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ABSTRACT
This paper concerns the quadratically-damped Mathieu

equation:

ẍ + (δ + ε cos t)x + ẋ |ẋ| = 0.

Numerical integration shows the existence of a secondary
bifurcation in which a pair of limit cycles come together
and disappear (a saddle-node bifurcation of limit cycles).
In δ−ε parameter space, this secondary bifurcation appears
as a curve which emanates from one of the transition curves
of the linear Mathieu equation for ε ≈ 1.5. The bifurcation
point along with an approximation for the bifurcation curve
is obtained by a perturbation method which uses Mathieu
functions rather than the usual sines and cosines.

INTRODUCTION
The Mathieu equation

ẍ + (δ + ε cos t) x = 0 (1)

is a well-known example of a linear differential equation
with periodic coefficients. The stability properties of the
Mathieu equation may be obtained by the use of Floquet
theory; see (Stoker, 1950). A survey of some of nonlinear
variations of the Mathieu equation has been presented in
(Nayfeh and Mook, 1979).

The quadratically-damped Mathieu equation,

ẍ + (δ + ε cos t)x + ẋ |ẋ| = 0, (2)

which is studied here, has application to the dynamics of
passive towed arrays in submarines. The physical applica-
tion and the derivation of the equation has been detailed
in (Rand et al., 2000a) and (Rand et al., 2000b). In ad-
dition to deriving the quadratically-damped Mathieu equa-
tion, the previous works carried out a linear stability anal-
ysis as well as a small-ε nonlinear stability analysis via the
method of averaging. These works also contained an in-
complete analytical treatment of the secondary bifurcation.
The objective of the present work is to complete the ana-
lytical treatment of the secondary bifurcation, to determine
the nature of the bifurcation, and to approximate the bifur-
cation curve.

LINEAR STABILITY AND SMALL ε RESULTS
Equation (2) admits the exact solution x ≡ 0. The

stability of this solution is governed by the linear Mathieu
equation, Equation (1). The origin is considered stable if
all solutions of Equation (1) are bounded, and unstable if
an unbounded solution exists. The stability treatment of
Equation (1) demonstrates the existence of regions in the
δ-ε plane, called tongues, which emanate from the δ-axis
at points δ = n2/4, where n = 0, 1, 2, 3, · · · (Stoker, 1950).
Inside the tongues, the origin is unstable, while outside the
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Figure 1. Transition curves of the linear Mathieu equation

tongues, the origin is stable. The tongues of instability are
said to be bounded by transition curves. Because the
linear Mathieu equation governs the stability of the origin in
the quadratically-damped Mathieu equation, the transition
curves of the linear Mathieu equation represent bifurcation
curves for the quadratically-damped Mathieu equation.

Although the linear stability analysis predicts un-
bounded growth inside the tongues, this is not the case in
the nonlinear equation (2). Inside the tongues, the nonlin-
ear damping in Equation (2) balances the parametric reso-
nance, leading to the existence of a periodic motion inside
the tongues. The method of averaging (see (Rand, 1994))
can be used both to show that periodic motions exist inside
the instability tongues, and to obtain an approximation to
these periodic motions, valid for small ε. The details of this
calculation are given in (Rand et al., 2000b). These results
predict that at points lying inside the tongue emanating
from δ = 1/4, ε = 0, equation (2) exhibits an attractive 2:1
subharmonic motion having period 4π. For this reason the
points lying inside this tongue will be referred to as the 2:1
region. Similarly, at points lying inside the tongue emanat-
ing from δ = 1, ε = 0, equation (2) is predicted to exhibit a
pair of attractive 1:1 periodic motions, each having period
2π. This region will be referred to as the 1:1 region.

NUMERICAL DETERMINATION OF THE SECONDARY
BIFURCATION

Numerical explorations of the nonlinear quadratically-
damped Mathieu equation (2) may be accomplished by gen-
erating a Poincaré map corresponding to a surface of sec-
tion t = 0 mod 2π. Using this technique, a variety of pe-
riodic motions are observed, depending upon where we are
in the δ − ε parameter plane. Figure 2 shows schematically
the different Poincaré map portraits that are exhibited by
equation (2). In these diagrams, periodic motions appear
as fixed points.

