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ABSTRACT 
We investigate the effect of  nonlinearites on a parametri- 

cally excited ordinary differential equation whose linearization 
exhibits the phenomena of  coexistence. The differential equa- 
tion studied governs the stability e r a  mode of  vibration in an un- 
forced conservative two degree of  freedom system used to model 
the free vibrations of  a thin elastica. Using perturbation methods, 
we show that at parameter values corresponding to coexistence, 
nonlinear terms can cause the origin to become nonlinearly un- 
stable, even though linear stability analysis predicts the origin to 
be stable. We also investigate the bifurcations associated with 
this instability. 

INTRODUCTION 
In this work we look at the foUowing parametrically excited 

ordinary differential equation (ODE): 

(1 - -~cos2 t )J i+es in2 t . i :+cx+eota2=O (1) 

When o~ := 0, Eq.(1) arises in the study of  the dynamics of a thin 
elastica which was the subject of the Ph.D thesis of  Cusumano 
[1]. Also when c~ = 0, Eq.(1) is a form of Ince's equation and 
exhibits the phenomena of  coexistence [3]. By taking ct > 0, we 
add a nonlinear spring to the physical model previously studied 
in [1 ],[4], permitting us to investigate the effect of nonlinearities 
on a system exhibiting coexistence. 

We start by reviewing the phenomena of coexistence in 
Ince's equation. Next, we derive Eq.(l) from a model proposed 
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by Cusumano [1] and show how the quadratic nonlinearity may 
enter in the equation. Finally, we investigate the eft'oct of the 
quadratic nonlinearity in Eq.(l)  by using pertubation methods. 

REVIEW OF COEXISTENCE AND INCE'S EQUATION 
A well-known ordinary differential equation with periodic 

coefficients is Mathieu's equation: 

~'-I- ( 8 +  ccos2t)z = 0 (2) 

For given values of  the parameters ~5 and e, either all the solutions 
of are bounded (stable) or an unbounded solution exists (unsta- 
ble ). The curves separating the stable and unstable regions in the 
~5-e plane are known as transition curves (see Fig. 1). The insta- 
bility intervals which emanate out of  the ~ axis at values ~5 = n 2 
for n = 1,2, 3, . . .  arc commonly referred to as resonance tongues 

The presence of  resonance tongues is a generic feature of  
differential equations with periodic coefficients. One phenom- 
ena that does not occur in Mathieu's equation but which may 
occur in other differential equations with periodic coefficients is 
coexistence. The phenomena of coexistence involves the disap- 
pearance of  resonance tongues that would normally be present. 
[u systems that exhibit coexistence, the two transitions curves 
that would normally define a resonance tongue coincide and the 
tongue closes up. An example of an equation that may exhibit 
coexistence is Ince's equation [3]: 
Copyright © 2002 by ASME 
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Figure 1. Transition curves separating regions of stability from instability 
in Mathieu's equation. 

(1 +acos2t)2+bsin2t 2+ (c+dcos2t)x = 0 (3) 

Note that Mathicu's equation is a special case of  Ince's equa- 
tion whMa turns out not to exhibit COExistence. We know from 
Floquet lheory that since the periodic coefficients in Eq.(3) have 
period x, the solutions on the transition curves will be periodic 
with period x or 2~. Let us assume that a, b and d depend on a. 
I f a  = b := d = 0 when e. = 0, then Eq.(3) becomes: 

5i + cx = 0 (4) 

which has solutions o f  period 2x ~ .  These correspond to solutions 
2x o f  per iod x or 2re when ~ = ~ so we would expect resonance 

tongues in the c-e plane to emanate fi'oln the points c = n 2, n = 
1 , 2 , 3 , . . .  on the c-axis. 

We use the method of  harmonic balance to investigate what 
happens to the tongues o f  instability in Ince's equation [3],[7]. 
Since the transition curves are characterized by having solutions 
o f  period ~ or 2~, we expand the solution x in a Fourier series: 

x(t) = ~ .  a. cosnt + bn sinnt (5) 
n ~ 0  

Substituting Eq.(5) into Eq.(3), simplifying and collecting 
trigonometric terms, we obtain four sets of  algebraic equations 
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on the coefficients a .  and b.. Each set deals exclusively with 
aeven, beven, aodd and bed d. Also, each set is homogeneous and of  
infinite order so for a nontrivial solution, the determinants must  
vanish. The four infinite dctermiuants are: 

aewn : 

c ~ - b - 2 a  0 

d c -  4 ~ -- 2b - 8u 

0 ~ + b - 2 a  c - 1 6  
0 0 { + 2b - 8a 
0 0 0 

: C-4b 
+ - 2a 

b.~,,,. 0 

0 

~lod d 

bed d '. 

