capture appears to provide a dynamical
mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion.
Numerical integrations con<rm the analytical predictions.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the dynamics of a two degree-of-
freedom (DOF) system of weakly coupled oscillators
with cubic sti#ness non-linearities. In the limit of zero
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coupling the system decomposes into two single-DOF
subsystems: A linear oscillator with normalized natu-
ral frequency equal to unity, and a non-linear oscilla-
tor possessing a non-linearizable cubic sti#ness. We
are interested in studying the dynamics of the weakly
coupled system.
Previous works (for example [1,2]) analyzed the

dynamics of systems with internal, external and com-
bination resonances, by partitioning the dynamics into
‘slow’ and ‘fast’ components and reducing the analy-
sis to a small set of modulation equations governing
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the slow-Jow, i.e., the evolution of the ‘slow’ dynam-
ics of the system. Generally, internal resonances in-
troduce interesting bifurcations to the free and forced
dynamics, and lead to essentially non-linear dynami-
cal phenomena that have no counterparts in linear the-
ory. In recent works, a comprehensive classi<cation of
the possible internal resonances in discrete non-linear
oscillators was performed by [3,4].
In this work we focus on the 1:1 internal reso-

nance between the linear and non-linear oscillators
and apply asymptotic techniques to study the free
dynamics when no damping exists. Depending on the
system parameters, stable and unstable synchronous
periodic solutions (non-linear normal modes—
NNMs) or asynchronous periodic motions are de-
tected, along with homoclinic loops in the ‘slow’
Jow dynamics. Numerical simulations con<rm the
analytical predictions. When damping is introduced,
certain of these homoclinic loops can be transformed
to domains of attraction for resonance capture [5,6].
In turn, resonance capture leads to passive energy
pumping [7,8] from the linear to the non-linear oscil-
lator. Following [6] we provide a direct link between
resonance capture and passive non-linear energy
pumping in the damped system of coupled oscilla-
tors. We utilize analytical and numerical techniques
to analyze these interesting dynamical phenomena.

2. Statement of the problem

We are interested in the dynamics of a system of
two oscillators, one of which is strictly non-linear with
cubic non-linearity. The oscillators are assumed to be
coupled by small non-linear (cubic) terms. If we ne-
glect damping, the problem is de<ned by the follow-
ing equations:

d2x
dt2

+ x =−�
@V
@x

; (1)

d2y
dt2

+ y3 =−�
@V
@y

; (2)

where ��1 and where V is given by

V = a40x4 + a31x3y + a22x2y2 + a31xy3: (3)

We study this system by <rst using the method of
averaging to obtain a slow Jow valid toO(�), and then
analyzing the slow Jow.

3. Averaging

In order to perturb o# of the �=0 system, we need
to solve the equation:

d2y
dt2

+ y3 = 0: (4)

The exact solution to Eq. (4) is

y(t) = A cn(At; k) where k = 1=
√
2

and A is an arbitrary constant: (5)

As shown in [9–12], variation of parameters for the
equation

d2y
dt2

+ y3 = �f (6)

takes the form

dA
dt
= �f

cn′

A
; (7)

d�
dt
=

A
4K

− �f
cn
4KA2

; (8)

where cn′= @ cn(u; k)=@u, where u=4K�, and where
�= At=4K .
Here the solution of Eq. (6) has been taken in the

form

y = A cn(4K�; k) (9)

where the modulus k = 1=
√
2 and the elliptic integral

of the <rst kind K(k) = 1:854:
We simplify the averaging by use of an “engineer-

ing” approximation. Byrd and Friedman [13, p. 304],
give the following Fourier expansion for cn:

cn
2K
�

q= 0:955 cos q+ 0:043 cos 3q+ · · ·

where here K = K(1=
√
2) = 1:854: (10)
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We replace Eq. (10) by the following approximation
(after Chirikov [14]):

cn
2K
�

q ≈ cos q: (11)

Using Eq. (11), Eq. (9) becomes

y = A cos � where �= 2��: (12)

Using this approximation (12) for y, the variation of
parameter Eqs. (7), (8) become

dA
dt
=−�f

�
2KA

sin �; (13)

d�
dt
=

�A
2K

− �f
�

2KA2
cos �: (14)

