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Abstract

We use center manifold theory to analyze a model of gene transcription and protein synthesis which consists of an
ordinary differential equation (ODE) coupled to a delay differential equation (DDE). The analysis involves reformulating
the problem as an operator differential equation which acts on function space, with the result that an infinite dimensional
system is reduced to one of two dimensions. This work extends a previous CNSNS paper in which this problem was treated
by Lindstedt’s method. The present work is shown to provide approximations of general motions, including the approach

to a periodic motion, in contrast to Lindstedt’s method, which approximates only the periodic motion itself. In particular
we show that the origin is asymptotically stable for the critical (bifurcation) value of the delay parameter.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper involves a mathematical model of gene expression [6]. As explained in [12], a gene, i.e. a section
of the DNA molecule, is copied (transcribed) onto messenger RNA (mRNA), which diffuses out of the nucleus
of the cell into the cytoplasm, where it enters a subcellular structure called a ribosome. In the ribosome the
genetic code on the mRNA produces a protein (a process called translation). The protein then diffuses back
into the nucleus where it represses the transcription of its own gene.

The model takes the form of two equations, one an ordinary differential equation (ODE) and the other a
delayed differential equation (DDE). The delay is due to an observed time lag in the transcription process. As
shown in [12], the governing equations may be written in the following nondimensional form:
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_g ¼ n� lg ð2Þ
where n(t) and g(t) are respectively the nondimensional deviations from equilibrium concentrations of mRNA
and protein, where gd = g(t � T) represents the delay, and where l, K, H2 and H3 are given constants.

In a previous paper, we used an approximate method called Lindstedt’s method to investigate the foregoing
problem [12]. Lindstedt’s method provides a closed form asymptotic expansion for the periodic motion of a
dynamical system [10]. The present paper complements the previous work by providing a center manifold
analysis of the same problem. The advantage of the center manifold approach is two-fold. Firstly it can be
used, together with an asymptotic method such as averaging, to provide approximations of general motions,
including the approach to a periodic motion, in contrast to Lindstedt’s method, which approximates only the
periodic motion itself. Secondly, center manifold analysis is based on theorems [2] which place the results on a
valid mathematical basis, in contrast to the strictly formal asymptotic analysis of Lindstedt’s method.

2. Center manifold analysis

The idea of center manifold analysis is to reduce the DDE system, which is infinite dimensional, to a two
dimensional system by projecting the original dynamics onto the eigenvectors corresponding to purely imag-
inary eigenvalues. The center manifold is a two dimensional surface which is tangent to those two eigenvec-
tors. In order to accomplish this, the DDE is reformulated as an evolution equation on a function space. The
idea here is that the initial condition for the DDE consists of a function defined on �T 6 t 6 0. As t increases
from zero we may consider the piece of the solution lying in the time interval [�T + t, t] as having evolved
from the initial condition function. In order to avoid confusion, the variable h is used to identify a point in
the interval [�T, 0], whereupon x(t + h) will represent the piece of the solution which has evolved from the
initial condition function at time t. From the point of view of the function space, t is a parameter, and it is
h which is the independent variable. To emphasize this, we write:
xtðhÞ ¼ xðt þ hÞ ð3Þ

We begin the center manifold analysis by transforming the DDE system (1) and (2) into the following oper-

ator differential equation, which acts on a function space consisting of continuously differentiable functions on
[�T, 0] (cf. [4,11,1,5,7,8]):
_xt ¼ Axt þ F ðxtÞ ð4Þ

where the column vector xt, the linear operator A, and the nonlinear operator F are defined as follows:
xtðhÞ ¼
nt

gt

� �
ðhÞ ð5Þ

AxtðhÞ ¼
d

dh xtðhÞ; h 2 ½�T cr; 0Þ
Lxtð0Þ þMxtð�T crÞ; h ¼ 0

�
ð6Þ

F ðxtÞðhÞ ¼
0; h 2 ½�T cr; 0Þ

f xtð0Þ; xtð�T crÞð Þ; h ¼ 0

�
ð7Þ
The matrix L in Eq. (6) is associated with the linear nondelayed terms of (1), (2). Similarly M is associated with
the linear delayed terms. In (7) f is associated with the nonlinear terms of (1), (2). Thus for this system L, M,
and f become
L ¼ �l 0

