%

The American Society of
® Mechanical Engineers

Reprinted From

Symbolic Computation in Fluid Mechanics

and Heat Transfer — HTD-Vol. 105/AMD-Vol. 97
Editors: H. H. Bau, T. Herbert, and M. M. Yovanovich
J. R. Stenner, and W. J. Bryan

(Book No. G00483})

THE USE OF SYMBOLIC COMPUTATION IN
PERTURBATION ANALYSIS

R. H. Rand
Department of Theoretical and Applied Mechanics
Cornell University
Ithaca, New York

Abstract

MACSYMA programs are presented which automate
i) the method of composite expansions for treating
linear variable coefficient second order ordinary
differential equation boundary value problems, and ii)
the asymptotic expansion of a class of definite
integrals.

Introduction

Perturbation methods (also known as asymptotic
expansions) are a diverse class of approximate but
algebraic (as opposed to numerical) methods for
treating problems in applied mathematics. Although
these methods are so varied to prohibit a general
definition, most involve problems which contain a small
parameter, and consist of a series expansion
asymptotically valid in the limit as the small
parameter goes to zero.

The computational procedure for perturbation
methods invariably involves tedious quantities of
algebra, especially if the series expansion is carried
to more than just one or two terms. These computations
have become less burdensome and more accurately and
efficiently executed since the recent availability of
computer algebra (also known as symbolic manipulation)
sof tware. These systems provide computer environments
which permit the usual processes of algebra and
calculus to be performed on unevaluated symbolic
variables (i.e., letters as opposed to numbers).

In two previous research monographs [4.5]. the
author has investigated the use of the computer algebra
system MACSYMA to automate the following perturbation
methods: Lindstedt's method, center manifold reduction,
normal forms, averaging, two variable expansion method
(also known as multiple scales), Lie transforms and
Liapunov-Schmidt reduction. The present paper extends
this work by presenting MACSYMA programs which
implement i) the method of composite expansions and ii)
the asymptotic expansion of integrals. For both of
these we describe the method and offer an example
completed by hand. Then we give a sample run of the
computer algebra program and the program listing.

The reader may obtain an electronic copy of
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these programs (as well as all the programs in [5])., by
contacting the author via bitnet at RHRY@GCRNLVAXS.

The Method of Composite Expansions

This method is an alternative to matched
aymptotic expansions for differential equations of the
form:
(A1)

ey’ +a{x)y +b(x)y=0

with two boundary conditions:

(A2) y(0) =a. y(1) =5,
where primes represent differentiation with respect to
x. In (A1), e < 1 and a(x) and b(x) are analytic
functions of x on [0,1]. We assume that a(x) > O
throughout [0,1], in which case a boundary layer (b.l.)
will occur at x = 0. (In the opposite case that
a(x) < 0, the b.1. will occur at x = 1, but changing
independent variable to § = 1-x will bring the b.1. to
§ = 0. Ve assume that a(x) does not change sign in
[0.1], since this case leads to more complicated
behavior (internal b.l.'s), see [2,3].)

The following description of the method is
based on Nayfeh [3], pp.148-149: We look for a
solution to (Al) and (A2) in the form:

W) y=) P et Sy
=0

n= n=0

in which the functions fn.g and hn are to be found. We

require g(x) ~ x in the limit x - 0, since the b.1. is
known to have thickness x. The procedure is to
substitute (A3) into (A1) and (A2), collect terms, and

equate the coefficients of e” and " e—g/e We
proceed directly to an example [3]:

to zero.

(A4) ey '+ (+l) y' +2y =0

for which a(x) = 2x+1 and b(x) = 2. Substituting (A3)
into (A4) and multiplying by e gives the following
lowest order terms:



g’ ho (g-2x-1)=0

(A6) e e ¥/€: hy (2-g'") +hy' (2x+1-2g") =0

(A7) €: 265+ (2x+1) £y =0

Substituting (A3) into the b.c. (A2) gives:

(A8) and f,(1) = B

£5(0) + hy(0) = @

Eq.(A5) gives either h0 = 0, g = constant (both of
which must be rejected), or:

(A9) g(x) = % + x

in which the arbirary constant of integration has been
taken as zero in order that g(x) ~ x. Substituting
(A9) into (A6) gives

(A10) h.'

o =0

or ho(x) = constant.