The corresponding treatment of the x-equation follows
the usual lines (see [15, Chapter 3], for example). For
the equation:

d2x
dt2

+ x = �g; (15)

we take x in the form

x = R cos  ; (16)

whereupon variation of parameters gives:

dR
dt
=−�g sin  ; (17)

d 
dt
= 1− �g

cos  
R

: (18)

Now if we let f=−@V=@y in Eq. (6), and g=−@V=@x
in Eq. (17), then Eqs. (13), (14), (17), (18) repre-
sent the result of variation of parameters for the orig-
inal system (1), (2), where y and x are related to the
state variables A; � and R;  , respectively, through Eqs.
(12), (16).
The next step is to replace x and y in Eqs. (13),

(14), (17), (18) by their equivalents in A; � and R;  
via Eqs. (12), (16). Using computer algebra, we obtain
the following equation for dR=dt, and three similar
equations on dA=at, d =dt and d�=dt, which we omit

listing for brevity:

dR
dt
=

a13 A3 � sin(3�+  )
8

− a13 A3� sin(3�−  )
8

+
a22 A2 �R sin(2�+ 2 )

4

− a22A2�R sin(2�− 2 )
4

+
3a31A�R2 sin(�+ 3 )

8

+
3a31A�R2 sin(�+  )

8
+
3a13A3� sin(�+  )

8

− 3a31A�R
2 sin(�−  )
8

− 3a13A3� sin(�−  )
8

− 3a31A�R
2 sin(�− 3 )
8

+
a40� sin(4 )R3

2

+ a40� sin(2 )R3 +
a22A2� sin(2 )R

2
: (19)

Next, we apply the method of averaging to these
“variation of parameters” equations. We posit a
near-identity transformation (see [15]) for each of the
variables R; A;  ; �. For example for R this takes the
form

R= QR+ �w1( QR; QA; Q ; Q�); (20)

wherew1 is a generating function which will be chosen
so as to simplify the resulting slow Jow as much as
possible. Di#erentiating Eq. (20),

dR
dt
=
d QR
dt
+ �

(
@w1
@ QR

d QR
dt
+

@w1
@ QA

d QA
dt

+
@w1
@ Q 

d Q 
dt
+

@w1
@ Q�

d Q�
dt

)
: (21)

By inspection of Eqs. (13), (14), (17), (18), we see
that Eq. (21) becomes, neglecting terms of O(�2),

dR
dt
=
d QR
dt
+ �

(
@w1
@ Q 

+
@w1
@ Q�

QA
�

)

where � = 2K=�= 1:18: (22)

Now we substitute Eq. (22) into the dR=dt Eq. (19)
and choose w1 to eliminate as many terms as possible
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from the RHS of the d.e. As an example, take the
following term:

dR
dt
=
d QR
dt
+ �

(
@w1
@ Q 

+
@w1
@ Q�

QA
�

)

=−3�
QA QR2a31
8

sin( Q�− Q ): (23)

We choose w1=C cos( Q�− Q ) and substitute, allowing
us to solve for C:

C =
(3� QA QR2a31=8)
( QA=�)− 1 : (24)

Proceeding in this way, we eliminate all terms from
the RHS of Eq. (19) and from the RHSs of the com-
parable equations on dA=at, d =dt and d�=dt, except
for those terms which have no trig multiplier. These
terms would require thatw1 include terms proportional
to t, which would fail to permit expansion (20) to be
uniformly valid for large t. We obtain the following
non-resonant slow Jow (where we have dropped the
bars for convenience):

dA
dt
= 0; (25)

dR
dt
= 0; (26)

d 
dt
= 1 +

�a22
2

A2 +
3�a40
2

R2; (27)

d�
dt
=

A
�
+

�a22
2�

R2

A
: (28)

Eqs. (27), (28) give expressions for the frequency-
amplitude relations of the non-linear normal modes
which correspond respectively to the uncoupled x- and
y-motions in the non-resonant case.