1 �l

� �
: ð8Þ

M ¼ 0 �K
0 0

� �
: ð9Þ

f xtð0Þ; xtð�T crÞð Þ ¼ H 2gtð�T crÞ2 þ H 3gtð�T crÞ3

0

� �
ð10Þ
Note that the original DDE system (1) and (2) appears as a boundary condition at h = 0. The flow on the rest
of the interval is based on the identity oxtðhÞ

ot ¼
oxtðhÞ

oh , which follows from Eq. (3).
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Here Tcr represents the value of the delay T such that the characteristic equation of (1), (2) has a pair of
pure imaginary roots, ±ix, where from [12] we have
T cr ¼
arctan

2l
ffiffiffiffiffiffiffiffi
K�l2
p
K�2l2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � l2

p ð11Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � l2

p
ð12Þ

sinðxT crÞ ¼
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � l2

p
K

ð13Þ

cosðxT crÞ ¼ 1� 2l2

K
ð14Þ
The center manifold reduction is based on the idea of writing the solution xt as the sum of vectors lying in the
center subspace spanned by the eigenvectors s1 and s2 corresponding to the eigenvalues ±ix, and the rest of
the solution, w, which does not lie in the center subspace:
xt ¼ y1s1 þ y2s2 þ w ð15Þ

The eigenvectors s1 and s2 corresponding to the eigenvalues ±ix are calculated as the solution of the four-

dimensional first order boundary value problem
d

dh
s1ðhÞ ¼ �xs2ðhÞ ð16Þ

d

dh
s2ðhÞ ¼ xs1ðhÞ ð17Þ

Ls1ð0Þ þMs1ð�T crÞ ¼ �xs2ð0Þ ð18Þ

Ls2ð0Þ þMs2ð�T crÞ ¼ xs1ð0Þ ð19Þ
Substituting Eqs. (8)–(10), (11)–(14) into (16)–(19) yields
s1ðhÞ ¼
bxþ al

a

 !
cosðxhÞ þ

bl� ax

b

 !
sinðxhÞ ð20Þ

s2ðhÞ ¼ �
bl� ax

b

 !
cosðxhÞ þ

bxþ al

a

 !
sinðxhÞ ð21Þ
To simplify the equations, and without loss of generality, we take a = 1 and b = 0, whereupon Eqs. (20) and
(21) become
s1ðhÞ ¼
l

1

 !
cosðxhÞ �

x

0

 !
sinðxhÞ ð22Þ

s2ðhÞ ¼
x

0

 !
cosðxhÞ þ

l

1

 !
sinðxhÞ ð23Þ
In order to find the equations on y1(t) and y2(t), we need to project xt(h) onto the center subspace. In this
system, projections are accomplished by means of a bilinear form [5]:
hv; ui ¼ v�ð0Þuð0Þ þ
Z 0

�T cr

v�ðhþ T crÞMuðhÞdh ð24Þ
where u(h) lies in the original function space, i.e. the space of continuously differentiable functions defined on
[�Tcr, 0], and where v(h) lies in the adjoint function space of continuously differentiable functions defined on
[0,Tcr].
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In order to accomplish the projection onto the center subspace, we will need the adjoint eigenvectors. These
are determined from a similar boundary value problem as above
� d

dh
n1ðhÞ ¼ xn2ðhÞ ð25Þ

� d

dh
n2ðhÞ ¼ �xn1ðhÞ ð26Þ

L�n1ð0Þ þM�n1ðT crÞ ¼ xn2ð0Þ ð27Þ
L�n2ð0Þ þM�n2ðT crÞ ¼ �xn1ð0Þ ð28Þ
where L* and M* are the transposed matrices. We proceed as above and obtain
n1ðhÞ ¼
c

clþ dx

� �
cosðxhÞ �

d

dl� cx

� �
sinðxhÞ ð29Þ

n2ðhÞ ¼
d

dl� cx

� �
cosðxhÞ þ

c

clþ dx

� �
sinðxhÞ ð30Þ
Now we find the constants c and d by taking into account the conditions of orthonormality:
hni; sji ¼
0; if i 6¼ j