- 2b - 8a 
c - 1 6  

'_v t + 2b - 8a 
0 

c - t + ± ~  " ,; 3~9,, 
d+b a C -- 9 

2 
0 d+gb 9a 

2 
0 0 

£ -  I -  d b a d 3b 9u 
2 

dlb a 2 C 9 
2 
0 d~3t) 9u 

2 
0 0 

0 0 
0 0 

- 3b - lSa 0 
c -  36 ~ - 4b - 32a 

+ 3b - 18a c - 64 

0 0 
- 3 b -  lSa 0 

c - 3 6  ~ - 4 b -  32a 

a +3b-  18a c 64 

0 0 
d 5/~ 25. 0 ... 
c 25 !!_~_ 49. 

,t  ~ 5t, 2s , ,  c -- 49 

0 0 
d 512 25. 0 ... 
c 25 d 7h 49,, 

4J:~ O. c ~ 4 9  

"'" 6 )  

(7) 

(8) 

(9) 

The notation in these determinants can be simplified by setting 
(after Magnus  and Winkler,  "Hil l 's  Equation" [3]): 

d Q(m) = ~ -I- bin - 2am 2 (10) 

( ~) d+b(2m-1) -a (2m-1)2  
P(m)=Q m -  = 2 (11) 

Using this notation for Q(m) and P(m), taking tile four infinite 
determinants in Eqs.(6-9) and setting them to zero gives: 

aeven : c 
20(0) 

0 
0 
0 

hewn ; 

amid : 

~mhl ; 

Q(-0 o o o = 
c - 4 Q(--2) 0 0 
0(0 t-.t6 Q(-3) 0 ... 

0 Q(2) c - 3 6  Q(--4) 0 (12) 
0 0 Q(3) c - 64 

c - 4 0 ( - 2 )  0 0 = 
Q(1) c -  16 0(--3) 0 ... 

0 0(2) c 36 Q(4) 0 03) 
0 0 Q(3) c -  64 

c-.  1 -I-P(0) P ( - I )  0 0 = 0  
P(1) c , - 9  P ( -2 )  0 ... 

0 1'(3) c 25 P ( 3 )  (14) 
0 0 P(3) c -  49 

c- I - P(O) i,(..-0 0 0 = o P(I) c - 9  P(-2) 0 ... 
0 P(2) c-25 P(-3) (15) 
0 0 P(3) c - 49 
 Copyright © 2002 by ASME 
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Comparison of  the determinants in Eq.(12) and Eq.(13) show
that if  the first row and first column of Eq.(12) arc removed, the
the rcmaindcr of Eq.(12) is identical to Eq.(l 3). The significanc
of this observation is that if  any one of  the off-diagonal term
vanishes, that is if Q(m) = 0 for some integer m (positive, nega
tive or zero), then coexistence can occur and an infinite numbe
of  possible tongues of  instability will not occur. 

In order to understand how this works, suppose Q(2) = 0
Then we may represent Eqs.(l 2),(13) symbolically as follows: 

aeven : 

beven : 

X X 0 
X X X 
0 X X 
0 0 Q(2) 
0 0 0 

x x 
X x 
0 0(2) 
0 0 

0 0 
0 0 
X 0 
X X 
X X 

0 0 
X 0 
X X 
X X 

""  = 0  (16

= 0  (17

where we have used the symbol X to represent a term which 
non-zero. The vanishing of  Q(2) "disconnects" the lower (inf
nite) portion of  these equations from the upper (finite) portion
There arc now two possible ways in which to satisfy these equa
tions with Q(2) = 0. 