4. Investigation of the 1:1 resonance

Note that the denominator of the derived coeR-
cient C in Eq. (24) vanishes when A = �. (Recall
that � = 2K=� = 1:18, see Eq. (22).) This means that
the term − 3

8 � QA QR
2a31 sin( Q� − Q ) in Eq. (23) is reso-

nant. The vanishing of the argument of the trig term
is responsible for the resonance. Inspection of the

variation of parameter equations shows that there are
three resonant conditions: �= , �=3 , 3�= . These
correspond respectively to the following amplitudes A
of the strictly non-linear y-oscillator: A = � = 1:18,
A= 3� = 3:54, A= �=3 = 0:393.
In order to investigate what happens close to the 1:1

resonance, that is, when A ≈ � = 1:18, we omit re-
moving the terms which cause the resonance. Writing
v= �−  , we obtain
dR
dt
=

−A�(2Aa22R sin 2v+3a31R2 sin v+3A2a13 sin v)
8

(29)

dA
dt
=

�R(2Aa22R sin 2v+3a31R2 sin v+3A2a13 sin v)
8A�

(30)

dv
dt
=

A
�
− 1− 3a40�R2

2
+

a22�R2

2A�
− A2a22�

2

+
a22�R2 cos 2v

4A�
− A2a22� cos 2v

4

+
3a31�R3 cos v

8A2�
− 9Aa31�R cos v

8

+
9a13�R cos v

8�
− 3A3a13� cos v

8R
: (31)

This three-dimensional system can be simpli<ed by
dividing Eq. (29) by Eq. (30), giving

dR
dA
=−�

A2

R
: (32)

Integrating Eq. (33), we obtain the <rst integral:

R2

2
+ �

A3

3
= k1 = constant: (33)

A second <rst integral is

R2

2
+

A4

4
+ �

[
3
8
a40R4 +

1
8
a22A2R2 (2 + cos 2v)

+
3
8
(a13A2 + a31R2)AR cos v

]

=k2 = constant: (34)
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This last result may be checked by di#erentiating (34)
with respect to t and substituting the slow Jow Eqs.
(29)–(31).
These <rst integrals may be viewed as surfaces in

the R−A− v slow Jow phase space which has topol-
ogy R+ × R+ × S1. In particular, for a given value
of k1, which is found from the initial conditions R(0)
and A(0), Eq. (33) is a cylindrical surface parallel to
the v-axis. We shall be interested in the nature of the
slow Jow on this surface. For a given value of k2, the
surface (34) intersects the cylinder (33) in a curve.
By allowing k2 to vary, the cylinder (33) becomes
foliated into invariant curves.

5. Slow �ow equilibria

Equilibria of the slow Jow Eqs. (29)–(31) corre-
spond to periodic motions in the original Eqs. (1),
(2). In order to obtain expressions for these slow Jow
equilibria and to investigate their stability, we proceed
as follows: We solve Eq. (33) for R and substitute the
resulting expression in Eqs. (30) and (31) to obtain
two equations in A and v of the form

dA
dt
= F(A; v);

dv
dt
= G(A; v): (35)

The equilibrium condition in the <rst of these equa-
tions, F(A; v) = 0, can be satis<ed in three ways:

v= 0 or v= � or

cos v=−3(a31R(A)
2 + A2a13)

4Aa22R(A)
; (36)

where R(A) represents the function of A obtained by
solving Eq. (33) for R:

R(A) =

√
2
3

√
3k1 − �A3: (37)

Note that since we are interested in 1:1 resonance, A ≈
�=2K=�=1:18 and Eq. (37) tells us that k1¿�A3=3 ≈
�4=3 = 0:646.
Thus the number of slow Jow equilibria in the case

of 1:1 resonance is either 2 or 4, depending upon
whether or not the third condition in (36) has real
roots. The bifurcation case corresponds to cos v=±1.
Substituting A = � into this limiting case, we obtain

Fig. 1. Bifurcation diagram.

the following relation between the parameters:

a22 =
±√

3
(
2(3k1 − �4)a31 + 3�2a13

)
4
√
2�

√
3k1 − �4

: (38)

As an example, we choose the value of k1 to corre-
spond to the initial conditions R(0) = A(0) = 1 which
gives k1 = 0:893333, in which case Eq. (38) becomes

a22 =±0:4468(a31 + 2:8178a13); (39)

giving the following bifurcation diagram (Fig. 1).
Next, we investigate the stability of these slow Jow

equilibria. Let us select one of the conditions (36) and
call it v = v∗. Using this condition in the equilibrium
condition for the second of (35),G(A; v)=0, we obtain

