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ABSTRACT

Starting with a no-slip, dissipation-free model of the celt

developed by Kane and Levinson in 1982, we obtain a three-

dimensional slow ow using second order averaging. The coef-

�cients of the slow ow are obtained in symbolic form through

the use of computer algebra, thus permitting a bifurcation anal-

ysis to be performed. It is shown that for all physically relevant

parameters the celt is predicted to exhibit an in�nite number

of spin reversals. The analysis assumes small energy and small

inertial asymmetry.

INTRODUCTION

The celt, also known as a wobblestone or rattleback, is

a body which, when spun like a top on a at surface, has a

characteristic tendency to prefer only one direction of spin.

If a celt is spun in the opposite direction, it slows down and

reverses its direction of spin, to the surprise and delight of

the uninitiated observer.

Although celts have been known since early times due

to their occurrence in nature in the form of smooth stones,

nowadays they are inexpensively manufactured from plas-

tic and are commonly sold as scienti�c novelties. The �rst

scienti�c paper on celts appeared in 1896 (Walker, 1896).

A Scienti�c American article (Walker, 1979) in 1979 stim-

ulated interest in the dynamics of the celt with the result

that many articles have appeared since then.

The celt is perhaps the simplest dynamics problem

which is di�cult to explain in simple terms. Although the

physical feature leading to celt-like behavior is readily iden-

ti�ed (see below), an explanation in the tradition of modern
1

dynamics, involving a qualitative picture of the geometry of

phase space, is more elusive.

In this paper we report on our use of second order av-

eraging and computer algebra to provide a relatively simple

geometrical picture of celt dynamics based on a slow ow

in the phase space of the averaged variables. In addition we

present the results of a bifurcation analysis showing that

there is only one qualitatively distinct phase portrait for

physically realizable parameters. Our discussion is limited

to motions which occur in the neighborhood of static equi-

librium, i.e., small displacements and velocities. We also

assume the dynamic imbalance is small. The model we use

omits dissipation of energy and assumes no slip between the

celt and the surface it rolls on.

LITERATURE REVIEW

Before presenting a mathematical description of the

celt, we briey report on a number of related research pa-

pers. See (Garcia and Hubbard, 1988) for a more detailed

literature review.

(Walker, 1896) presented the �rst dynamical analysis,

based on a model with rolling without slipping, and involv-

ing a linearization about a uniform rotation about a vertical

axis. He showed that it is the presence of an inertial asym-

metry (i.e. the non-coincidence of the principal axes of the

moment of inertia ellipsoid with the principal axes of the

body surface ellipsoid) that is responsible for the charac-

terstic celt-like behavior. (Bondi, 1986) extended the linear

analysis of a rolling{without{slipping model and concluded
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that three distinct types of behavior can occur, depending

on the parameters and initial kinetic energy. He found that

a celt can behave 1) as if one direction of spin is \stable"

and one \unstable" (in which case there is only one change

of spin direction), 2) as if neither direction of spin is \sta-

ble" (in which case the direction of spin continues to change

as long as the celt has energy), or 3) as if it has a stable spin

only about a non-vertical axis. The analysis of this no-slip

model also shows that at low energy levels all celts with-

out damping experience type 2) behavior, i.e., they exhibit

multiple changes of direction of spin.

(Magnus, 1974) included the possibility of both rolling

and slipping in his celt model and concluded that in this

case a celt can exhibit only one change of direction, even

at low energy levels. (Caughey, 1980) presented a nonlinear

analysis of a model which, while capturing certain dynam-

ical features, was relatively unrealistic. (Kane and Levin-

son, 1982) presented a realistic model which was based on

rolling without slipping. Numerical integration of the full

equations of motion showed many spin reversals. Damping

was invoked to reduce the number of reversals to one or

two. Bondi, on the other hand, showed that in some cases

only one spin reversal occurred with no damping. (Lind-

berg and Longman, 1983) also numerically integrated the

equations of motion and showed that due to the presence of

gyroscopic terms, no change of variables will uncouple the

linearized equations of motion into two independent oscil-

latory modes. (Garcia and Hubbard, 1988) made a careful

analysis of the e�ects of dissipation, including aerodynamic

dissipation, dry friction, and slipping. Aerodynamic e�ects

were found to be generally weaker than dry friction e�ects

for real celts. Both calculations and experiments showed

that dissipation plays an important role in the spin rever-

sals of real celts. Garcia and Hubbard also presented a

simpli�ed model of the spin dynamics (in section 5 of (Gar-

cia and Hubbard, 1988)) which used an average vertical

reaction torque. In comparison, the present work uses the

method of averaging to systematically include all low order

nonlinear e�ects.