Next, (A7) may be integrated to give:

constant
(A1) ol = w1
The arbitrary constants of integration in (A10) and
{A11) are found by using the b.c.(A8):

3
(A12) £o(x) = 50— . hy(x) =a - 3P
Substituting (A9) and (Al12) into (A3) gives the
approximate result:

2
X +x

3 + 0(e)

(A13)  y=5Er (a-3P) e

This type of computation may be automated using
computer algebra. The MACSYMA program "composite”
which we present here accomplishes this task for
general functions a{x) and b(x), to arbitrary order of
truncation. Here is a sample run on the previous
example:

composite();

The d.e. is: ey’ ’'+a(x)y’+b{(x)y=0
with b.c. y(0)=y0 and y(1)=y1
enter a(x) > 0 on [0,1]

2%x+1;

enter b(x)

enter yO

alpha;

enter yl

beta;

The d.e. is: ey’'+( 2 x + 1 )y'+( 2 )y=0
with b.c. y(0)= alpha and y(1)= beta

enter truncation order
3;
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3 2
85312 beta e 928 beta e

(- - -
243 27 3

16 beta e

3 beta + alpha) %Xe

3 6 5 4
e (5120 beta x + 15360 beta x + 21504 beta x

3 2
+ 17408 beta x + 16032 beta x + 9888 beta x

7 6 5
85312 beta)/(31104 x + 108864 x + 163296 x

4 3 2
136080 x + 68040 x + 20412 x + 3402 x + 243)

+

2 4 3 2
e (128 beta x + 256 beta x + 336 beta x

5 4 3
+ 208 beta x ~ 928 beta)/(864 x + 2160 x + 2160 x

2
+ 1080 x + 270 x + 27)

2
e (8 beta x + 8 beta x - 16 beta)
- +
3 2
24 x +36x +18x

3 beta

2x+1
+ 3
[VAX 8530 computation time = 112 sec.]

In order to check the accuracy of the results,
we used finite differences to obtain a numerical
solution to (A4).(A2) for a =1, B = 2. The following
table lists the values of y’(0) obtained from various

truncations of the composite expansion, along with the
finite difference value, for e = 0.01,0.05 and 0.09:

Table of approximate values of y'(0)
truncation

order e = 0.01 e = 0.05 e = 0.09

0 488 .0 43.55

1 497.97 95.2 47.98

2 498.59 96.88 48.48

3 498.65 97.40 46.94
finite diff. 498.66 98.64 54.16

Note that while additional accuracy is obtained by
taking more terms in the expansion for € = 0.01 and

e = 0.05, this is no longer true for € = 0.09. This
behavior is typical of asymptotic series (as opposed tc
convergent series.) The two limiting processes of
letting € -» O and truncating the series after N » »
terms are in competition. In an asymptotic series, we
fix N and let ¢ = O, while in a convergent series, we
fix € and let N > ®. In terms of the Table, if we fix
the truncation order at N = 3 and take e smaller, the
difference between the asymptotic series approximation
and the exact solution (represented by the finite
differences result) becomes smaller. If we fix e,
however, we cannot expect that increasing the order of
truncation N will necessarily increase the accuracy of
the approximation, cf. e = 0.09.



Here is the program listing:

/% method of composite expansions »/
composite():=(
/% input problem from keyboard »/
print("The d.e. is: ey’ +a(x)y’+b(x)y=0"),
print("with b.c. y(0)=y0 and y(1)=y1").
a:read("enter a(x) > O on [0,1]"),
b:read("enter b(x)"),
yO:read("enter y0"),
yl:read("enter y1"),
print("The d.e. is: ey’ '+(".a,")y '+(".,b,")y=0"),
print("with b.c. y(0)=",y0,"and y(1)=",y1),
trunc:read("enter truncation order”),
/% set up basic form of solution %/
y:sum{(f[n](x)*e"n,n,0, trunc)+
Xe”(-g(x)/e)¥*sum(h[n](x)*e n,n,0, trunc),
/% substitute into d.e. %/
del:exdiff(y.x,2)+axdiff(y,x)+bey,
/% expand and collect terms %/
de2:expand(e¥del),
gstuff:coeff(de2,Xe~(-g(x)/e)). )
other:expand(de2-gstuf f*Xe™(-g(x)/e)).
gstuff2: taylor{gstuff,e,O, trunc+l),
other2: taylor(other,e,0, trunc+1),
for 1:0 thru trunc+l do
geq[i]:coeff{gstuff2,e,i),
for 1:1 thru trunc+l do
otheq[i]:coeff(other2,e,1),
/% find g(x) »/
geq:gea[0]/h[0](x)/diff(g(x).x).
gsol :ode2(geq,g(x),x),
resultlist:[g(x)=ev(rhs(gsol),%c=0)].
/% find h{i1](x)'s »*/
/% hh[1i] = constant of integration %/
for 1:0 thru trunc do(
heq[i]:ev(geq[i+1],resultlist,diff),
hsol[1]:ode2(heq[1],h[1](x).x),
hsol[1]:ev(hsol[i].%c=hh[i]).
resultlist:append(resultlist,[hsol[i]])).
/% find f[1](x)'s %/
/% £f[1] = constant of integration %/
for 1:0 thru trunc do(
feq[i]:ev(otheq[i+1],resultlist,diff),
fsol[i]):ode2(feq[i].f[1](x).x).
fsol[i]:ev(fsol[1i].%c=ff[1]).
resultlist:append(resultlist,[fsol[i]])).
/% boundary conditions »/
/% y(0)=y0 and y(1)=y1 »*/
becl:ev(y=yO,resultlist,x=0),
bc2:ev(y=yl,resultlist,x=1),
/% kill exponentially small Xe terms »/
bc2:subst(0,%e,bc2),
for 1:0 thru trunc do
(bcl[i]:ratcoef(bcl,e, i),
bc2[1]:ratcoef (bc2,e,i)).
/% solve for unknown consts »*/
bceqs:makelist(bcl[1],1.0, trunc),
bcegs:append{bceqs,makelist(bc2[1],1,0, trunc)),
beunk:makelist(hh[i],1,0, trunc),
becunk:append(bcunk,makelist{ff[1],1,0, trunc)),
const:solve(bcegs,bcunk).
/% substitute back */
resultlist:ratsimp(ev(resultlist,const)),
ysol:ev(y,resultlist))$
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Asymptotic Expansion of Integrals