G(A; v∗) = 0: (40)

We seek to satisfy this equation approximately by
choosing A in the form

A= � + �u+ O(�2): (41)

Let us denote by u∗ and A∗ = � + �u∗ the resulting
equilibrium location. The nature of the equilibrium
may be obtained by linearizing in its neighborhood:

d(A− A∗)
dt

= (A− A∗)
@F
@A
+ (v− v∗)

@F
@v
+ · · ·

(42)

d(v− v∗)
dt

= (A− A∗)
@G
@A
+ (v− v∗)

@G
@v
+ · · ·

(43)

where the partial derivatives are evaluated at the equi-
librium (A∗; v∗). From the existence of the second <rst
integral (and the absence of dissipation in the origi-
nal equations of motion) we know that the trace of
the Jacobian matrix of Eqs. (42), (43) must vanish.
Thus the type of equilibrium is determined by the
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determinant # of the Jacobian matrix:

#¿ 0⇒ center; #¡ 0⇒ saddle: (44)

We now give the result of computations. We begin
with u∗:

u∗ = a31

(
−11 cos v

∗�6

12
√
2q

+
13k1 cos v∗�2

4
√
2q

−3k
2
1 cos v

∗

2
√
2�2q

)

+a13

(
9 cos v∗�4

8
√
2q

−9k1 cos v
∗

4
√
2q

)
+a40(3k1�−�5)

+a22

(
5 cos 2v∗�3

12
+
5�3

6
−k1 cos 2v∗

2�
−k1

�

)
;

(45)

where q=
√

k1 − (�4=3) and where �=2K=�=1:18.
As an example, we again choose k1 = 0:893333, in
which case Eq. (45) becomes

u∗ = 1:00759a31 cos v∗ + 0:24343a13 cos v∗

+0:87464a40

+(0:61213 + 0:30607 cos 2v∗)a22: (46)

For these parameters, the determinant # of the Jaco-
bian matrix is computed to be

#=−0:17744�[a22 cos 2v∗

+0:4468 cos v∗(a31 + 2:8178a13)]: (47)

Thus from (44) we may conclude that the type of
equilibrium occurring at v = v∗ is dependent on the
sign of the following quantity:

a22 cos 2v∗ + 0:4468 cos v∗(a31 + 2:8178a13)

¡ 0⇒ center

¿ 0⇒ saddle: (48)

Now we apply these results to the slow Jow equilibria
at v∗ = 0 and v∗ = �:

a22 ± 0:4468(a31 + 2:8178a13)
¡ 0⇒ center

¿ 0⇒ saddle; (49)

Fig. 2. Four cases.

where the upper sign refers to v∗ = 0 and the lower
sign refers to v∗ = �. By comparing conditions (49)
to conditions (39), which govern whether or not there
are two equilibria in addition to v∗=0 and �, we may
draw the following conclusions:
If v∗ = 0 and � are the only two equilibria,

then they have opposite types. If the quantity
a31 +2:8178a13¿ 0 then v∗=0 is a saddle and v∗=�
is a center. If the quantity a31 + 2:8178a13¡ 0 then
v∗ = 0 is a center and v∗ = � is a saddle.
If there are two additional equilibria coming from

the third condition of Eq. (36), then v∗=0 and � both
are of the same type, and the additional equilibria are
of the opposite type. If a22¿ 0 then v∗=0 and v∗=�
are saddles while the additional equilibria are centers.
If a22¡ 0 then v∗ = 0 and v∗ = � are centers while
the additional equilibria are saddles.
These considerations lead to a graphical enumera-

tion of the four cases shown in Figs. 2 and 3.
These results may be checked by computing

Poincare maps directly from the original o.d.e.’s (1)–
(3) for the corresponding parameters. The choice of
the constant k1 = 0:89333 in Fig. 3 will correspond to
a corresponding value of the energy h, where

h=
1
2
(ẋ2 + ẏ 2) +

1
2
(x2 + y2) + �V: (50)

Using Eqs. (12), (16) and neglecting terms of O(�),
this becomes

h=
1
2
R2 +

1
4
A2: (51)

In the case of 1:1 resonance, we had the approximate
<rst integral (33):