(Markeev, 1983) and (Pascal, 1984), (Pascal, 1986) pre-

sented a perturbation analysis, valid to lowest order in a

small parameter. Their results are similar to the order �2

analysis presented in the present work.

FORMULATION AND AVERAGING

We use the formulation of (Kane and Levinson, 1982)

to describe the celt's kinematics and to obtain the equations

of motion. The surface of the celt is modeled as a portion

of an ellipsoid:
2

x2

a2
+
y2

b2
+
z2

c2
= 1 (1)

The center of mass of the celt is assumed to lie on the

z axis, at a distance h < c from the origin, see Fig.1.

The celt's con�guration is described by three angles, �,

� and . Starting with the x�y�z axes (�xed in the celt) in

a reference con�guration in which z is vertically downward,

the celt's general position is obtained by rotating by angle

 about the z axis, then by � about the x axis, and �nally

by � about the y axis.

The moment of inertia matrix relative to the center of

mass in the directions of the x � y � z axes is assumed to

be given by

2
4
A D 0

D B 0

0 0 C

3
5 (2)

(Kane and Levinson, 1982) used Kane's equations to

obtain the equations of motion. These may be written in

the form

�� = F1(�; �; _�; _�; _)

�� = F2(�; �; _�; _�; _) (3)

� = F3(�; �; _�; _�; _)

where the Fi are extremely complicated and are here derived

using MACSYMA. Note that  is an ignorable coordinate,

so that the motion occurs in a 5-dimensional phase space.

Moreover, the celt is assumed to roll without slipping, so the

constraint force does no work and energy is conserved. Thus

the motion remains on a codimension 1 energy manifold,

i.e., a locally 4-dimensional phase space.

These equations exhibit the exact solution � � 0; � �

0;  = !t representing a uniform spin about a vertical axis.

In order to use a perturbation method to simplify

eqs.(3), we assumed the variables �; �; _ and the product

of inertia D to be proportional to a small parameter �:

� = ��̂; � = ��̂; _ = �p̂;D = �D̂ (4)

Expanding eqs.(3) in a power series in �, we �nd

�̂�+ 
2

1
�̂ = �G1 + �2H1 + � � �

�̂
� + 
2

2
�̂ = �G2 + �2H2 + � � � (5)

_̂p = �G3 + �2H3 + � � �
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where the Gi and Hi are complicated functions of the phase
variables (see (Blackowiak, 1996) for a listing of these func-
tions). Here 
1 and 
2 are the linearized frequencies of
free vibration of the � and � normal modes, representing
\rocking" motions without rotation about the  direction:


2

1
=
mg(b2 + c(h� c))

c(m(h� c)2 +A)
; 
2

2
=

mg(a2 + c(h � c))

c(m(h� c)2 + B)
(6)

Note that when � is zero, eqs.(5) are uncoupled. This
desirable feature avoids the necessity of a linear eigentrans-
formation and is due to our assumption that D is of order �,
i.e., that the angle between the principal axes of the inertia
ellipsoid and the principal axes of the body surface ellip-
soid is small. (Markeev, 1983) and (Pascal, 1984), (Pascal,
1986) did not make this assumption, and therefore had to
uncouple the corresponding equations by performing a lin-

ear eigentransformation, thereby complicating their analy-

sis signi�cantly. However, the price we must pay for the

convenience of starting with uncoupled equations is that we

have to go to order �2 in our averaging procedure, whereas

they they only had to go to lowest order in their small pa-
rameter. It is remarkable that in spite of this di�erence,

both approaches give a similar �nal form of the averaged

equations.

In order to use averaging, we make the usual transfor-

mation (see (Rand, 1994)):

�̂ = r̂1 cos(
1t+ �̂1); _̂� = �r̂1
1 sin(
1t + �̂1)

(7)

�̂ = r̂2 cos(
2t+ �̂2);
_̂
� = �r̂2
2 sin(
2t+ �̂2)

where r̂i and �̂i are slowly varying functions of t. Sub-

stituting eqs.(7) into eqs.(5) gives eqs. on _̂r1; _̂r2; _̂p;
_̂
�1;

_̂
�2.