1. For a nontrivial solution to the lower (infinite) portion, th
(disconnected, infinite) determinant must vanish. Since this de
terminant is identical for both the a 's and b's, coexistence 
present and the associate([ tongues do not occur. In this cas
the upper portion of the determinant will not vanish in genera
and the coefficients ao, a2, a4, b2 and b4 will not be zero. 

2. Another possibility is that the infinite determinant of  the low
portion is not zero, requiring that the associated a~v~n and bev
coefficients vanish. With these a's and b's zero, the upper po
tion of  the system becomes independent of  the lower, and for
nontrivial solution for ao, a2,a 4, b2 and b4, the upper portion o
both determinants must vanish. For Eq.(16) this involves a 3 x 
determinant and yields a cubic on c, while for Eq.(17) this in
volves a 2 x 2 determinant and gives a quadratic on c. Togethe
these yield 5 expressions for c in terms of  the other parameters o
the problem, which, if real, correspond to the 5 transition curve
Onc of  these passes through the c-axis at c = 0, and the other 
produce tongues of  instability emanating from c = 4 and c = 1
respectively. 
A similar situation occurs for Eqs.(14),(15). If  P(m) = 0 fo
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some integer m (positive, negative or zero) then only a finite num- 
ber of  tongues will occur from amongst the infinite set of  tongues 
which emanate from the points c = (2n - 1) 2, n = 1,2,3, . . .  on 
the c-axis. 

As an example we take Eq.(l) when c~ = 0. It is in the form 
of Ince's equation with the parameter values: 

E 
a = - ~ ,  b = e ,  d = O  (18) 

For the parameter values in Eqs.(l 8), the polynomials Q(m) and 
P(m) from Eqs.(19),(20) become: 

Q(m) = em + em 2 (19) 

P(m) = 2 e ( 2 m -  1) + e ( 2 m -  1) 2 
4 (20) 

For Eqs.(19),(20), it is easy to show that Q(m) = 0 when m = 
0,- - I  andP(m)  = 0  when m = - 2 1 5 .  Substituting Q(0) = 0  
and Q ( - 1 )  = 0 into Eq.(12), we see that the element c in the 
upper left corner of Eq.(12) becomes disconnected from the rest 
of  the infinite determinant, which is itself identical to the infinite 
determinant of  Eq.(13). From this we can conclude that c = 0 is 
a transition curves and all the even tongues disappear Because 
P(m) does not have integer roots, we can also conclude that the 
system has an infinite number of odd tongues. 

Some other examples of systems exhibiting coexistence are 
given in [9], [5], [2], [10] and [7]. 

DERIVATION OF DIFFERENTIAL EQUATION 
I l l this section we derive Eq. ( l )  f rom a model proposed by 

Cnsumano [l ]. In his thesis, Cusumano [1] studied the dynamics 
of  a thin elastica. He showed that complicated dynamics result 
and that a mode of  vibration exists which involves both bending 
and torsional modes. Fig.2 shows some of the modes of vibration 
of  a thin elastica. To get a better understanding of the dynamics, 
Cusumano [1 ] examined the simplified two degree of freedom 
model shown in Fig.3. 

In the simplified modcl, the rotational motion due to coordi- 
nate ql is associated with the torsional motion of the elastica and 
the rectilinear deflection due to q2 is associated with the bending 
motion. Pak et al [4] investigated thc different modes of vibra- 
tion for the system in Fig.3. They found that the stability of the 
bending mode is governed by an equation of  the form of Eq.(1) 
with c( = 0. 

We consider a system similar to the one shown in Fig.3 ex- 
cept with a nonlinear torsional spring. Instead of using a linear 
force-displacement relation as in Fig.3: 
Copyright © 2002 by ASME 
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Figure 2. Thin elastica. (a) undeformed; (b) bending mode; (c) torsional 
mode; (d) non-local mode, involving both bending and torsion. (Pak et al 
[4]) 

Figure 3. Simplified two degree of freedom model of an elastica 
(Cusumano [1]) 

f =  klql (21) 

We use the following nonlinear force-displacement relation with 
an additional quadratic terln: 

f = / q l q l  -Fkl2q 2 (22) 

If we set k12 = 0 and kl~ = kl, we get back the system in Fig.3. 
Note that the result of adding the quadratic term is to add some 
asylnmetry in the torsional spring. Much of the derivation p,e- 
sented here follows the paper by Pak et al [4]. 
We begin by writing the kinetic and potential energies for the 
system: 

