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1 Introduction

In this work we investigate the dynamics of the nonlinear DDE (delay-differential equation)

d2x

dt2
+ x(t− T ) + x3 = 0 (1)

where T is the delay. Using Pontryagin’s Principle, Bhatt and Hsu [1] showed that the origin
in this equation is linearly unstable for all values of T > 0. For T = 0 however, the origin is
obviously Liapunov stable. Thus a stability change occurs as T changes from zero to any positive
value, no matter how small. Associated with this change in stability is a remarkable bifurcation
in which an infinite number of limit cycles exist for positive values of T in the neighborhood of
T = 0, their amplitudes going to infinity in the limit as T approaches zero.

We investigate this situation in three ways:
1) Harmonic Balance,
2) Melnikov’s integral,
3) Adding damping to regularize the singularity.

2 Harmonic Balance

We seek an approximate solution to eq.(1) in the form:

x(t) = A cosωt (2)

Substituting eq.(2) in eq.(1), simplifying the trig, and equating to zero the coefficients of sinωt
and cosωt respectively, we obtain

sinωT = 0 and − ω2 + cosωT +
3

4
A2 = 0 (3)
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Table 1: Limit cycle amplitudes A for values of n in eq.(4), for T = 0.3.

n A
1 12.14
2 24.21
3 36.29
4 48.38
5 60.47
6 75.56
7 84.65
8 96.74
9 108.83

The first of these gives ωT = nπ for n=1,2,3,· · ·, whereupon the second gives

A =
2√
3

√
n2π2

T 2
± 1 , n=1,2,3,· · · (4)

where the upper sign refers to n odd, and the lower sign refers to n even. For example, when
T = 0.3, Table 1 gives values for amplitudes of limit cycles for given values of n, from eq.(4).
Numerical integration of eq.(1) using DDE23 in MATLAB shows limit cycles with amplitudes
12.31 and 33.56, which correspond to the approximate values 12.14 and 36.29 in Table 1. See
Fig.1. Presumably the reason we do not see limit cycles with the other amplitudes listed in
Table 1 is that they are unstable. In fact, initial condition (x,x’)=(26.681,0) for t ≤ 0 leads to
periodic motion with amplitude 12.14, while initial condition (x,x’)=(26.682,0) for t ≤ 0 leads to
periodic motion with amplitude 36.29, leading to the conclusion that there is an unstable periodic
motion with amplitude approximately equal to 26.68, presumably corresponding to amplitude
value 24.21 in Table 1.

3 Melnikov’s integral

We begin by generalizing the discussion to a wider class of systems, returning to eq.(1) later. We
consider a conservative (Hamiltonian) system of the form:

dx

dt
=
∂H

∂y
,

dy

dt
= −∂H

∂x
(5)

Note that eq.(5) possesses the first integral H(x, y) = constant, since dH/dt = Hxẋ+Hyẏ = 0.

Now we add a perturbation to the conservative system (5):

dx

dt
=
∂H

∂y
+ g1,

dy

dt
= −∂H

∂x
+ g2 (6)

where g1 and g2 are given functions of x and y.



Figure 1: Numerical integration of eq.(1) using DDE23 in MATLAB shows that initial condition
(x,x’)=(26.682,0) for t ≤ 0 leads to periodic motion with amplitude 36.29 while initial condition
(x,x’)=(26.681,0) for t ≤ 0 leads to periodic motion with amplitude 12.14, leading to the con-
clusion that there is an unstable periodic motion with amplitude approximately equal to 26.68,
presumably corresponding to amplitude value 24.21 in Table 1.

For the system (6), the condition for one of the closed curves H(x, y) = constant to be preserved
under the perturbation (6) turns out to be given by the vanishing of the following Melnikov
integral: ∮

Γ
(g1ẏ − g2ẋ) dt = 0 (7)

where Γ represents the unperturbed closed curve H(x, y) = constant and where ẋ and ẏ refer to
time histories around Γ in the unperturbed system. The derivation uses Green’s Theorem of the
Plane, and the result is approximate (see section 3.3 in [2]).

To apply the foregoing setup to eq.(1), we write (1) in the following form:

ẋ = y (8)

ẏ = −x− x3 + (x− x(t− T )) (9)

where x written without an argument stands for x(t). That is we consider eq.(1) to be a perturbed
Hamiltonian system (6) with Hamiltonian

H(x, y) =
1

2
y2 +

1

2
x2 +

1

4
x4 (10)

and with perturbations
g1 = 0 and g2 = x− x(t− T ) (11)

Thus in our case the Melnikov integral condition (7) becomes∫ P

0
−(x(t)− x(t− T ))ẋ(t)dt =

∫ P

0
x(t− T ))ẋ(t)dt = 0 (12)



where P is the period of the motion around Γ in the unperturbed system, and where we have
used the fact that: ∫ P