Second order averaging involves simplifying these equations
by transforming to new variables via a near-identity trans-

formation (Rand, 1994):

r̂1 = r1 + �W1 + �2V1 + � � �

r̂2 = r2 + �W2 + �2V2 + � � �

p̂ = p + �W3 + �2V3 + � � � (8)

�̂1 = �1 + �W4 + �2V4 + � � �

�̂2 = �2 + �W5 + �2V5 + � � �

where the generating functions Wi and Vi are chosen as ap-

propriate functions of the transformed variables. This cal-

culation is accomplished using a previously published MAC-

SYMA program "AVERAGE" given in Chapter 5 of (Rand
3

and Armbruster, 1987) . The resulting averaged equations
on the transformed variables are computed to be:

_r1 = �2K1r1p (9)

_r2 = ��2K2r2p (10)

_p = �2(�K3r
2

1
+K4r

2

2
) (11)

_�1 = �2(C1r
2

1
+C2r

2

2
+ C3p

2 +C4) (12)

_�2 = �2(C5r
2

1
+C6r

2

2
+ C7p

2 +C8) (13)

The parameters Ki are computed to be:

K1 =
m2gD̂(a2 � b2)(h� c)(c(h� c) + b2)

2c2(
2

2
�
2

1
)(m(h� c)2 + A)2(m(h � c)2 + B)

K2 =
m2gD̂(a2 � b2)(h� c)(c(h� c) + a2)

2c2(
2

2
�
2

1
)(m(h� c)2 + A)(m(h� c)2 + B)2

(14)

K3 =
m3g2D̂(a2 � b2)(h� c)(c(h� c) + b2)2

2c3C(
2

2
�
2

1
)(m(h� c)2 +A)2(m(h� c)2 + B)

K4 =
m3g2D̂(a2 � b2)(h� c)(c(h� c) + a2)2

2c3C(
2

2
�
2

1
)(m(h� c)2 +A)(m(h� c)2 +B)2

As a check on the averaging computation, we compare

the numerical integration of the averaged equations with

numerical integration of the original equations of motion

for the following parameters and initial conditions:

a = 0:2 meter; b = 0:03 meter; c = 0:02 meter (15)

h = 0:01 meter; m = 1 kg; g = 9:81 meter=sec2 (16)

A = 0:0002 kg meter2; B = 0:0016 kg meter2; (17)
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C = 0:0017 kg meter2; D = �0:000005 kg meter2; (18)

�(0) = 0:05 deg; �(0) = 0:05 deg (19)

_�(0) = 0; _�(0) = 0; _(0) = �0:005 rad=sec (20)

� = 0:1 (21)

The parameters in eqs.(15)-(18) are the same as those
chosen by (Kane and Levinson, 1982). The initial conditions
in eqs.(19)-(20) have been chosen smaller in magnitude than
those in (Kane and Levinson, 1982) in order to be close to
equilibrium.

For these parameters, the averaged eqs. become:

_r1 = 0:0010608 r1p

_r2 = �0:010644 r2p

_p = �:21426 r2
1
+ 122:23 r2

2
(22)

_�1 = �0:56711 r2
1
� 5:2775 r2

2
+ 0:000126 p2 � 0:00009179

_�2 = �:30747 r2
1
� 647:26 r2

2
+ 0:000888 p2 + 0:0029172

After numerically integrating these eqs., the results are sub-

stituted into eqs.(7) (without using the near-identity trans-

formation (8), a step which is valid to lowest order in �).

The results are displayed in Fig.2.

ANALYSIS OF THE AVERAGED EQUATIONS

Note that eqs.(9),(10),(11) are uncoupled from
eqs.(12),(13). From eqs.(7) we see that eqs.(9),(10),(11)
govern the amplitudes of the �;�;  motions, respectively,
whereas eqs.(12),(13) govern the phases of the �;� motions.

We shall direct our attention to eqs.(9),(10),(11) in what fol-
lows. Eqs. of the form of eqs.(9),(10),(11) have been derived

by (Markeev, 1983) and (Pascal, 1984), (Pascal, 1986) using

a di�erent averaging scheme. Our expressions (14) for the

coe�cients Ki are algebraically simpler than those derived

by these authors because our scaling (4) uncouples the gov-
erning eqs.(5) when � is zero, producing simpler expressions

for the eigenfrequencies (6).
As shown by (Markeev, 1983) and (Pascal, 1984), (Pas-

cal, 1986), eqs.(9),(10),(11) possess two �rst integrals. Di-
viding eq.(9) by eq.(10) gives

r1
K2r2

K1 = constant (23)
4

Multiplying eq.(9) by K3

K1

r1, eq.(10) by
K4

K2

r2, and eq.(11)
by p, and adding them together gives

K3

K1

r2
1
+

K4

K2

r2
2
+ p2 = constant (24)

For the parameters of eqs.(15)-(21), each of the Ki's is pos-
itive. In this case, eq.(23) is hyperbola-like in the r1 � r2
plane, and eq.(24) is an ellipsoid in r1� r2� p phase space.
The intersection of these two surfaces will in general be a
closed curve representing a periodic motion in phase space.
See Fig.3 in which the constants in eqs.(23), (23) have been
chosen to correspond to the initial conditions and parame-
ters in eqs.(15)-(21). Note the di�erence in scale between
the r1; r2 and p axes.