1; if i ¼ j

�
ð31Þ
where, from Eq. (24),
hni; sji ¼ n�i ð0Þsjð0Þ þ
Z 0

�T cr

n�i ðhþ T crÞMsjðhÞdh ð32Þ
The calculation yields
n1ðhÞ ¼ v1 cosðxhÞ � v2 sinðxhÞ ð33Þ
n2ðhÞ ¼ v2 cosðxhÞ þ v1 sinðxhÞ ð34Þ
where
v1 ¼
2

KC0

2l2T cr � KT cr þ 2l

lKT cr þ 2K

� �
ð35Þ

v2 ¼
2

KC0

2ðlT cr þ 1Þx
KT crx

� �
ð36Þ

C0 ¼ KT 2
cr þ 4lT cr þ 4 ð37Þ
Next we define the time dependent scalars
y1ðtÞ ¼ hn1; xti ð38Þ
y2ðtÞ ¼ hn2; xti ð39Þ
where y1 and y2 are the coordinates of xt in the s1 and s2 directions, respectively. Differentiating Eqs. (38) and
(39) we obtain (cf. [8])
_y1 ¼ xy2 þ hðy1; y2Þ ð40Þ
_y2 ¼ �xy1 þ gðy1; y2Þ ð41Þ
where we let
hðy1; y2Þ ¼ n�1ð0Þf ðxtð0Þ; xtð�T crÞÞ ð42Þ
gðy1; y2Þ ¼ n�2ð0Þf ðxtð0Þ; xtð�T crÞÞ ð43Þ
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The next step is to look for an approximate expression for the center manifold, which is tangent to the y1–y2

plane at the origin, and which may be written in the following truncated form by neglecting third and higher
order terms (see Eq. (15)):
wðy1; y2ÞðhÞ ¼ m1ðhÞy2
1 þ m2ðhÞy1y2 þ m3ðhÞy2

2 ð44Þ
where the unknown vectors m1, m2, and m3 will be calculated by equating the time-derivative of Eq. (44)
_w ¼ �xm2y2
1 þ 2xðm1 � m3Þy1y2 þ xm2y2

2 ð45Þ
and the time-derivative of Eq. (15)
_w ¼ _xt � _y1s1 � _y2s2 ð46Þ
¼ Axt þ F ðxtÞ � hn1; _xtis1 � hn2; _xtis2 ð47Þ
¼ Awþ F ðxtÞ � hn1; Fxtis1ðhÞ � hn2; Fxtis2ðhÞ ð48Þ
Before finding the mi’s we calculate the nonlinear term hn1,Fxti as follows (see Eq. (24)):
hn1; Fxti ¼ n�1ð0Þf ðxtð0Þ; xtð�T crÞÞ ð49Þ

¼ v�1
H 2gð�T crÞ2 þ H 3gð�T crÞ3

0

 !
ð50Þ

¼ 2H 2

KC0

2l2T cr � KT cr þ 2l
� �

s12ð�T crÞy1 þ s22ð�T crÞy2ð Þ2 þ h:o:t: ð51Þ

� C1ð2l2 � KÞ2y2
1 þ 4lxC1ð2l2 � KÞy1y2 � 4C1l

2ðl2 � KÞy2
2 ð52Þ
where
gð�T crÞ ¼ y1s12ð�T crÞ þ y2s22ð�T crÞ þ w2ð�T crÞ ð53Þ
and
C1 ¼
2H 2ð2l2T cr � KT cr þ 2lÞ

K3C0

ð54Þ
In Eq. (53), s12 represents the second entry of the vector s1, and w2 represents the second entry of the vector w,
and so on.