.J ,)~ T : 2~ ~(qtl)2+(q~)2]q 9 4 (23) 
4

 

1 [  ; 2 3 2] 
V =  ~ /Qlqi+~kl2ql I-k2q2 

Using the resealings: 

(24) 

x=  v ~ q l ,  y =  v~2q2, t=  ~c v m 

the following Lagrangian k can be obtained: 

(25) 

L= ~(l+'}'p2)x2+~}) 2 I -  "~(KIx2 ~K'2x3+y2)4- 

where, 

(26) 

,,, k , , / J  ( ,,: 
T-- ~-2-' K!-- k2/m' K2 = k12 \Jk2 J (27) 

Applying Lagrange's equations to Eq.(26) gives the equations of 
motion: 

( 1 + 3,3,2)2 + 27y3)2 + }qx + K2 X2 = 0 (28) 
)7 - y22y-Fy = 0 (29) 

Note that the x-mode, y ~ 0, and the y-mode, x - 0, are exact 
solutions to Eqs.(28),(29). To investigate the stability of the y- 
mode, x _= 0, we linearize Eqs.(28),(29) about the exact solution 
by setting: 

x = O + p 2 ,  y = A s i n t + F  3? f~ (30) 

where/ ,  is a small parameter. The factor/,37 in Eqs.(30) is 
chosen so that the scalmgs come out appropriately. Substituting 
Eqs.(30) into Eqs.(28),(29) and Taylor expanding in/z gives: 

jr( 1 + yA 2 sin 2 t)) -FpTA 2 sin 2t ~ +pK12 +jr 2 K222 + O(/t 5l ) = 0 (31) 

/l 3l ~ + /t 3l ~ + O(/z 2) = 0 (32) 

Note that Eq.(31 ) is uncoupled fi'om)3 up to OCu 2). Taking terms 
up to O(/z 2) in Eq.(31), setting p = 1 and dropping hats gives: 
 Copyright © 2002 by ASME 



(1 FyA2sin2t)2 FyA2sin2t2+Klx I-K2 x2 = 0  (33) 

Expanding tile trigonometric term in Eq.(33) gives: 

(14 . YA2 yA2cos2t)Y_FyA2sin2t2+KlX_Fl~.2x:=O(34 ) 
2 2 

~d 2 
Finally, dividing Eq.(34) by 1 + q -  and taking: 

3/A 2 K I K2 
a =  ~,j2, ~ -  2,  ~;o~= ~ (35)  

1 + W 1 -t ¥'~ 1 + 

we have obtained Eq.(l):  

1 - ~ cos 2t)  5i + a sin 2t .~ -I- cx + e ~ :  2 = 0 

DERIVATION O F  C O E X I S T E N C E  C U R V E  
We obtain a series expansion for small e of the curve of co- 

existing t;olutions emanating out o f c  = 4 in Eq.(1) when o~ = 0. 
The system exhibits coexistence for tile even resonance tongues 
so the curves of coexisting solutions can be computed from the 
infinite determinant for b~v~,, (Eq.(7)). We start by taking a finite 
truncation of the infinite determinmlt for bcv,,,. If  we take a 4 x 4 
truncation we get: 

c - 4 ~ -- 2b - 8a 0 0 
4 b 2a c - -  16 ~ -- 3b - -  18a 0 

0 ~ + 2 b - S a  c 36 ~ - 4 b - 3 2 a  
0 0 ¢ + 3 b -  Iga  c - 6 4  

= 0 (36)  

It is a straight-forward computation to obtain a single Equation 
for the determinant of Eq.(36). To get an approximation for the 
curve of coexisting solutions out o f t  = 4, we Taylor expand c in 
a powers series in ~ about c = 4: 

9 
c = 4 + ec~ -I- e-c2 F E3C3 + • . .  (37) 

Recall for Eq.(1), the parameter values arc: 
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g 
a = - ~ ,  b = e ,  d = 0  

Substituting these values for a, b, c and d into the single equation 
obtained fi'om Eq.(36) and Taylor expanding in e we get: 

-23040c le -F  ( -23040c2 -F 3024c~ - 7680)~ 2 (38) 