R2

2
+ �

A3

3
= k1 = constant: (52)
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Fig. 3. Phase portraits of the four cases. In each case the slow Jow on the cylinder (33) is shown projected onto the R–v plane.
The horizontal axis goes from R = 0 to 1.336, and the vertical axis goes from v = 0 to 2�. The parameters for the four cases are
as follows: A (a31 = 1; a13 = 1; a22 = 1; a40 = 1), B (a31 = −4; a13 = −4; a22 = 6; a40 = 1), C (a31 = 1; a13 = 1; a22 = 2; a40 = 1), D
(a31 = 1; a13 = 1; a22 =−3; a40 = 1). In each case k1 = 0:89333.

Subtracting (52) from (51) we obtain

h− k1 =
1
4
A4 − �

A3

3
: (53)

But for 1:1 resonance we saw in Eq. (41) that A=�+
O(�), giving

h= k1 − 1
12

�2 = 0:7318; (54)

where we have used k1 = 0:89333 and � = 1:18.
Figs. 4 and 5 present the results of such computa-

tions cases C,D, respectively. In each case the surface
of section for the Poincare map is taken as x=0 with
ẋ ¿ 0. Initial conditions were chosen to generate the
motions corresponding to the separatrices in Fig. 3.
The excellent qualitative agreement between Figs. 4,
5 and 3 demonstrates the validity of our asymptotic
expansions.

The <xed points in the Poincare maps correspond to
periodicmotionsintheoriginalsystem(1)–(3).Wenote
that Figs. 4, 5 illustrate two di#erent types of periodic
motions. The <xed points which occur on the vertical
(ẏ) axis correspond to motions in which y = 0 occurs
simultaneously with x = 0. These periodic motions
are called non-linear normal modes (NNMs) and may
be thought of as vibrations-in-unison, or synchronous
periodic motions. If projected onto the x–y plane,
NNMs plot as curves which pass through the origin.
In addition, Figs. 4 and 5 also possess <xed points

which occur o# the vertical axis. Such motions are
also periodic, but they do not pass through the origin
when projected onto the x–y plane. Rather they plot as
closed curves on the x–y plane, approximately ellip-
tical in shape, and are known as elliptic orbits (EOs).
These motions are not vibrations-in-unison, and are
said to be asynchronous.
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Fig. 4. Poincare map, case C. The y–ẏ plane is displayed, ex-
tending from −1:5 to +1.5 along both axes. Eqs. (1)–(3) were
numerically integrated using initial conditions which lie on the
energy surface h = 0:7318. See text.

Fig. 5. Poincare map, case D. The y–ẏ plane is displayed, ex-
tending from −1:5 to +1.5 along both axes. Eqs. (1)–(3) were
numerically integrated using initial conditions which lie on the
energy surface h = 0:7318. See text.

6. Example

Consider a system of two unit masses which are
constrained to move along a straight line, and which
are restrained by three springs, two of which are an-
chor springs and one of which is a coupling spring.
One anchor spring is linear with spring constant k1,
F = k1&. The other two springs are strictly cubic,
F = ki&3, i = 2; 3. See Fig. 6.
The potential energy may be written:

P:E:=
1
2
k1x2 +

1
4
k2(x − y)4 +

1
4
k3y4: (55)

We rewrite this by collecting terms, in the following
form:

P:E:=
1
2
k1x2 +

1
4
k2

×(x4 − 4x3y + 6x2y2 − 4xy3)

+
1
4
(k3 + k2)y4: (56)

We take k1 = 1, k2 = �, and k3 = 1− �, giving

P:E:=
1
2
x2 +

1
4
�

×(x4 − 4x3y + 6x2y2 − 4xy3) + 1
4
y4 (57)

which gives the equations of motion:

Tx + x=−�Vx; Ty + y3 =−�Vy where

V =
1
4
(x4 − 4x3y + 6x2y2 − 4xy3): (58)

This is a special case of the general potential V

V = a40x4 + a31x3y + a22x2y2 + a13xy3 (59)

in which

a40 = 1; a31 =−4; a22 = 6; a13 =−4: (60)

Fig. 6. Example system consisting of two unit masses and three
springs. Spring 1 is linear, while springs 2 and 3 are non-linear.
See text.
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Fig. 7. Poincare map, case B. The y–ẏ plane is displayed, ex-
tending from −1:5 to +1.5 along both axes. Eqs. (1)–(3) were
numerically integrated using initial conditions which lie on the
energy surface h = 0:7318. See text.