0
−xẋ(t)dt =

x(t)2

2

∣∣∣∣∣
P

0

=
x(P )2 − x(0)2

2
= 0

Note that x(P ) = x(0) because x(t) is periodic with period P . Here x(t) is the solution to
eqs.(5) with Hamiltonian (10) which turns out to be a Jacobian elliptic cn function, which may
be written as

x = a1cn(a2t, k), (13)

where the parameters a1,a2 and k are related as follows (see section 2.2 in [2]):

a2
2 = a2

1 + 1, k2 =
a2

1

2(1 + a2
1)
. (14)

Thus our Melnikov integral condition (12) simplifies to:∫ P

0
cn(a2(t− T ), k)

d

dt
(cn(a2t, k) dt =

∫ P

0
cn(a2(t− T ), k) sn(a2t, k) dn(a2t, k) dt = 0 (15)

where P = 4K(k)/a2, where K(k) is a complete elliptic integral of the first kind.

In order to obtain an analytical approximation for this integral, we use the following expansions
for the elliptic functions sn, cn and dn [3]:

sn(z, k) =
2π

kK

∞∑
n=0

qn+1/2sin((2n+ 1)G)

1− q2n+1
(16)

cn(z, k) =
2π

kK

∞∑
n=0

qn+1/2sin((2n+ 1)G)

1 + q2n+1
(17)

dn(z, k) = π/(2K) +
2π

K

∞∑
n=0

qncos(2nG)

1 + q2n1
(18)

where G = πz/(2K(k)), q = e−πK
′(k)/K(k) and K ′(k) = K(

√
1− k2). We take the first term in

each of the expansions (16),(17),(18), whereupon the Melnikov integral condition (15) becomes:∫ P

0
cos(πa2(t− T )/(2K)) sin(πa2t)/(2K)) dt = 0 (19)

Expanding the cosine term gives∫ P

0
[sin2(πa2t/(2K))sin(πa2T/(2K))

+sin(πa2t/(2K))cos(πa2t/(2K))cos(πa2T/(2K))]dt = 0 (20)

We are integrating over one full period, and thus the second term will integrate to 0. The
first term, sin2(πa2t/(2K)), is always positive and thus integrates to 0 only if the coefficient
sin(πa2T/(2K)) is 0, i.e. eq.(20) becomes:

sin(πa2T/(2K)) = 0 (21)



Figure 2: Melnikov Integrals at T=0.05

We are interested in the relationship between the amplitude a1 and the delay T . The above
gives an implicit relationship between a1 and T since a2

2 = 1 + a2
1 and K is also determined by

a1 (through an elliptic integral). To make a much simpler explicit relationship we will use the
fact that we are in the regime of T << 1, and in this parameter range we have empirically found
that a1 >> 1. Then from eqs.(14) we can approximate a2 ≈ a1, k2 = a2

1/(2a
2
2) ≈ 1/2.

This gives us

sin(πa1T/(2K(1/2)) = 0 ⇒ a1 = 2Kn/T (22)

where K = K(1/2) ≈ 1.854, giving the result:

a1 ≈ 3.71 n/T. (23)

This result may be compared to the Harmonic Balance result of eq.(4), which is

a1 ≈ (2π/
√

3)n/T ≈ 3.63 n/T. (24)

These approximate analytical results may be checked by evaluating the Melnikov integral (15)
numerically. For a fixed value of delay T , a value for the second integral in (15) may be computed
in MATLAB once the amplitude a1 is chosen. By varying a1 we obtained two plots, one with
delay T = 0.05, and the other with T = 0.2, see Figs.2 and 3. If we look at the zeros of both
plots, it looks like they occur at integer multiplies of a certain amplitude. This agrees with the
Harmonic Balance result of eq.(4). Fig.4 compares the numerical results with those of Harmonic
Balance in a plot of the first zero (corresponding to n = 1) for different values of delay.



Figure 3: Melnikov Integrals at T=0.2

Figure 4: Comparison of limit cycle amplitudes obtained numerically versus analytically. Nu-
merical values correspond to the first zero of the Melnikov integral (12), while analytical values
are those obtained by Harmonic Balance, eq.(24), for n=1.



4 Adding damping to regularize the singularity

We have seen that in the case of eq.(1), even infinitesimal delay gives rise to effective negative
damping and growing oscillations. Accordingly, we expect that if damping is added to eq.(1), as
in the case of the following DDE:

d2x

dt2
+ α

dx

dt
+ x(t− T ) + x3 = 0 (25)

then if α is held fixed and delay T is increased from 0, there will be a point at which the
equilibrium at the origin will make a transition from stable to unstable. Supposing that such
a transition is a Hopf bifurcation, we linearize eq.(25) by dropping the x3 term, and then set
x = exp iωt, giving the real and imaginary parts:

− ω2 + cosωT = 0 (26)

αω − sinωT = 0 (27)

Squaring and adding (26) and (27) and using (26) again yields the critical delay for a Hopf:

Tcrit =
√

2
arccos

−α2 +
√
α4 + 4

2√
−α2 +

√
α4 + 4

(28)

A plot of Tcrit as a function of α can be seen in Fig.5.