This procedure is concerned with generating
approximations for definite integrals of the form

Jb £(t) () ¢

a

(B1)

in the limit as x = ©. The following description of
the method follows Bender and Orszag [2], Chapter 6.

The idea of the method is that exw(t) makes its
largest contribution to the integral in the
neighborhood of the point t = c at which ¢(t) is
maximum. In the large x limit, we may (with
asymptotically small error) replace (Bl) by

+
(B2) Jc © £(t) &) ac,  ifac<c <b,
C—€
or by
+
(83) Ja “r) &) g tfc-a
a
or by
(B4) Jb £(t) (Y ge,  if ¢ =b.
b-e

Then we may expand the integrand in a truncated Taylor
series about t = c. In order to evaluate the resulting
integrals most easily, we next let ¢ » ®, {i.e., we
respectively replace the integrals

+e +e
Jc . Ja . Jb in (B2)-(B4) by J” . Jm. Jb .
c-e a b-e —0 a V-«
As an example, we take the following expression

for the modified Bessel function of the first kind
([2].p.270):

(B5) I(x) =3 J' cos(nt) X () g¢
0
Here ¢(t) = cos(t) achieves its maximum at ¢ = O so
that
(B6) In(x) ~ % Je cos(nt) e* cos(t) dt
0
Expanding cos(t) in a Taylor series around t = ¢ =0
t2 t4
(B7) X cos(t) _ & (1~ 5 *355" ees)

In (B7), the leading term, e*, is independent of t and

can be passed outside of the integral (B6). The next
2

term, e Xt /2. is the key factor in the evaluation of

the integral (B7). Expanding all the other factors in

the integrand of (B7) in Taylor series, we obtain:



(B8)

X 2 2
.
LA 2

Now we let ¢ - ® (thereby adding terms to (B8) with
s/VX. in order

I (x) ~

xt?
24

2
+ eee) e—xt /2

(1+ eee) dt

asymptotically small value), and set t =
to evaluate the resulting integrals:

(89) I (x) ~
X 22 2 4
€ n''s -s"/2 s ds
rJ:“‘Ta.T“' A e
& J"’ 52 g, L J‘” o2 (st a2l
& [Jo *Jo 22
+ O(x_2)

The integrals in (BS) may be evaluated to give:

1 n2

1 2—-] + 0(x_2)]

(B10) I (x) ~ % 1+ L [-

X

In order to obtain higher order terms in this
asymptotic expansion, we need to keep additional terms
in the truncated Taylor series in eq.(B8). The number
of terms to be kept depends upon the key factor in

X xku2

e ¢p(t). We find that if the key factor is e (where
u =t - c and where k is some constant), as it is in
the foregoing example, then 6n terms must be maintained
in the Taylor series truncations to account for terms

of O(X_n). In the case that the key factor is eXRu, we
find that 2n terms in the truncations in t account for

terms of O(X—n) in the result.
3
other key factors, e.g. e , are not known.