This case has been called case B in Fig. 3. The corre-
sponding Poincare map is shown in Fig. 7 for �=0:001
and h=0:7318. Cut is x=0, ẋ ¿ 0, and y–ẏ plane is
displayed from −1:5 to 1.5 in both directions.

7. Resonance capture and passive non-linear
energy pumping in the damped system

To study the e#ect of damping on the dynamics we
focus on the speci<c example of two coupled oscilla-
tors just considered (case B). By adding two viscous
damping terms the equations of motion take the form:

Tx + x + �*ẋ + �(x − y)3 = 0; (61)

Ty + (1− �)y3 + �*ẏ + �(y − x)3 = 0: (62)

In Fig. 8 we depict the damped response of the system
with parameters � = 0:1; * = 0:5 and zero initial con-
ditions except for ẋ(0) = 1:6. These initial conditions
correspond to an impulse of magnitude 1.6 applied to
the linear oscillator, with the system initially at rest.

Fig. 8. Case of no resonance capture: (a) Instantaneous frequency
of the non-linear oscillator, (b) Response of the linear (dashed
line) and non-linear (solid line) oscillator.

In Fig. 8a we present the approximate instantaneous
frequency of the non-linear oscillator computed by [7]

+ = ,I 1=31 (t); (63)

where

, =
(
3�4(1− �)
8K4

)1=3
;

I1(t) =
(

�2ẏ 2

2.2,2K2
+

y4(t)
.4

)3=4
; (64)

in which

.=
(

1
4(1− �)

)1=6(3�
K

)1=3
; (65)

and K = K(1=2) is the complete elliptic inte-
gral of the <rst kind with modulus 1=2. From
Fig. 8a we note that due to the relatively low
level of initial excitation, +(t) does not reach the
neighborhood of the natural frequency of the linear
oscillator, and, as a result no resonance capture and
no signi<cant energy pumping from the linear to the
non-linear oscillator takes place. This is concluded
from Fig. 8b where the time responses of the two
oscillators are depicted.
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Fig. 9. Case of resonance capture: (a) Instantaneous frequency of
the non-linear oscillator, (b) Response of the linear (dashed line)
and non-linear (solid line) oscillator.

In Fig. 9 we show the response of the same sys-
tem, but for the higher initial velocity ẋ(0) = 3:0. For
this increased level of initial excitation we see that
the instantaneous frequency of the non-linear oscilla-
tor reaches the neighborhood of the natural frequency
of the linear oscillator, giving rise to 1:1 resonance
capture. It can be concluded from Fig. 9b that signif-
icant energy transfer from the linear to the non-linear
oscillator takes place. As discussed below, this energy
transfer (pumping) can be directly related to the res-
onance capture phenomenon.
For comparison purposes in Fig. 10 we depict

the portion of total energy dissipated at the viscous
damper of the non-linear oscillator versus time for
each of the two cases discussed above. For low ini-
tial energy (no energy pumping) nearly 9% of total
energy is dissipated, whereas, when energy pumping
occurs, as much as 45% of total energy is dissi-
pated. This clearly demonstrates the capacity of the
non-linear oscillator to absorb energy from the linear
one as the level of initial excitation increases.
In order to better understand the dynamics of

the 1:1 resonance capture and its relation to energy
pumping we will perform an analysis based on the
partition of the damped response into ‘slow’ and
‘fast’ parts. This partition is justi<ed by the numerical

Fig. 10. Portion of initial energy dissipated at the damper of the
non-linear oscillator versus time.

simulations of Figs. 8b and 9b where it is observed
that fast oscillations are modulated by slowly varying
envelopes. Moreover, from Fig. 9b we see that 1:1
resonance capture takes place when the fast oscilla-
tion has frequency approximately equal to unity (the
frequency of the linear oscillator). It is concluded that
in the energy capture regime the fast oscillations have
frequency approximately equal to unity. We follow
the analytical technique <rst introduced by Manevitch
[16], by introducing the complex variables,

