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Abstract

We analyze a model of gene transcription and protein synthesis which has been previously presented in the biological
literature. The model takes the form of an ODE (ordinary differential equation) coupled to a DDE (delay differential equa-
tion), the state variables being concentrations of messenger RNA and protein. Linear analysis gives a critical time delay
beyond which a periodic motion is born in a Hopf bifurcation. Lindstedt’s method is applied to the nonlinear system,
resulting in closed form approximate expressions for the amplitude and frequency of oscillation. A parameter study shows
that the Hopf bifurcation may not occur if the rates of degradation are too large.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This work deals with a mathematical model of gene expression [4]. The biology of the problem may be
described as follows: A gene, i.e., a section of the DNA molecule, is copied (transcribed) onto messenger
RNA (mRNA), which diffuses out of the nucleus of the cell into the cytoplasm, where it enters a subcellular
structure called a ribosome. In the ribosome the genetic code on the mRNA produces a protein (a process called
translation). The protein then diffuses back into the nucleus where it represses the transcription of its own gene.

Dynamically speaking, this process may result in a steady state equilibrium, in which case the concentra-
tions of mRNA and protein are constant, or it may result in an oscillation. In this paper we analyze a simple
model previously proposed in the biological literature [4], and we show that the transition between equilibrium
and oscillation is a Hopf bifurcation. The model takes the form of two equations, one an ordinary differential
equation (ODE) and the other a delayed differential equation (DDE). The delay is due to an observed time lag
in the transcription process.
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Oscillations in biological systems with delay have been dealt with previously in [1–3]. Mahaffy [1] studied a
system in which concentrations of mRNA and cell repressor are analyzed by varying several parameters, such
as diffusivity and cell radii. Delay is introduced into the system and the model is linearized to find stability
changes and associated critical delays which give rise to Hopf bifurcations. In a later study, Mahaffy et al.
[2] investigated a transport mechanism in cells to obtain nutrients. Their model examined how the change
in diffusivities and cell radii caused biochemical oscillatory responses in the concentrations of the nutrients.
Their model was reduced to a system of DDEs and stability analysis was used to show that the system can
undergo Hopf bifurcations for certain parameter values. In a more recent study, Mocek et al. [3] studied bio-
chemical systems with delay. They approximated the DDE system with an ODE system by means of charac-
terizing critical delays. In all of these works, the presence of Hopf bifurcations was indicated by the existence
of a periodic solution in the linearized equations. In the present work we go beyond the linearized equations,
and by considering nonlinear effects we are able to predict the amplitude and frequency of the resulting limit
cycle, and its stability.

The model equations investigated here involve the variables M(t), the concentration of mRNA, and P(t),
the concentration of the associated protein [4]
_M ¼ am

1

1þ P d
P 0

� �n

0
B@

1
CA� lmM ð1Þ

_P ¼ apM � lpP ð2Þ
where dots represent differentiation with respect to time t, and where we use the subscript d to denote a var-
iable which is delayed by time T. Thus Pd = P(t � T). The model constants are as given in [4]: am is the rate at
which mRNA is transcribed in the absence of the associated protein, ap is the rate at which the protein is pro-
duced from mRNA in the ribosome, lm and lp are the rates of degradation of mRNA and of protein, respec-
tively, P0 is a reference concentration of protein, and n is a parameter. We assume lm = lp = l.

2. Stability of equilibrium

We begin by rescaling Eqs. (1) and (2). We set m ¼ M
am

, p ¼ P
amap

, and p0 ¼ P 0

amap
, giving
_m ¼ 1

1þ pd
p0

� �n � lm ð3Þ

_p ¼ m� lp ð4Þ
Equilibrium points, (m*,p*), for (3) and (4) are found by setting _m ¼ 0 and _p ¼ 0
lm� ¼ 1

1þ p�

p0

� �n ð5Þ

m� ¼ lp� ð6Þ
Eliminating m* from Eqs. (5) and (6), we obtain an equation on p*
ðp�Þnþ1 þ pn
0p� � pn

0

l2
¼ 0 ð7Þ
Next we define n and g to be deviations from equilibrium: n = n(t) = m(t) � m*, g = g(t) = p(t) � p*, and
gd = g(t � T). This results in the nonlinear system
_n ¼ 1

1þ gdþp�

p0

� �n � lðm� þ nÞ ð8Þ

_g ¼ n� lg ð9Þ
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Expanding for small values of gd, Eq. (8) becomes
_n ¼ �ln� Kgd þ H 2g
2
d þ H 3g