F(-23040c3 + 6048clc2 - 104c~ + 4256cl)~3 -I- ... = 0 

Requiring terms of O(e) in Eq.(38) to be zero gives cl = 0. Us- 
ing this value for cl and requiring terms of O(82) to be zero gives 
c2 . . . . .  1;3. Using these values for cl and c2, higher order terlns 
can also be obtained in a similar fashion. Of  course, obtaining 
higher order terms also requires taking more terms in the trunca- 
tion of the detemfinant fbr b~e,,. To O(e 2), the series Expansion 
for the curve of coexisting solutions emanating out o f c =  4 is: 

1 
c = 4 - - a 2  F. . .  (39) 

3 

EFFECT OF A QUADRATIC NONLINEARITY 
We use tile method of averaging to investigate the effect of 

the quadratic nonlinearity in Eq.(1). For more on the method of  
averaging see Rand [8], [6]. First, note that o~ can be rescaled out 
of  Eq.(1). We assume (x > 0, so without loss of generality WE 
set o: = 1. From our results for o~ = O, we know that the Eq.(l)  
exhibits coexistence and the tongues of instability that emanate 
out o f c =  n 2 fbl n Even vanish. To pertnrb offa  resonance where 
coexistence occurs, we set: 

C = 4 q-  8 2 C 2  

Substituting Eq.(40) and (z = 1 into Eq.( l)  we get: 

(40) 

f, 
( l - - ~ c o s 2 t ) Y - F e s i n 2 t 2 + ( 4 + a 2 c 2 ) x - F a x  a = 0  (4l)  

For small values of  e, wc can apply the method of averaging to 
Eq.(41). See AppEndix A for details of  the averaging calcula- 
tion. To first order, the averaging procedure does not produce 
any terms m the slow-flow equations. Going to SEcond order in 
the averaging calculation results in the following slow-flow equa- 
tions: 
Copyright © 2002 by ASME 
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k -- g2R2 sinai (42)

48 

e 2 (24c2 - 5R 2 + 6 R c o s ~  + 8) (43)
q t =  96 

We start by looking for equilibria in the slow-flow. Note tha
R = 0 is always an equilibrium point. Setting the RHS of Eq.(42)
to zero requires s i n ~  = 0 so ~ = 0 or ~lt = 7~. Substituting ~ = 0
and ~ - n into the RHS of  Eq.(43) and setting it to zero gives: 

24c2 - 5R 2 + 6 R +  8 = 0 

24c2 - 5R 2 - 6R + 8 -- 0 

(44)

(45)

Eqs.(44),(45) differ only by the sign of  R term and both have the
same discriminant. For real roots, we require the discriminant to
be positive which results in: 

36 + 20(24c2 + 8) > 0 (46)

This giw's the condition c2 > - 4 9 / 1 2 0 .  When C 2  = - 4 9 / 1 2 0 ,
a pair of equilbria are created at R = 3~, ~ = 0. Also note tha
for R = 0 both Eqs.(44),(45)are satisfied when c2 = - 1 / 3 .  This
value of c2 correspouds with the perturbation expansion for the
curve of coexisting solutions emanating from c = 4 when ~ = 0
(see Eq.(39)). Fig.4 shows a bifurcation diagram of  the slow-flow
equilibria by plotting Eqs.(44),(45). 

For c2 < - 4 9 / 1 2 0 ,  the origin is the only equilbrium point
A pair of equilibria are created when c2 = - 4 9 / 1 2 0  and fo
- 4 9 / 1 2 0  < c2 < - 1 7  there arc two nontrivial equilibria with

= 0. At c2 = - 1 7  , one of  the nontrivial equilibria goe
through the origin (recall that the origin is always an equilibrium
point) and ~ for that equilibria changes from ~ = 0 to ~ = n. Fo
c2 > -- 1/3, there is one nontrivial equilibria with ~ = 0 and one
with ~t I = n. 