 1 = ẏ + jy;  2 = ẋ + jx; j =
√−1 (66)

and complexifying the resulting equations of motion
(61), (62):

 ̇ 1 −
(
j − �*
2

)
( 1 +  ∗

1 ) +
j
8
(1− �)( 1 −  ∗

1 )
3

+
j�
8
( 1 −  2 −  ∗

1 +  ∗
2 )
3 = 0; (67)

 ̇ 2 − j 2 +
�*
2
( 2 +  ∗

2 ) +
j
2
( 2 −  ∗

2 )

− j�
8
( 1 −  2 −  ∗

1 +  ∗
2 )
3 = 0; (68)

where * denotes complex conjugate. These equations
are exact.
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We now introduce the slow-fast dynamics partition
by approximating the complex variables as,

 i(t) = �i(t) expjt ; i = 1; 2; (69)

where �i(t) is assumed to be a slowly varying com-
plex amplitude and the exponential models the fast os-
cillation with frequency nearly to unity. Substituting
this partition into (67), (68) and averaging out compo-
nents with fast frequencies higher than unity, we ob-
tain the approximate complex modulation equations:

�̇1 +
(
j + �*
2

)
�1 − 3j

8
(1− �)�21�

∗
1

−3j�
8
(�1 − �2)2(�∗

1 − �∗
2) = 0; (70)

�̇2 +
�*
2

�2 +
3j�
8
(�1 − �2)2(�∗

1 − �∗
2) = 0: (71)

We now introduce the following transformation that
accounts approximately for the decay due to damping:

�i(t) = 0i(t) exp−�t=2; i = 1; 2 (72)

and express the complex amplitudes as:

01(t) =M sin �(t)ej&1(t)

and 02(t) =M cos �(t)ej&2(t); (73)

where M represents a (constant) real amplitude, and
where �(t); &1;2(t) are angles. Substituting these trans-
formations into Eqs. (70), (71), separating real and
imaginary parts and manipulating the resulting di#er-
ential equations, we obtain the following equations
governing the (slow) evolution of the angle �(t) and
the phase di#erence &(t) = &1(t)− &2(t):

�̇+
3
8
�M 2e−�*t[(sin �− cos � cos &)2

+cos2 � sin2 &]sin &= 0 (74)

&̇+
1
2
− 3
8
(1− �)M 2e−�*t sin2 �

−3
8
�M 2e−�*t[(sin �−cos � cos &)2+cos2 � sin2 &]

×(tan �− cot �)cos &= 0: (75)

We note that the requirement of slow evolution of the
variables �(t) and &(t) poses the restriction that the
di#erence 1

2 − 3
8 (1 − �)M 2e−�*t sin2 � in Eq. (75) be

small (actually, it can be shown that this di#erence
must be of O(

√
�)).

The corresponding approximations for the re-
sponses of the system are given by

x(t) ∼ M sin �e−�*t=2 sin[t + &(t) + &0]; (76)

y(t) ∼ M cos �e−�*t=2 sin[t + &0]; (77)

where &0 depends on the initial conditions of the prob-
lem. The approximate Eqs. (74), (75) are de<ned on
a 2-torus and govern (to the <rst order of approxima-
tion) resonance capture in the system under consider-
ation. We note that &0 = 0 and �(0)= 0 correspond to
zero initial conditions for the original problem except
for ẋ(0)=M . Therefore the modulation Eqs. (74), (75)
can help us interpret the direct numerical simulations
of Figs. 8–10.
For <xed M , � = 0:1 and * = 0:5, Eqs. (74), (75)

were numerically integrated subject to speci<c initial
conditions �(0) and &(0). By setting &0 = 0, &(0) =
0 and �(0) = 0:1 (setting the initial condition for �
to exactly zero leads to numerical instabilities) we
investigate the evolution of the variables �(t) and &(t)
for the low- and high-excitation numerical simulations
of Figs. 8–10 corresponding to initial excitation of the
linear oscillator with initial velocity M and zero for
the other initial conditions. In Fig. 11 we depict the
evolution of �(t) and &(t) for M = 1:6 (case of no
resonance capture—cf. Fig. 8) and M = 3:0 (case of
resonance capture—cf. Fig. 9).
For M = 1:6 no resonance capture occurs; &(t)