3
d þ � � � ð10Þ
where K, H2 and H3 depend on p*, p0, and n as follows:
K ¼ nb

p�ð1þ bÞ2
; where b ¼ p�

p0

� �n

ð11Þ

H 2 ¼
bn bn� nþ bþ 1ð Þ

2ðbþ 1Þ3p�2
ð12Þ

H 3 ¼ �
bnðb2n2 � 4bn2 þ n2 þ 3b2n� 3nþ 2b2 þ 4bþ 2Þ

6ðbþ 1Þ4p�3
ð13Þ
Next we analyze the linearized system coming from Eqs. (10) and (9)
_n ¼ �ln� Kgd ð14Þ
_g ¼ n� lg ð15Þ
Stability analysis of Eqs. (14) and (15) shows that for T = 0 (no delay), the equilibrium point (m*,p*) is a stable
spiral. Increasing the delay, T, in the linear system (14) and (15), will yield a critical delay, Tcr, such that for
T > Tcr, (m*,p*) will be unstable, giving rise to a Hopf bifurcation. For T = Tcr the system (14) and (15) will
exhibit a pair of pure imaginary eigenvalues ±xi corresponding to the solution
nðtÞ ¼ B cosðxt þ /Þ ð16Þ
gðtÞ ¼ A cos xt ð17Þ
where A and B are the amplitudes of the g(t) and n(t) oscillations, and where / is a phase angle. Note that we
have chosen the phase of g(t) to be zero without loss of generality. Then for values of delay T close to Tcr,
T ¼ T cr þ D ð18Þ
the nonlinear system (3) and (4) is expected to exhibit a periodic solution (a limit cycle) which can be written in
the approximate form of Eqs. (16) and (17). Substituting Eqs. (16) and (17) into Eqs. (14) and (15) and solving
for x and Tcr we obtain
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � l2

p
ð19Þ

T cr ¼
arctan

2l
ffiffiffiffiffiffiffiffi
K�l2
p
K�2l2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � l2

p ð20Þ
3. Lindstedt’s method

We use Lindstedt’s Method [5,6] on Eqs. (10) and (9). We begin by changing the first order system into a
second order DDE. This results in the following form:
€gþ 2l _gþ l2g ¼ �Kgd þ H 2g
2
d þ H 3g

3
d þ � � � ð21Þ
where K, H2 and H3 are defined by Eqs. (11)–(13). We introduce a small parameter � via the scaling
g ¼ �u ð22Þ

The detuning D of Eq. (18) is scaled like �2, D = �2d
T ¼ T cr þ D ¼ T cr þ �2d ð23Þ
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Next we stretch time by replacing the independent variable t by s, where
s ¼ Xt ð24Þ
This results in the following form of Eq. (21):
X2 d2u
ds2
þ 2lX

du
ds
þ l2u ¼ �Kud þ �H 2u2

d þ �2H 3u3
d ð25Þ
where ud = u(s � XT). We expand X in a power series in �, omitting the O(�) term for convenience, since it
turns out to be zero
X ¼ xþ �2k2 þ � � � ð26Þ
Next we expand the delay term ud
ud ¼ uðs� XT Þ ¼ uðs� ðxþ �2k2 þ � � �ÞðT cr þ �2dÞÞ ð27Þ
¼ uðs� xT cr � �2ðk2T cr þ xdÞ þ � � �Þ ð28Þ
¼ uðs� xT crÞ � �2ðk2T cr þ xdÞu0ðs� xT crÞ þOð�3Þ ð29Þ
Now we expand u(s) in a power series in �
uðsÞ ¼ u0ðsÞ þ �u1ðsÞ þ �2u2ðsÞ þ � � � ð30Þ
Substituting and collecting terms, we find
x2 d2u0

ds2
þ 2lx

du0

ds
þ Ku0ðs� xT crÞ þ l2u0 ¼ 0 ð31Þ

x2 d2u1

ds2
þ 2lx

du1

ds
þ Ku1ðs� xT crÞ þ l2u1 ¼ H 2u2

0ðs� xT crÞ ð32Þ

x2 d2u2

ds2
þ 2lx

du2

ds
þ Ku2ðs� xT crÞ þ l2u2 ¼ . . . ð33Þ
where . . . stands for terms in u0 and u1, omitted here for brevity. We take the solution of the u0 equation as
u0ðsÞ ¼ Â cos s ð34Þ

where from Eqs. (17) and (22) we know A ¼ Â�. Next we substitute (34) into (32) and obtain the following
expression for u1:
u1ðsÞ ¼ m1 sin 2sþ m2 cos 2sþ m3 ð35Þ

where m1 is given by the equation
m1 ¼ �
2Â2H 2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � l2

p
ðl2 � KÞð2l2 � 3KÞ

Kð16l6 � 39Kl4 þ 18K2l2 þ 9K3Þ
ð36Þ
and where m2 and m3 are given by similar equations, omitted here for brevity. We substitute Eqs. (34) and (35)
into (33), and, after trigonometric simplifications have been performed, we equate to zero the coefficients of
the resonant terms sins and coss. This yields the amplitude, A, of the limit cycle that was born in the Hopf
bifurcation
A2 ¼ P
Q