Similarly,
hn2; Fxti � C2ð2l2 � KÞ2y2
1 þ 4lxC2ð2l2 � KÞy1y2 � 4C2l

2ðl2 � KÞy2
2 ð55Þ
where
C2 ¼
4xH 2ðlT cr þ 1Þ

K3C0

ð56Þ
Now we equate Eqs. (45) and (48), substitute the expressions for A, F, s1, s2, n1, and n2, and set the
coefficients of y2

1, y1y2, and y2
2 to zero to obtain the following six-dimensional first order boundary value

problem
m01 � ðl2 � x2Þ2ðC1s1 þ C2s2Þ ¼ �xm2 ð57Þ

m02 � 4lxðl2 � x2ÞðC1s1 þ C2s2Þ ¼ 2xðm1 � m3Þ ð58Þ

m03 � 4x2l2ðC1s1 þ C2s2Þ ¼ xm2 ð59Þ

Lm1ð0Þ þMm1ð�T crÞ � ðl2 � x2Þ2ðC1s1ð0Þ þ C2s2ð0Þ þ C3êÞ ¼ �xm2ð0Þ ð60Þ

Lm2ð0Þ þMm2ð�T crÞ � 4lxðl2 � x2ÞðC1s1ð0Þ þ C2s2ð0Þ þ C3êÞ ¼ 2xðm1ð0Þ � m3ð0ÞÞ ð61Þ

Lm3ð0Þ þMm3ð�T crÞ � 4x2l2ðC1s1ð0Þ þ C2s2ð0Þ þ C3êÞ ¼ xm2ð0Þ ð62Þ
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where
C3 ¼ �
H 2

K2
ð63Þ

ê ¼
1

0

� �
ð64Þ
The solution to this problem is:
m1ðhÞ ¼ u11 sin 2xhþ u12 cos 2xhþ u13 sin xhþ u14 cos xhþ u15 ð65Þ
m2ðhÞ ¼ u21 sin 2xhþ u22 cos 2xhþ u23 sin xhþ u24 cos xhþ u25 ð66Þ
m3ðhÞ ¼ u31 sin 2xhþ u32 cos 2xhþ u33 sin xhþ u34 cos xhþ u35 ð67Þ
where
u11 ¼ �
1

2
u22 ¼ �u31 ¼ C4

�xð12l6 � 34Kl4 þ 27K2l2 � 3K3Þ

2x3lð2l2 � 3KÞ

 !
ð68Þ

u12 ¼
1

2
u21 ¼ �u32 ¼

C4

2

lð24l6 � 80Kl4 þ 85K2l2 � 27K3Þ

8l6 � 24Kl4 þ 21K2l2 � 3K3

 !
ð69Þ

u13 ¼
C5

Kx

Kð4l5T cr � 8Kl3T cr þ 5K2lT cr � 8l4 þ 8Kl2 þ 2K2Þ

8l6T cr � 12Kl4T cr þ 6K2l2T cr � K3T cr þ 8l5 � 16Kl3 þ 10K2l

 !
ð70Þ

u14 ¼ �
C5

K

Kð4l4T cr þ K2T cr þ 16l3 � 8KlÞ

2ð4l5T cr � 4Kl3T cr þ 3K2lT cr þ 4l4 þ K2Þ

 !
ð71Þ

u15 ¼ u35 ¼ C6

l

1

 !
ð72Þ

u23 ¼
2C5

K

Kð4l4T cr � 6Kl2T cr þ K2T cr � 8l3 þ 4KlÞ

2ð4l5T cr � 4Kl3T cr þ 4l4 � 6Kl2 þ K2Þ

 !
ð73Þ

u24 ¼
2C5

Kx

Kð4l5T cr � 2Kl3T cr � K2lT cr þ 16l4 � 16Kl2 þ 2K2Þ

8l6T cr � 12Kl4T cr þ 6K2l2T cr � K3T cr þ 8l5 � 4Kl3 � 2K2l

 !
ð74Þ

u25 ¼
0

0

 !
ð75Þ

u33 ¼ �
2C5

Kx

Kð2l5T cr � 4Kl3T cr þ K2lT cr � 4l4 þ 4Kl2 � 2K2Þ

4l6T cr � 6Kl4T cr þ K3T cr þ 4l5 � 8Kl3 þ 2K2l

 !
ð76Þ

u34 ¼
2C5

K

Kð2l4T cr � K2T cr þ 8l3 � 4KlÞ

2ð2l5T cr � 2Kl3T cr þ 2l4 � K2Þ

 !
ð77Þ
and
C4 ¼
H 2

Kð16l6 � 39Kl4 þ 18K2l2 þ 9K3Þ
ð78Þ

C5 ¼
2H 2

3C0K2
ð79Þ

C6 ¼
H 2

2ðl2 þ KÞ ð80Þ
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The flow on the center manifold is given by Eqs. (40) and (41), where we can now evaluate the expressions
for h(y1,y2) and g(y1,y2) given in Eqs. (42) and (43) as follows:
hðy1; y2Þ ¼
C1K2