decreases monotonically with time and �(t) assumes
small O(

√
�) values. In this case the motion remains

mainly con<ned to the (initially excited) linear oscilla-
tor and only a small portion of the energy is ‘pumped’
to the non-linear oscillator. When we increase the am-
plitude to M =3:0, &(t) becomes oscillatory for some
initial time interval, 0¡t¡ 40, before assuming a
monotonic decrease for t ¿ 40. The initial oscillatory
regime is due to resonance capture in the region of
the phase space de<ned by the neighborhood of the
homoclinic loop of the stable periodic solution of the
undamped system. After the initial resonance capture,
the solution ‘escapes’ the resonance regime and from
then on &(t) behaves as in the non-resonance capture



1090 A.F. Vakakis, R.H. Rand / International Journal of Non-Linear Mechanics 39 (2004) 1079–1091

Fig. 11. The evolution of the angles and for M = 1:6 (dashed line), and M = 3:0 (solid line).

case. Considering the behavior of the other angle vari-
able �(t), it initially increases to O(1) values during
the initial resonance capture regime. In view of Eqs.
(76), (77), this implies a one-way energy transfer from
the initially excited linear oscillator to the non-linear
one. It follows that resonance capture is associated
with oscillatory behavior of &(t) (which leads to
the increase of �(t), and, thus, to non-linear energy
pumping), whereas, absence of resonance capture is
associated with monotonic decrease of &(t) (and
O(

√
�) values of �(t), i.e., absence of resonance

pumping). These results establish a direct link be-
tween resonance capture and passive non-linear en-
ergy pumping in the damped system.
Although the results of this section apply to the spe-

ci<c system (61), (62), they can be extended to all four
classes of undamped systems A–D discussed in the

previous sections. It is anticipated that the addition of
damping transforms the homoclinic and heteroclinic
loops of the undamped slow dynamics into resonance
capture regions. Trajectories of the damped system
that are temporarily captured in these regimes cause
interesting energy exchange phenomena between os-
cillators, similar to the passive energy pumping ex-
change described in this section.

8. Conclusions

We studied the resonant dynamics of a two-DOF
system of non-linear coupled oscillators. One
of the oscillators possessed a strong, essential
(non-linearizable) cubic non-linearity. For the un-
damped system this led to a series of internal
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resonances, depending on the level of (conserved)
total energy of oscillation. We studied in detail the
case of 1:1 internal resonance and constructed the
bifurcation diagram in parameter space. In the neigh-
borhood of 1:1 resonance the undamped system
admits stable and unstable synchronous periodic mo-
tions (non-linear normal modes—NNMs). Depending
on the system parameters, asynchronous periodic
motions (elliptic orbits—EOs) can also be realized.
When damping is introduced, the stable NNMs be-

come damped free oscillations (damped NNMs), and
in certain cases produce resonance capture phenom-
ena: a trajectory of the damped dynamics gets ‘cap-
tured’ in a neighborhood of a damped NNM before
‘escaping’ and becoming an oscillation with exponen-
tially decaying amplitude. It was shown that such sus-
tained resonance captures produce passive non-linear
energy pumping phenomena from the linear to the
non-linear oscillator, thus sustained resonance capture
appears to provide a dynamical mechanism for pas-
sively transferring energy from one part of the sys-
tem to another, in a one-way, irreversible fashion. The
analysis performed in this paper indicates that energy
pumping (or equivalently, sustained resonance cap-
ture), is a#ected by the initial conditions of the sys-
tem, by its initial energy level, and by the speci<c
spatial distribution of the external excitation. We note
that energy pumping is directly related to the essential
(non-linearizable) sti#ness non-linearity of the system
[8,7].
As a possible extension of this work we suggest a

more general study of the relation between sustained
resonance capture and passive energy pumping in a
general class of damped oscillators; in this work this
relation was studied only for a speci<c system con-
<guration. In addition, it will be of interest to study
energy exchange phenomena related to the excita-
tion of the damped analogs of the stable EOs; in this
work we only examined energy transfer related to
damped NNMs. In general, this work demonstrates
that systems with essential non-linearities possess in-
teresting free and forced dynamics, which can provide

new tools for e#ective vibration and shock isolation
of mechanical systems.
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