D ð37Þ
where
P ¼ �8K2ðl2 � KÞðl2 þ KÞð16l6 � 39Kl4 þ 18K2l2 þ 9K3Þ ð38Þ
Q ¼ Q0T cr þ Q1 ð39Þ
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Here the delay Tcr and the response period 2p/x are given in minutes. Substituting (46)–(48) into (37)–(44)
yields the following equations:
A ¼ 27:0215
ffiffiffiffi
D
p

ð49Þ
k2 ¼ �2:4512� 10�3d ð50Þ
B ¼ 1:6894

ffiffiffiffi
D
p

ð51Þ
Note that since Eq. (49) requires D > 0 for the limit cycle to exist, and since we saw in Eqs. (14) and (15) that
the origin is unstable for T > Tcr, i.e., for D > 0, we may conclude that the Hopf bifurcation is supercritical,
i.e., the limit cycle is stable.

Multiplying (50) by �2 and substituting into (26) we obtain
X ¼ 5:4854� 10�2 � 2:4512� 10�3D ð52Þ

where D = T � Tcr = T � 18.2470. Plotting the period, 2p

X , against the delay, T, yields the graph shown in
Fig. 1. These results are in agreement with those obtained by numerical integration of the original Eqs. (1)
and (2) and with those presented in [4].

5. Effect of changing parameters

An advantage of the closed form approximate solution presented in this paper is that the effect of changes
in parameters may be easily studied. In this section we present a few results obtained from our solution.

The equilibrium concentration p* is determined by solving Eq. (7) for given values of l, p0, and n. Fig. 2
shows p* displayed as a function of l for p0 = 10, 50, 100, and 200. Here and in the following plots we follow
[4] and take n = 5.

We note from Eq. (20) that the quantity K � 2l2 must be non-negative in order that Tcr > 0, that is in order
that parameters corresponding to the Hopf bifurcation occur in a delay equation. (If Tcr < 0 then we would
have a future equation, which is physically unreasonable.) Fig. 3 shows that this condition restricts the values
of degradation rate l for a given value of reference concentration p0. For values of l which are greater than
this critical value lcritical, the system will not exhibit a Hopf bifurcation and no oscillation will result.

From Eq. (37) we see that the amplitude A of protein oscillation is the product of
ffiffiffi
P
Q

q
and

ffiffiffiffi
D
p

. Fig. 4 dis-
plays

ffiffiffi
P
Q

q
as a function of l for p0 = 10, 50, 100, and 200 and for n = 5. Note that the maximum permissible

value of l depends on p0 as shown in Fig. 3.
Eqs. (26), (42), (43), (19) and (23) give that X ¼ xð1� Q0

Q DÞ, where X is the frequency of oscillation for
delay T = Tcr + D, and x is the frequency of oscillation for delay T = Tcr. Fig. 5 displays Q0

Q as a function
Fig. 2. The equilibrium concentration p* displayed as a function of l for p0 = 10, 50, 100 and 200 and for n = 5.



Fig. 3. Values of degradation rate l which are greater than lcritical correspond to negative values of Tcr and will prevent the system from
oscillating. Here lcritical is shown to depend on the reference concentration p0.

Fig. 4. Eq. (37) shows that the amplitude A of protein oscillation is the product of
ffiffiffi
P
Q

q
and

ffiffiffiffi
D
p

. Here
ffiffiffi
P
Q

q
is displayed as a function of l

for p0 = 10, 50, 100 and 200 and for n = 5.

Fig. 5. Our solution gives that X ¼ xð1� Q0

Q DÞ where X is the frequency of oscillation for delay T = Tcr + D and x is the frequency of
oscillation for delay T = Tcr. Here Q0

Q is displayed as a function of l for p0 = 10, 50, 100 and 200 and for n = 5.
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of l for p0 = 10, 50, 100, and 200 and for n = 5. Note again that the maximum permissible value of l depends
on p0 as shown in Fig. 3.

6. Conclusions

The biological literature [4] shows that long time behavior of gene expression dynamics can consist of both
stable equilibrium as well as periodic behavior. By analyzing a DDE model originally proposed in [4], we have
shown that the transition between these states is due to a Hopf bifurcation. Our nonlinear analysis provides
approximate expressions for the amplitude and frequency of the resulting limit cycle as a function of the model
parameters. Fig. 3 shows that the Hopf bifurcation may not occur if the rates of degradation l are too large.
Inspection of Fig. 4 shows that for a given detuning D off of the Hopf bifurcation, the amplitude of the oscil-
lation depends on both p0 and l. We see that increasing p0 for a fixed value of l causes an increase in ampli-
tude. However, for a fixed value of p0, the limit cycle amplitude is largest for a certain optimal value of l.
Fig. 5 shows a similar behavior regarding the period of the limit cycle oscillation. Here again, for a fixed value
of p0 we see that the quantity Q0

Q achieves a maximum for a certain optimal value of l. In this case the peak
values of Q0

Q correspond to minimal values of frequency X of the limit cycle, and thus to maximal values for the
period of the limit cycle.
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