To investigate the nature of the bifurcations, it is more
convenient to look at the slow-flow equations in cartesian co
ordinates. Transforming to cartesian coordinates u = Rcos~,
v = - R  s in~,  Eqs.(42),(43) become: 

e2v [24c2 + 8 + 4u - 5(u 2 + v2)] 
z~ ::  (47

96 
,E 2 [5/,/(/t 2 -}- V 2) - -  6(u 2 + v 2) -F 4v 2 - 24c2t,' - 8u] 

(48Z ~  

96 
6
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Figure 4. Bifurcation diagram of slow-flow equilibria. Dotted Sines corre- 

spond to c2 = - -1 /3  and c2 = - -49 /120 .  Here c2 is related to c by 

c = 4 q- c2 £2. c2 = -- 17 corresponds to coexistence. 

Eqs.(47),(48) have the first integ,al: 

5v 4 + ( 10u 2 - 8u  - 48c2 - 16)v  ? -I- 5u 4 - 8u  3 - (48c2 + 16)u ~ = K (49)  

Using Eq.(49), we can investigate the stability of the equilibria 
by plotting invariant curves of  the system. Figs.5-9 show the 
sequence of  invariant curves for the system as c2 is increased. 
Figs.5,7,9 are representative of  the system in the regions c2 < 
- 4 9 / 1 2 0 ,  - 4 9 / 1 2 0  < c2 < - I  7 and c2 > - 1 / 3  respectively. 
Figs.6,8 correspond to parameter values where bifilrcations occur 
(c2 = - 4 9 / 1 2 0  and c2 = - 1/3). 

For c2 < - 4 9 / 1 2 0 ,  the only equilibria is the origin which 
is a center. At c2 = - 4 9 / 1 2 0 ,  a saddle-center bifnrcation oc- 
curs where a saddle and a center are created. As c2 approaches 
the value c2 = - 1 / 3 ,  the region of stability around the origin 
gets smaller as the saddle created in the saddle-center bifurca- 
tion moves toward the center at the origin. At the critical value 
c2 = --1/3,  the saddle coalesces with the origin and this equi- 
librium point at the origin is degenerate and unstable. Fig.10 
shows a blow-up of  the invariant curves around the origin when 

c2 = - 1 L  
As c2 increases and goes through c2 = - 1 7 ,  the saddle 

moves through the origin and the saddle and center created in the 
saddle-center bifurcation are now on opposite sides of the origin 
which remains a center. As c2 further increases, the nontrivial 
equilibria move farther away fi'om the origin. 

As c2 approaches the value c2 = - 1~ from either side, the 
region of  stability around the origin gets smaller as a saddle and 
 Copyright © 2002 by ASME 
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Figure 5. Invariant curves for c2 = - - 0 . 4 3  
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Figure 7. Invariant curves for c2 = - 0 . 3 8  
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Invariant Curves for c 2 = - 4 9 / t 2 0  

-0 .6  
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Figure 6. Invariant curves for c2 = --49/120. Note the saddle-center 
bifurcation atx = 3~ .y = 0. 

Invarlanl Curves for c 2 = -1 /3  

0.5 J J - ~  

-1  -0 ,5  0 0.5 1 1.5 2 
u 

Figure 8. Invariant curves for c2 = -- 1 /3 .  Note the origin is a degener- 

ate equilibrium point. 
center come together. The value c2 = - 1 ~ corresponds to coex- 
istence. Linear stability analysis predicts that the origin is stable 
along the curve of coexisting solutions. However, we have just 
demonstrated that nonlinear terms can make the origin (nonlin- 
early) unstable. 

CONCLUSIONS 
We have found that nonlinear terms can affect the stability 

of  the origin in parametrically excited systems which exhibit co- 
existence. A physical example of  where this may occur is in a 
simplified two degree of freedom model for a thin elastica. 

In the example we looked at, adding a quadratic nonlinear- 
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ity to the system that exhibits coexistence makes tile origin a de- 
generate equilibrium point in the slow-flow for parameter values 
where the linearization predicts coexisting solutions. For these 
parameter values, the origin is unstable, contrary to predictions 
made by linear theory. 

In our bifnrcation analysis of  the slow-flow, wc have found 
that for c2 > - 4 9 / 1 2 0  the system has a pair of  non-trivial equi- 
libria except in the special case when we are on the coexistence 
curve (c2 = - 1 / 3 ) .  The non-trivial equilibria in tile slow-flow 
correspond to periodic motions in the original equation and peri- 
odic motions in tile slow-flow correspond to quasi-periodic mo- 
tions in the original equation. Note that the origin in the slow- 
flow is still the origin in the original equation (although we could 
Copyright © 2002 by ASME 
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Figure 9. Invariant curves for c2 = - -0 .28  
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Invariant curves for c2 = --  1~ near the origin 

also think of the origin as a periodic motion because the original 
equation is non-autonomous). 