Figure 5: A plot of Tcrit from (28) as a function of α. Note that at small α the function is like
the identity T = α. Limit cycles exist above this line, but not below it.

In addition to this Hopf bifurcation, it turns out that additional limit cycles can occur in this
system by being born in a fold (also known as a saddle-node of cycles). In order to see this
we again use the method of Harmonic Balance. Assuming an approximate solution of the form



x(t) = A cosωt, we substitute into eq.(25), simplify the trig, and equate to zero the coefficients
of sinωt and cosωt respectively, giving:

sinωT = αω and − ω2 + cosωT +
3

4
A2 = 0 (29)

Suppose the value of T is fixed and α is started from a high value. The first equation of (29) can
be viewed in terms of two functions of the variable ω; one is the straight line αω and the second
is the sinusoid sinωT . See Fig.6.

Figure 6: Graphical representation of the first of eqs.(29). The straight lines are y = αω and
have slope α. The sinusoid is y = sinωT .

If α > T then the two curves intersect only at the trivial point ω = 0 and there is no limit
cycle. This corresponds to curve a in Fig.6. Now consider the situation as α is lowered. When it
becomes equal to T there is a tangency at the origin (curve b in Fig.6), and upon being slightly
lower still, the curves develop a non-trivial intersection (curve c in Fig.6). This means that a
sinusoidal response with frequency ω is a possible state of the system. Once the frequency is
specified, the amplitude of the motions gets determined by the second equation in (29). We thus
have a limit cycle with amplitude A and frequency ω.

As we lower α still further, the non-trivial intersection point between the straight line and the
sinusoid will shift rightwards. Ultimately, the two graphs will touch at a second point (curve d
in Fig.6) and a new pair of limit cycles will get born there, since further lowering α will turn the
tangency into a pair of intersections, one corresponding to a stable limit cycle and the other to



an unstable one. Thus, we can say that a saddle node bifurcation of cycles is occurring there.
The points of tangency are given by the relation

sinωT = αω (30)

T cosωT = α (31)

which imply that at the nth intersection point

ω =
1

T
βn (32)

αn = T cos βn (33)

where βn’s are the solutions of tanx = x.

A bifurcation diagram using these relations is shown in Fig.7.

Figure 7: Plot of the bifurcation curves using the tangency condition (32),(33). The number of
limit cycles in the various regions is shown in the first few cases (0,1,3,5).

In this figure, the line on the left is the Hopf bifurcation. The uppermost line on the right is the
first saddle-node bifurcation of cycles, while the next lines going down correspond to the subse-
quent saddle-node bifurcations. These predictions are in agreement with numerical simulation
results. A comparison between theory and simulation performed on Matlab using the routine
DDE23, is presented in Table 1. This Table shows the birth of a limit cycle (LC) as α is lowered
to a value smaller than T and its branching out into multiple cycles as α is lowered further.



T α Eigenvalues Calculated LC Amplitude Observed LC Amplitude
0.4 0.1 0.13± 0.95i 7.29 7.3

0.2 0.09± 0.90i 5.64 5.5
0.3 0.04± 0.96i 3.70 3.6
0.4 NRP DNE DNE

0.6 0.1 0.20± 0.91i 5.25 5.4
0.2 0.16± 0.95i 4.54 4.6
0.3 0.12± 0.95i 3.76 3.7
0.4 0.07± 0.95i 2.80 2.8
0.5 0.02± 0.95i 1.78 1.8
0.6 NRP DNE DNE

1.0 0.1 3.59, 8.57, 9.91 3.6, 10
2.0 0.1 2.07, 3.64, 5.40, 7.40, 8.59 2.1, 5.4, 8.8

Table 2: This Table shows the theoretically calculated and numerically observed amplitudes of
the LCs as parameter values are varied. (NRP=negative real part, DNE=does not exist.) In
some regions of the space, 3 and 5 LCs are seen in the harmonic balance. In this case, the
first one and then the subsequent alternate ones are observed numerically with the intermediate
amplitudes acting as separatrix. It is also seen that the LC is born when the real part of the
eigenvalue crosses from negative to positive.

5 Conclusions

We have investigated the occurrence of limit cycles in the delay-differential equation:

d2x

dt2
+ x(t− T ) + x3 = 0 (34)

Besides numerical integration, we used three different approximate analytic approaches to study
this system. All of these approaches support the conclusion that this system exhibits an infinite
number of limit cycles for positive values of T in the neighborhood of T = 0, their amplitudes
going to infinity in the limit as T approaches zero.
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