H 2

H 2gð�T crÞ2 þ H 3gð�T crÞ3
� 	

ð81Þ

gðy1; y2Þ ¼
C2K2

H 2

H 2gð�T crÞ2 þ H 3gð�T crÞ3
� 	

ð82Þ
where g(�Tcr) is given by Eq. (53). Note that g(�Tcr) involves our expression for the center manifold, Eq. (44),
which in turn uses the expressions (65)–(80).

3. Averaging

The foregoing computation has permitted us to replace the infinite dimensional DDE problem (1), (2) by
the two dimensional flow (40) and (41), where h(y1,y2) and g(y1,y2) are known and involve quadratic and cubic
terms in y1 and y2 (to the order of truncation to which we have been working). This two dimensional system
can be treated by traditional methods such as averaging, two variable expansion or normal forms [3,8,9]. The
results can be most conveniently stated in terms of polar coordinates:
y1 ¼ r cos h ð83Þ
y2 ¼ r sin h ð84Þ
By means of a near-identity transformation, the flow (40) and (41) on the center manifold may be shown to
give the following approximate equations on r and h:
dr
dt
¼ Qr3 þOðr5Þ; dh

dt
¼ xþOðr2Þ ð85Þ
We refer the reader to pp. 154–156 in [3] where it is shown that Q is given by the following expression:
16Q ¼ h111 þ h122 þ g112 þ g222 �
1

x
h12ðh11 þ h22Þ � g12ðg11 þ g22Þ � h11g11 þ h22g22ð Þ ð86Þ
where the subscript i represents a partial derivative with respect to yi, and where all terms are to be evaluated
at y1 = y2 = 0. For the functions h and g in Eqs. (81) and (82), we obtain
Q ¼ � 2x2

C0P
Q0T cr þ Q1ð Þ ð87Þ
where P, Q0, and Q1 are defined as follows:
P ¼ �8K2 l2 � K
� �

l2 þ K
� �

16l6 � 39Kl4 þ 18K2l2 þ 9K3
� �

ð88Þ
Q0 ¼ 48H3K2l8 þ 16H2

2Kl8 � 69H3K3l6 þ 32H2
2K2l6 � 63H3K4l4

� 162H2
2K3l4 þ 81H3K5l2 þ 108H2

2K4l2 þ 27H3K6 þ 30H2
2K5 ð89Þ

Q1 ¼ 96H3Kl9 þ 64H2
2l

9 � 138H3K2l7 � 16H2
2Kl7 � 126H3K3l5

� 308H2
2K2l5 þ 162H3K4l3 þ 296H2

2K3l3 þ 54H3K5lþ 12H2
2K4l ð90Þ
The importance of the result (87) is that, from (85), the sign of Q determines the stability of the origin.

4. Unfolding the center

In this section we use the center manifold computation to approximate the amplitude of a periodic motion
(a limit cycle) which is born as parameters change in the neighborhood of a center (i.e. in a Hopf bifurcation).
The idea is to compute the real part of the eigenvalues of the linear system due to a small change in delay off of
the critical delay Tcr. Let
T ¼ T cr þ D; jDj � T cr ð91Þ
and suppose the resulting eigenvalues are k = R ± iX, where R and X have the approximate expressions
R = R1D and X = x + x1D. Then Eqs. (40) and (41) will take the approximate form
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_y1 ¼ Ry1 þ Xy2 þ hðy1; y2Þ ð92Þ
_y2 ¼ Ry2 � Xy1 þ gðy1; y2Þ ð93Þ
and Eq. (85) will be replaced by the approximation
dr
dt
¼ Rr þ Qr3 þOðr5Þ; dh

dt
¼ XþOðr2Þ ð94Þ
The first of (94) gives the limit cycle amplitude r as
r2 ¼ � R
Q