We may summarize the features displayed in Figure 2 as
follows: Outside the instability regions, the origin is always
stable, as indicated by a lone spiral to the origin. Inside the
instability regions, the origin is unstable, as indicated by
a saddle-like x at the origin. Inside the 2:1 region the two
spiral singularities in the Poincaré map represent a single
period 4π motion, whereas in the 1:1 region they represent
two period 2π motions. As the transition curves are crossed
into 1:1 region or into the 2:1 region below point P , a su-
percritical pitchfork bifurcation occurs, and two new stable
singular points are created in the Poincaré map, while the
origin itself becomes unstable. As the 2:1 region is exited
above point P into the region marked B (see Figure 2), a
subcritical pitchfork bifurcation occurs. In this case, the
origin becomes stable and an unstable 2:1 subharmonic pe-
riodic motion is created. As region B is exited into region
C, the 1:1 transition curve is crossed, and the expected
supercritical pitchfork bifurcation curve takes place at the
origin. The origin once more becomes unstable, while two
stable period 2π motions are born out of the origin.

Perhaps the most interesting feature displayed in Fig-
ure 2 corresponds to what happens when we move from ei-
ther of regions B or C downward across the nearly-straight
line bifurcation curve emanating from point P . In this case
the two outermost periodic orbits – the stable and unstable
period 4π orbits – are destroyed in a saddle-node bifurca-
tion. It is seen that this saddle-node bifurcation does not
take place at the origin. It is the goal of this work to

obtain an analytic approximation for this curve on

which this secondary bifurcation takes place.

ANALYTICAL DETERMINATION OF THE SECONDARY
BIFURCATION

In this section, the secondary bifurcation is investigated
by a perturbation method applied at the point P . In order
to cast Equation (2) in the proper format, we scale it to

ẍ + (δ + ε cos t) x + µẋ |ẋ| = 0, (3)
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Figure 2. Phase portraits of the Poincaré Map in the different regions of the parameter plane in the quadratic Mathieu equation.
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where the parameter µ is assumed to be small. We further
expand δ and x as follows

x = x0 + µx1 + µ2x2 + µ3x3 + µ4x4 + µ5x5 + · · · (4)

δ = δ0 + µδ1 + µ2δ2 + µ3δ3 + µ4δ4 + µ5δ5 + · · · , (5)

and further introduce the parameter ε1 defined by

ε = ε0 + µε1. (6)

The quantities δ0 and ε0 refer to the location of P . The pa-
rameter ε1 measures the deviation of ε from ε0 at P . Equa-
tions (3) – (6) represent a perturbation expansion off of the
linear Mathieu equation. Because of this, the solution of the
unperturbed equation will involve Mathieu functions. The
perturbation functions xi are each required to be periodic.

When Equations (4) – (6) are inserted into Equation
(3) and terms are collected in powers of µ, the perturbation
equations are

Lx0 = 0 (7)

Lx1 = − (δ1 + ε1 cos t)x0 −
dx0

dt

∣

∣

∣

∣

dx0

dt

∣

∣

∣

∣

(8)

Lx2 = −δ2x0 − (δ1 + ε1 cos t) x1 − 2
dx1

dt

∣

∣

∣

∣

dx0

dt

∣

∣

∣

∣

(9)

Lx3 = −δ3x0 − δ2x1 − (δ1 + ε1 cos t)x2

− 2
dx2

dt

∣

∣

∣

∣

dx0

dt

∣

∣

∣

∣

−

(

dx1

dt

)2

sgn

[

dx0

dt

]

(10)

Lx4 = −δ4x0 − δ3x1 − δ2x2 − (δ1 + ε1 cos t) x3

− 2
dx3

dt

∣

∣

∣

∣

dx0

dt

∣

∣

∣

∣

− 2 sgn

[

dx0

dt

]

dx1

dt

dx2

dt

−
1

3

(

dx1

dt

)3

δ

(

dx0

dt

)

(11)