Fig.4 shows the periodic motion in phase space, which
lies on the intersection of the two �rst integrals (23),(24).
The direction of the motion in Fig.4 is from A to B to C

to D to A. Since the frequency of this motion is in general

incommensurate with the frequencies 
1;
2, we see from
eq.(7) that the motion of the celt in the unaveraged variables

�;�;  is in general quasiperiodic.

The motion may be described in words as follows

(cf.Figs.2 and 4): If the celt starts spinning in a counter-

clockwise direction just below point A in Fig.4 (which lies
on the equator p = 0), it soon reverses direction amidst

a mixture of �- and �-rocking (corresponding to relatively

small r1 and large r2). Its clockwise spin rate increases until

point B after which it begins to slow down. When it gets to

just above point C on the equator, it again reverses direc-
tion this time with mostly �-rocking, and then proceeds to

increase its counterclockwise spin rate until point D, after

which it slows down and reverses direction at A once again.
The model (which omits dissipation) predicts this motion
to continue forever.

In the exceptional case in which the constant in eq.(23)
is zero, the motion corresponds to one of the following two
possibilities:

(i) one of two equilibria in the slow-ow variables

r1 � r2 � p which occurs when r1 = r2 = 0 and which cor-
responds to a uniform spin of the celt in which the z-axis

remains vertical, in either a clockwise or a counterclockwise

direction. Note that the p-axis is �lled with a continuum of

such equilibria, two of which correspond to a given value of

the constant in eq.(24).

(ii) one of two heteroclinic motions, i.e. saddle connec-
tions between these two equilibria. One heteroclinic motion
lies in the plane r1 = 0, the other in r2 = 0. Both of these

two planes are �lled with a continuum of such heteroclinic

motions, one of which in each plane corresponds to a given

value of the constant in eq.(24).
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Another exceptional case occurs if the surface of eq.(23)
is tangent to the ellipsoid of eq.(24), in which case the mo-
tion corresponds to an equilibrium in the slow-ow variables
r1�r2�p for which p = 0 and which corresponds to a "rock-
ing" motion with no spin in the celt.

BIFURCATION ANALYSIS

Using the analytical expressions (14) for the constants
Ki in the slow ow (9),(10),(11), it may be concluded that
the foregoing qualitative dynamics persists for all physically
realistic parameters of the celt, as follows: The nature of
the �rst integrals (23),(24) depends upon the signs of the
quantities Ki. Now the denominators of each of the Ki's is
positive, and the only terms in the numerators of K1 and
K2 which could produce a change in sign as the physical
parameters are varied are c(h � c) + b2 and c(h � c) + a2,
respectively. This assumes that a > b;h < c and D < 0,

assumptions which can be made without loss of generality,

since if e.g. a < b then the x and y axes could be relabeled

from the start, switching the roles of a and b throughout.
Now the terms c(h � c) + b2 and c(h � c) + a2, are, from
eqs.(6), necessarily positive, in order that the unperturbed

equilibrium position be stable, and therefore the signs of

the constants Ki are positive for all physically relevant pa-

rameter values.

CONCLUSIONS

In order to fully understand the dynamics of the celt, we

would like to have a complete qualitative picture of the ge-

ometry of the ow in the associated �ve dimensional phase

space. The present work has moved towards this goal by

providing a set of averaged equations which are su�ciently
simple to allow a qualitative understanding of the phase por-
trait in a reduced three dimensional space, valid for small
energy and small inertial asymmetry. We have checked our
averaging calculation by comparing the behavior of the av-
eraged equations with that of the original equations of mo-

tion. By using computer algebra, we have obtained the co-
e�cients of our averaged equations in symbolic form, thus

permitting us to perform a bifurcation analysis which has

shown that no bifurcations occur near equilibrium in this

no-slip model of the celt.
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Fig.1. The surface of the celt is modeled as a portion of an ellipsoid.
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Fig.2a. Numerical integration of the averaged equations for parameters and initial conditions given in eqs.(15)-(21).
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