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Abstract

This work presents an explicit formula for determining the radius of a limit cycle which is born in a Hopf bifurcation in
a class of first order constant coefficient differential-delay equations. The derivation is accomplished using Lindstedt�s per-
turbation method.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This work concerns the Hopf bifurcation scenario in which an equilibrium point changes its stability due to
a change in parameters, giving rise to the birth of a periodic motion called a limit cycle. The most familiar
setting in which this scenario occurs is the phase plane of a pair of first order ordinary differential equations
(ODEs) (see for example [3,6]):
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dx
dt
¼ �y þ lxþ a1x2 þ a2xy þ a3y2 þ b1x3 þ b2x2y þ b3xy2 þ b4y3 ð1Þ

dy
dt
¼ xþ ly þ c1x2 þ c2xy þ c3y2 þ d1x3 þ d2x2y þ d3xy2 þ d4y3 ð2Þ
As l passes through zero, a limit cycle is generically born. It can be written in the approximate form:
x ¼ A cos xt; y ¼ A sin xt ð3Þ
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where x = 1 + O(l), and where the amplitude A is given by the Hopf bifurcation formula:
A2 ¼ �8

S
l ð4Þ
where
S ¼ 3d4 þ d2 þ 3b1 þ b3 þ 2a3c3 þ a2ða1 þ a3Þ � 2a1c1 � c2ðc1 þ c3Þ ð5Þ

In Eq. (4), A is real so that A2 > 0, which means that l must have the opposite sign as S.

In this work, we present a comparable formula for the differential-delay equation (DDE):
dx
dt
¼ axþ bxd þ a1x2 þ a2xxd þ a3x2

d þ b1x3 þ b2x2xd þ b3xx2
d þ b4x3

d ð6Þ
where x = x(t) and xd = x(t � T). Here T is the delay. Associated with (6) is a linear DDE
dx
dt
¼ axþ bxd ð7Þ
We assume that (7) has a critical delay Tcr for which it exhibits a pair of pure imaginary eigenvalues ±xi cor-
responding to the solution
x ¼ c1 cos xt þ c2 sin xt ð8Þ

Then for values of delay T which lie close to Tcr,
T ¼ T cr þ l ð9Þ

the nonlinear Eq. (6) may exhibit a periodic solution which can be written in the approximate form:
x ¼ A cos xt ð10Þ

where the amplitude A can be obtained from the following expression for A2:
A2 ¼ P
Q

l ð11Þ
where
P ¼ 4b3 b� að Þ bþ að Þ2 �5bþ 4að Þ ð12Þ
Q ¼ 15b4b

6T cr þ 5b2b
6T cr þ 3ab4b

5T cr � 15ab3b
5T cr þ ab2b

5T cr � 15ab1b
5T cr � 22a2

3b
5T cr

� 7a2a3b
5T cr � 14a1a3b

5T cr � 3a2
2b

5T cr � 7a1a2b
5T cr � 4a2

1b
5T cr � 12a2b4b

4T cr � 3a2b3b
4T cr

þ 6a2b2b
4T cr � 3a2b1b

4T cr þ 12a2
3ab4T cr þ 37a2a3ab4T cr þ 30a1a3ab4T cr þ 7a2

2ab4T cr

þ 19a1a2ab4T cr þ 18a2
1ab4T cr þ 12a3b3b

3T cr þ 2a3b2b
3T cr þ 12a3b1b

3T cr þ 4a2
3a

2b3T cr

� 20a2a3a
2b3T cr � 16a1a3a

2b3T cr � 12a2
2a

2b3T cr � 26a1a2a
2b3T cr � 8a2

1a
2b3T cr � 8a4b2b

2T cr

� 4a2a3a
3b2T cr þ 8a2

2a
3b2T cr þ 8a1a2a

3b2T cr þ 5b3b
5 þ 15b1b

5 � 15ab4b
4 þ ab3b

4 � 15ab2b
4

þ 3ab1b
4 � 4a2

3b
4 � 9a2a3b

4 � 18a1a3b
4 � a2

2b
4 � 9a1a2b

4 � 18a2
1b

4 � 3a2b4b
3 þ 6a2b3b

3

� 3a2b2b
3 � 12a2b1b

3 þ 26a2
3ab3 þ 19a2a3ab3 þ 30a1a3ab3 þ 11a2

2ab3 þ 33a1a2ab3 þ 12a2
1ab3

þ 12a3b4b
2 þ 2a3b3b

2 þ 12a3b2b
2 � 8a2

3a
2b2 � 32a2a3a

2b2 � 12a1a3a
2b2 � 14a2

2a
2b2

� 18a1a2a
2b2 � 8a4b3b� 8a2

3a
3bþ 8a2a3a

3bþ 4a2
2a

3bþ 8a2a3a
4 ð13Þ
In Eq. (11), A is real so that A2 > 0, which means that l must have the same sign as P
Q.