Lx5 = −δ5x0 − δ4x1 − δ3x2 − δ2x3

− (δ1 + ε1 cos t) x4

− 2
dx4

dt

∣

∣

∣

∣

dx0

dt

∣

∣

∣

∣

− 2
dx1

dt

dx3

dt
sgn

[

dx0

dt

]

−

(

dx2

dt

)2

sgn

[

dx0

dt

]

−
1

12

(

dx1

dt

)4

δ′
(

dx0

dt

)

−

(

dx1

dt

)2
dx2

dt
δ

(

dx0

dt

)

,

(12)

where

L ≡
d2

dt2
+ (δ0 + ε0 cos t) (13)

is defined as the Mathieu operator, and where sgn is the
signum function and δ is the Dirac-δ function. The signum
and Dirac-δ functions arise from the derivatives of the ab-
solute value term in Equation (3).

The first perturbation equation, Equation (7), is the
linear Mathieu equation. Because P is on the right-hand
transition curve of the 2:1 instability tongue, Equation (7)
has as its solution the odd Mathieu function of period 4π
(Stoker, 1950). Therefore

x0 = Af1, (14)

where A is a constant that represents the amplitude of a pe-
riodic motion, and f1 denotes the Mathieu function. In this
case, the second linearly independent solution of Mathieu’s
equation is not used because it is not periodic. In order to
simplify what follows we introduce the notational conven-
tion that any function labeled fi is an odd function,

whereas any function labeled gi is an even function.

By inserting Equation (14) into Equation (8) the fol-
lowing equation for x1 is obtained

Lx1 = − (δ1 + ε1 cos t) Af1 − A2ḟ1

∣

∣

∣
ḟ1

∣

∣

∣
. (15)

Because A represents the amplitude of a motion, it may
be thought of as positive. The constant δ1 is chosen to
eliminate secular terms. The secular terms are eliminated
by using the Fredholm alternative theorem which states that
for a periodic solution to exist for

Lx = F, (16)

the function F must be orthogonal to the null space of the
adjoint operator L∗. In this case, L is self-adjoint, and its
null space is spanned by the function f1. The orthogonality
condition is expressed as

∫ 4π

0

f1F dt = 0. (17)

The Fredholm condition is

∫ 4π

0

Af1H1 dt = −

∫ 4π

0

(δ1 + ε1 cos t) A2f2
1 dt

−

∫ 4π

0

A3f1ḟ1

∣

∣

∣
ḟ1

∣

∣

∣
dt = 0.

(18)
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The term −
∫ 4π

0
(δ1 + ε1 cos t)A2f2

1 dt in Equation (18) can-

not be further simplified. In the term −
∫ 4π

0
A3f1ḟ1

∣

∣

∣
ḟ1

∣

∣

∣
dt,

f1 is an odd function and therefore ḟ1 is an even function.
Thus, the integrand in the second term is an odd function
that is periodic over an interval of 4π. Since the integral
of an odd function over a periodic interval is 0, this term
vanishes, leaving

δ1

∫ 4π

0

f2
1 dt + ε1

∫ 4π

0

f2
1 cos t dt = 0, (19)

or

ε1
δ1

= −

∫ 4π

0
f2
1 dt

∫ 4π

0
f2
1 cos t dt

. (20)

However, the only nonlinear term in the analysis to this
point has vanished without having an effect on the integra-
tion. Therefore, the relationship between ε1 and δ1 derived
in Equation (20) must also hold for the linear Mathieu equa-
tion. The ratio of ε1 to δ1 is the local slope of the transition
curve near the point (δ0, ε0). Since P is taken to be the point
where the transition curve has infinite slope, this forces δ1

= 0. From Equation (20) this is equivalent to requiring

∫ 4π

0

f2
1 cos t dt = 0, (21)

at (δ0, ε0). This requirement provides an analytical condi-
tion for (δ0, ε0), the location of point P on the transition
curve.