In tile original equation, the origin is stable and surrounded 
by a continuous family of quasi-periodic motions except on the 
coexistence curve (c2 = -1~)  where the system is degenerate. 
The non-trivial center in the slow-flow corresponds to a stable 
periodic motion in the original equation. This stable periodic
motion is created with a non-zero amplitude and continues to 
grow in amplitude as c2 is increased. The stable periodic motion 
is also surrounded by a continuous family of quasi-periodic mo- 
tions. The non-trivial saddle in the slow-flow corresponds to an 
unstable periodic motion in the original equation. The stable and 
unstable manifolds of this unstable periodic motion separate re- 
gions of different continuous families of quasi-periodic motions. 
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The exception is on the coexistence curve where the saddle and 
the origin coalesce. 
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Appendix A 
We present details for the second order averaging calcula- 

tion on Eq.(41). Although the procedure is straight-forward, it is 
complicated algebraically and is best done using computer alge- 
bra software (MACSYMA). 
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We start by dividing Eq.(41) by 1 - ~ cos2t and Taylor ex- 
panding in e to get it in the form: 

J? -F 4x = g, FI (x,x,t) + g2F2(x,2,t ) + O(e 3) 

Note that for e=0, Eq.(50) has the solution: 

(50) 

x=pcos(2t+~p),  2 = -2psin(2t  +e)) (51) 

Using variation ofparalnetcrs on p and qb, Eq.(50) can be written 
a s ,  

Csin(2t +ep)[q (pcos(2t +qb),-2psin(2t +O),t) (52)

g 2 

- ~ sin(2t + ~)F2 (p cos(2t -F t)), - 2 p  sin(2t -F ~), t) + O(e 3) 
g 

= -~-p cos(2t + ~)FI (pcos(2t+t)) , -2psin(2t+~), t )  (53)

g 2  

- ~-~ cos(2t + d~)F2 (p cos(2t + ~,), - 2 9  sin(2t + q~), t) -F O(c 3)

We now use the near identity transformation: 

p = R+ewl(R,Itt, t)+c2vl(R,~It, t) FO(e 3) (54) 

¢p = U!-kew2(R,Ill, t ) +£2v2(R,~tt, t) + O(e 3) (55) 

Substituting Eqs.(54),(55) into Eqs.(52),(53), solving for/? and 
t) and Taylor expanding in e gives: 

1~ =: ~[- ~ ' ~ '  ( leoo~{2,+v; . -2 /e~in(2 ,+ ,v) , , ; ]  - ~ sin(2t +~')1'1 . (56) 

.1 g2 [ . f)'¢l 1 3 ~, i,v,(J¢,~,,)] to(c)  

I[/ =:: g [ - -  cqlv~ ~ -  -- ~7~ COS(2/+ Ilt)/"l (Rcos(2t-Flg),-2Rsin(2t-FltJ),l)] (57) 

Of + &(l¢,V,t)] I o(e,-) 

where, Ki and K2 depend on w~ ,w 2,f 1 and/:2. 
in first order averaging, %~ and ~ t  are chosen to sim- 

plify O(e) terms as much as possible. The usual approach is to 
trigonolnetrically reduce the equations and choose w1 and w2 to 
remove all the trigonometric terms in t. The result of first order 
averaging is a pair of equations of the form: 
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/¢ = cGll (R,gt) -F O(c 2) 

= EG21 (R,/l/) + O(g 2) 

(58) 

(59) 

Once wl and w2 have been obtained, we can go to second order 
where ~r  and ~ are chosen to simplify O(e 2) terms as much as 
possible. Second order averaging results in a pair of equations of 
the form: 

l~ = EGII(R,Ilt)-FE2G12(R, IIt)+O(c 3) ( 6 0 )  

(g = EG21 (R,/tt) + e2G22 (R,~) + O(c 3) (61) 

The resulting differential equations, Eqs.(60),(6t), are known as 
the slow-flow equations. 
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