Eq. (13) depends on l, a, b, ai, bi and Tcr. This equation may be alternately written with Tcr expressed as a
function of a and b. This relationship may be obtained by considering the linear DDE (7). Substituting Eq.
(10) into Eq. (7) and equating to zero coefficients of sin(xt) and cos(xt), we obtain the two equations:
b sinðxT crÞ ¼ �x; b cos xT crð Þ ¼ �a ð14Þ
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Squaring and adding these we obtain
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
ð15Þ
Substituting (15) into the second of (14), we obtain the desired relationship between Tcr and a and b:
T cr ¼
arccos �a

b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q ð16Þ
2. Example 1

As an example, we consider the following DDE:
dx
dt
¼ �x� 2xd � xxd � x3 ð17Þ
This corresponds to the following parameter assignment in Eq. (6):
a ¼ �1; b ¼ �2; a1 ¼ a3 ¼ b2 ¼ b3 ¼ b4 ¼ 0; a2 ¼ b1 ¼ �1 ð18Þ

The associated linearized equation (7) is stable for zero delay. As the delay T is increased, the origin first be-
comes unstable when T = Tcr, where Eq. (16) gives that
T cr ¼
arccos �1

2

� �
ffiffiffi
3
p ¼ 2p

3
ffiffiffi
3
p ð19Þ
Substituting (18) and (19) into (11)–(13), we obtain:
A2 ¼ 648l

40
ffiffiffi
3
p

pþ 171
¼ 1:667l ð20Þ
where we have set
T ¼ T cr þ l ¼ 2p

3
ffiffiffi
3
p þ l ¼ 1:2092þ l ð21Þ
Thus the origin is stable for l < 0 and unstable for l > 0. In order for A2 in (20) to be positive, we require that
l > 0. Therefore, the limit cycle is born out of an unstable equilibrium point. Since the stability of the limit
cycle must be the opposite of the stability of the equilibrium point from which it is born, we may conclude
that the limit cycle is stable and that we have a supercritical Hopf. This result is in agreement with numerical
integration of Eq. (17).

3. Derivation

In order to derive the result (11)–(13), we use Lindstedt�s method. We begin by introducing a small param-
eter � via the scaling
x ¼ �u ð22Þ

The detuning l of Eq. (9) is scaled like �2:
T ¼ T cr þ l ¼ T cr þ �2l̂ ð23Þ

Next we stretch time by replacing the independent variable t by s, where
s ¼ Xt ð24Þ

This results in the following form of Eq. (6):
X
du
ds
¼ auþ bud þ �ða1u2 þ a2uud þ a3u2

dÞ þ �2ðb1u3 þ b2u2ud þ b3uu2
d þ b4u3

dÞ ð25Þ
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where ud = u(s � XT). We expand X in a power series in �, omitting the O(�) term for convenience, since it
turns out to be zero:
X ¼ xþ �2k2 þ � � � ð26Þ

Next we expand the delay term ud:
ud ¼ uðs� XT Þ ¼ uðs� ðxþ �2k2 þ � � �ÞðT cr þ �2l̂ÞÞ ð27Þ
¼ uðs� xT cr � �2ðk2T cr þ xl̂Þ þ � � �Þ ð28Þ
¼ uðs� xT crÞ � �2ðk2T cr þ xl̂Þu0ðs� xT crÞ þOð�3Þ ð29Þ
Finally, we expand u(s) in a power series in �:
uðsÞ ¼ u0ðsÞ þ �u1ðsÞ þ �2u2ðsÞ þ � � � ð30Þ

Substituting and collecting terms, we find:
x
du0

ds
� au0ðsÞ � bu0ðs� xT crÞ ¼ 0 ð31Þ

x
du1

ds
� au1ðsÞ � bu1ðs� xT crÞ ¼ a1u0ðsÞ2 þ a2u0ðsÞu0ðs� xT crÞ þ a3u0ðs� xT crÞ2 ð32Þ

x
du2

ds
� au2ðsÞ � bu2ðs� xT crÞ ¼ � � � ð33Þ
where � � � stands for terms in u0 and u1, omitted here for brevity. We take the solution of the u0 equation as (cf.
Eq. (8) above):
u0ðsÞ ¼ bA cosðsÞ ð34Þ

We substitute (34) into (32) and obtain the following expression for u1:
u1ðsÞ ¼ m1 sinð2sÞ þ m2 cosð2sÞ þ m3 ð35Þ

where m1 is given by the equation:
m1 ¼ �
bA2
ð2a3bþ a2b� 2a1b� 2a3aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
2bðbþ aÞð5b� 4aÞ ð36Þ
and where m2 and m3 are given by similar equations, omitted here for brevity. In deriving (36), x has been

replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
as in Eq. (15).