This type of computation may be automated using
computer algebra. The MACSYMA program "asymptotic"
which we present here accomplishes this task for
general functions f(t) and ¢(t), to arbitrary order of
truncation. (We require that ¢(t) behave like (t-c) or

(t—c)2 near its maximum t = c, since we know truncation
points only for these key factors.) Here is a sample
run on the previous example:

Truncation points for

asymptotic():
The integrand is of the form: f(t) exp(x phi(t))
enter f(t)
cos{n¥*t);
enter phi(t)
cos(t);
enter the lower limit of integration
0;
enter the upper limit of integration
%pi;

cos(t) x
The integrand is cos(n t) %e

integrated from O to Xpi

enter value of t at which phi =
0;

enter truncation order

4;

cos(t) 1is maximum
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4 2 3
sqrt(2) sqrt(Xpi) (98304 x - 49152 n x

3 4 2
+ 12288 x + 12288 n x

2 2 2
- 30720 n x + 6912 x

6 4 2
- 2048 n x +17920 n x - 33152 n x + 7200 x

8 6 4 2 X
+256n -537T6n + 31584 n - 51664 n + 11025) Xe

9/2
/(196608 x )

[VAX 8530 computation time = 309 sec.]

This result agrees with [1]. p.377, eq.(9.7.1).
Before giving the program listing, we offer

another example, Stirling's formula ([2], p.275-6).

The gamma function I'(x) is given by the integral

(B11) I'(x) = r et X1 g = J" % oot In(t) 4o
0 0

Eq.(B11) is not of the form (Bl).
T = t/x, (Bl1l) takes the form

However, by setting

(B12) r(x) = % Jm %.ex(ln(T)‘T) dr
0

In order to apply the program "asymptotic™ to this
example, we note that ¢(7) = In(7T)-7 achieves its
maximum value at T = 1. Here is the run:

asymptotic():

The integrand is of the form: f(t) exp(x phi(t))
enter f(t)

1/¢t;

enter phi(t)

log(t)-t;

enter the lower limit of integration

0;

enter the upper limit of integration

inf;

(log(t) - t) x
Xe

The integrand is

integrated from O to inf

enter value of t at which phi =
1;

enter truncation order

4;

log(t) - t 1is maximum

4 3
sqrt(2) sqrt(¥pi) (2488320 x + 207360 x

2 - X
+ 8640 x - 6672 x - 571) Xe

9/2
/(2488320 x )

[VAX 8530 computation time = 206 sec.]

These results agree with [1], p.257, eq.(6.1.37).
Numerical evaluation of these results indicates the
advantage of taking additional terms in the expansion.

From (B12), we multiply the results by »* and compare
with (x-1)!. For x = 100, MACSYMA gives the following
exact value for 99¢!:



933262154439441526816992388562667004907 1596826438162146
8592963895217599993229915608941463976156518286253697920
827223758251 1852109168640000000000000000000000

Numerical evaluation for x = 100

value + 10155 no.correct digits
9.32484762526934324776475612718
9.33261833162373436713789342395
9. 33262156941804869677096556449
9.33262154441508149166991017407
9.33262154439368356859719928884

no. terms

b W -
NOOON

-

Here is the program listing:

/% asymptotic expansion of integrals 3/
asymptotic():=(
block(
/% input the problem from the keyboard »/
print("The integrand is of the form:
£(t) exp(x phi(t))"),
f:read("enter f(t)"),
phi:read("enter phi(t)"),
a:read(“enter the lower limit of integration"),
b:read("enter the upper limit of integration"),
print(“The integrand is", f»Xe™(x*phi)),
print(“integrated from".a,"to",b),
c:read("enter value of t at which phi =",phi,
" is maximum”),
/% set up limits of integration for later use %/
if c=a then (lowerlim:0, upperlim:inf)
else if c=b then (lowerlim:minf, upperlim:0)
else (lowerlim:minf, upperlim:inf),
/% move origin to t=c with u=t-c %/
fl:ev(f.t=u+c),
phil:ev(phi, t=u+c),
trunc:read(“enter truncation order"),
/% determine lowest non-constant term in taylor series
for phi about u=0 »*/
phi2: taylor{phil,u,0,2),
phic:ev(phi, t=c),
keypower : lopow(phi2-phic,u),
if keypower=1 then truncl:2%trunc else
if keypower=2 then truncl:6%trunc else
(print("phi does not behave like t-",c,
“or (t-",c,")"2 near t=",c),
return('program aborted")),
phi3: taylor(phil,u,0, truncl),
phikey: coef f(phi3, u, keypower )*u"keypower,
phirest:phi3-phikey-phic,
/% set flag so integration routine assumes x is
positive »/
assume_pos: true,
integrand: taylor(f1%%e” (x*phirest),u,0, truncl),
/% set u = s/x™(1/keypower) »/
integrand2:ev{integrand,u=s/x"(1/keypower)),
/% set X = 1/xx in order to truncate %/
integrand3: taylor(ev(integrand2,x=1/xx).xx,0, trunc),
/% return to x again %/
integrand4:ev(integrand3,xx=1/x),
approx:Xe”(x¥phic)/x"(1/keypower )%
integrate(integrand4*¥e”(ev(phikey,u=s)),s,
lowerlim,upperlim),
approx2: factor (approx)))$
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