ð95Þ
In the case of the linearization of the system (1), (2), we have
_n ¼ �ln� Kgd ð96Þ
_g ¼ n� lg ð97Þ
which has solutions of the form
n ¼ Bekt ð98Þ
g ¼ Aekt ð99Þ
Setting k = R ± iX, we find
ðRþ lÞ2 � X2 ¼ �Ke�RT cosðXT Þ ð100Þ
2XðRþ lÞ ¼ Ke�RT sinðXT Þ ð101Þ
Substituting Eq. (91) into (100), (101) and linearizing for small D, we obtain
R ¼ 2x2

KT 2
cr þ 4lT cr þ 4

D ð102Þ

X ¼ x� xð2lþ KT crÞ
KT 2

cr þ 4lT cr þ 4
D ð103Þ
Substituting (102) and (87) into (95), we obtain the following approximation for the limit cycle amplitude r:
r2 ¼ P
Q0T cr þ Q1

D ð104Þ
which agrees with the comparable result obtained by Lindstedt’s method in [12].

5. Conclusion

The idea of a center manifold reduction of a DDE is to replace an infinite dimensional system by a two
dimensional system. In order to accomplish this, the delay T is chosen such that the linearized system possesses
a pair of pure imaginary eigenvalues as well as an infinite number of eigenvalues with negative real parts. The
center manifold theorem then guarantees that there exists a curved two dimensional subspace (the center man-
ifold) which is tangent to the (flat) subspace spanned by the eigenvectors corresponding to those eigenvalues
with zero real part, and which is invariant under the flow generated by the nonlinear equations. All solutions
starting sufficiently close to the equilibrium point will tend asymptotically towards the center manifold. The
stability of the equilibrium point in the full nonlinear equations will be the same as its stability in the flow on
the center manifold. Any bifurcations which occur in the neighborhood of the equilibrium point on the center
manifold are guaranteed to also occur in the full nonlinear system. In particular if a limit cycle is born in a
Hopf bifurcation in the center manifold, then it will also be born in the full infinite dimensional system.

In the case of the DDE model of gene expression (1) and (2), we first solved for the eigenvectors s1 and s2,
Eqs. (22) and (23). These span a linear center subspace with coordinates y1 and y2. Then we looked for the
curved center manifold, w(y1,y2), which is tangent to the y1–y2 plane at the origin, in the form of a truncated
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power series, Eq. (44). The coefficients m1, m2 and m3 of this series are 2-vectors which satisfy the ODE’s (57)–
(59) with the boundary conditions (60)–(62). The resulting expressions for the mi, Eqs. (65)–(67), were then
used to allow the original nonlinear system to be projected onto the center manifold, giving a two dimensional
flow on the y1–y2 phase plane, Eqs. (40), (41).

The familiar form of Eqs. (40) and (41) allowed averaging to be used to obtain the normal form (85), from
which the stability of the origin could be determined from the sign of Q. Moreover, by detuning the delay T

from the Hopf bifurcation value Tcr, we were able to generalize the normal form (94), yielding the amplitude
of the resulting limit cycle (104).

The computations involved in this work were accomplished using the computer algebra package macsyma.
As a check on the work, the final expression for the limit cycle amplitude (104) was shown to agree with the
value obtained in [12] using Lindstedt’s method. Although Lindstedt’s method arrived at this result with less
work than the present center manifold reduction, it gave only the periodic motion and not the associated slow
flow (94). In particular, the work in [12] based on Lindstedt’s method was unable to determine the stability of
the origin at the bifurcation value T = Tcr. Using the same parameter values as in [6], we find that [12]
l ¼ 0:03; K ¼ 3:9089� 10�3; H 2 ¼ 6:2778� 10�5; H 3 ¼ �6:4101� 10�7 ð105Þ

using which we compute from Eq. (87) that Q = � 1.100 · 10�6, which implies that the zero solution is asymp-
totically stable for T = Tcr.
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