Next the expressions for u0 and u1, Eqs. (34) and (35), are substituted into the u2 equation, Eq. (33), and,
after trigonometric simplifications have been performed, the coefficients of the resonant terms, sins and coss,
are equated to zero. This results in Eq. (11) for A2 as well as an expression for k2 (cf. Eq. (26)) which does not
concern us here. (Note that A ¼ �bA from Eqs. (10), (22) and (34), and l ¼ �2l̂ from (23). The perturbation

method gives bA2
as a function of l̂, but multiplication by �2 converts to a relation between A2 and l.)

4. Example 2

As a second example, we consider the case in which the quantity Q in Eqs. (11) and (13) is zero. In the con-
text of the ODE system (1) and (2) this case corresponds to S = 0 in Eq. (4) and has been discussed in [3],
Section 7.1. To generate such an example for the DDE (6), we embed the previous example in a one-parameter
family of DDE�s:
dx
dt
¼ �x� 2xd � xxd � kx3 ð37Þ
and we choose k so that Q = 0 in Eq. (11). This leads to the following critical value of k:
k ¼ kcr ¼
4pþ 3

ffiffiffi
3
p

18ð2pþ 3
ffiffiffi
3
p
Þ
¼ 0:0859 ð38Þ
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Since this choice for k leads to Q = 0, Eq. (11) obviously cannot be used to find the limit cycle amplitude A.
Instead we use Lindstedt�s method, maintaining terms of O(�4). The correct scalings in this case turn out to be
(cf. Eqs. (23) and (26)):
T ¼ T cr þ l ¼ 2p

3
ffiffiffi
3
p þ �4l̂ ð39Þ

X ¼ xþ �2k2 þ �4k4 þ � � � ð40Þ
We find that the limit cycle amplitude A satisfies the equation:
A4 ¼ �Cl ð41Þ
where we omit the closed form expression for C and give instead its approximate value, C = 620.477.
The analysis of this example has assumed that the parameter k exactly takes on the critical value given in

Eq. (38). Let us consider a more robust model which allows k to be detuned:
k ¼ kcr þ K ¼ 4pþ 3
ffiffiffi
3
p

18ð2pþ 3
ffiffiffi
3
p
Þ
þ �2 bK ð42Þ
Using Lindstedt�s method we obtain for this case the following equation on A:
A4 þ rKA2 þ Cl ¼ 0 ð43Þ

where we omit the closed form expression for r and give instead its approximate value, r = 342.689. Eq. (43)
can have 0, 1, or 2 positive real roots for A, each of which is a limit cycle in the original system. Thus the
number of limit cycles which are born in the Hopf bifurcation depends on the detuning coefficients K and
l. Elementary use of the quadratic formula and the requirement that A2 be both real and positive gives the
following results: If l < 0 then there is one limit cycle. If l > 0 and rK < �2

ffiffiffiffiffiffi
Cl
p

then there are two limit cy-
cles. If l > 0 and rK > �2

ffiffiffiffiffiffi
Cl
p

then there are no limit cycles.

5. Discussion

Although Lindstedt�s method is a formal perturbation method, i.e., lacking a proof of convergence, our
experience is that it gives the same results as the center manifold approach, which has a rigorous mathematical
foundation. The center manifold approach has been described in many places, for example, [1,4,5,7,8]. Since
the DDE (6) is infinite dimensional (for example, the characteristic equation of the linear DDE (7) is transcen-
dental rather than polynomial, and hence has an infinite number of complex roots), the center manifold ap-
proach involves decomposing the original function space into a two dimensional center manifold (in which the
Hopf bifurcation takes place) and an infinite dimensional function space representing the rest of the original
phase space. The center manifold procedure is much more complicated than the Hopf calculation. Stepan re-
fers to the center manifold calculation as ‘‘long and tedious’’ ([8, p. 112]), and Campbell et al. refer to it as
‘‘algebraically daunting’’ ([1, p. 642]). In [7], Chapter 14, 2 pages are spent explaining the application of Lind-
stedt�s method to DDE�s, whereas 10 pages are required for explanation of the center manifold approach.
Thus, the main advantage of the Hopf calculation is that it is simpler to understand and easier to execute than
the center manifold approach.

The idea of using Lindstedt�s method on bifurcation problems in DDE goes back to a 1980 paper by Casal
and Freedman [2]. That work provided the algorithm but not the Hopf bifurcation formula. It is hoped that
having a general expression for the Hopf bifurcation, as in Eqs. (11)–(13), will be a convenience for researchers
in DDE.
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