By substituting δ1 = 0 back into Equation (15), the
equation on x1 is now formulated in a solvable way

Lx1 = −ε1Af1 cos t − A2ḟ1

∣

∣

∣
ḟ1

∣

∣

∣
. (22)

The first term on the right hand side of Equation (22) is
an odd term, whereas the second term is an even term. By
linearity these may be treated independently, and the sum
of their individual particular solutions may be used to solve
the full equation. Therefore, the functions f2 and g1 are
defined by

Lf2 = −f1 cos t (23)

Lg1 = −ḟ1

∣

∣

∣
ḟ1

∣

∣

∣
. (24)

The solution to the full equation (22) is then

x1 = Aε1f2 + A2g1. (25)

For the most general periodic solution, an arbitrary
multiple of f1 could be added to the solution for x1. In
fact, because Lf1 = 0, arbitrary multiples of f1 could be
added to any of the odd functions that arise from the per-
turbation method. However, it is shown in (Ramani, 2001)
that the results of the method are independent of the ad-
dition of multiples of f1. Therefore, no multiple of f1 will
be added to any of the solutions, in order to ease the alge-
bra. Note that an arbitrary multiple of f1 cannot be added
to any of the gi. This is because the gi are required to be
even functions. This property would be destroyed by adding
multiples of the odd function f1.

By continuing in a similar fashion, the second Fredholm
condition becomes

A2δ2

∫ 4π

0

f2
1 dt + A2ε1

∫ 4π

0

f1f2 cos t dt

+ A3ε1

∫ 4π

0

f1

(

g1 cos t + 2ḟ2

∣

∣

∣
ḟ1

∣

∣

∣

)

dt

+ 2A4

∫ 4π

0

f1

∣

∣

∣
ḟ1

∣

∣

∣
ġ1 dt = 0,

(26)

which can be solved to yield

δ2 = −ε1

∫ 4π

0
f1f2 cos t dt
∫ 4π

0
f2
1 dt

− 2A2

∫ 4π

0
f1

∣

∣

∣
ḟ1

∣

∣

∣
ġ1 dt

∫ 4π

0
f2
1 dt

≡ k1ε1 + 2k2A
2,

(27)

where

k1 = −

∫ 4π

0
f1f2 cos t dt
∫ 4π

0
f2
1 dt

(28)

k2 = −

∫ 4π

0
f1

∣

∣

∣
ḟ1

∣

∣

∣
ġ1 dt

∫ 4π

0
f2
1 dt

, (29)

are constants that need to be computed numerically.
Substituting Equation (27) back into the last of Equa-

tion (9), a new equation on x2 is obtained:

Lx2 = − Aε21 (f1 + f2 cos t)

− A2ε1

(

g1 cos t + 2ḟ2

∣

∣

∣
ḟ1

∣

∣

∣

)

− 2A3
(

f1 +
∣

∣

∣
ḟ1

∣

∣

∣
ġ1

)

.

(30)

5 Copyright  2001 by ASME



Each of the three terms on the right hand side of (30) is
either even or odd, and so the solution for x2 consists of
three terms

x2 = Aε21f3 + A2ε1g2 + 2A3f4, (31)

where

Lf3 = −k1f1 − f2 cos t (32)

Lg2 = −g1 cos t − 2ḟ2

∣

∣

∣
ḟ1

∣

∣

∣
(33)

Lf4 = −k2f1 − ġ1

∣

∣

∣
ḟ1

∣

∣

∣
. (34)

This procedure is continued at each higher order of µ.
At each stage, the latest δi is obtained from the Fredholm
condition. Using δi, the differential equation on xi is solved.
At each stage, new constants ki are also introduced. The
bifurcation curve is determined by the values of δi and ki.
For that reason, they are given here. The definitions of
the auxiliary functions fi and gi as well as the solutions to
Equations (7) – (11) are given in the Appendix.

The δi are

δ1 = 0 (35)

δ2 = k1ε
2
1 + 2k2A

2 (36)

δ3 = k3ε
2
1 + k4A

2ε1 (37)

δ4 = k5A
4 + k6A

2ε21 + k7ε
4
1 (38)

δ5 = ε51k8 + A2ε31k9 + A3ε31k10 + A4ε1k11

+ A4ε31k12 + A5ε1k13 + A6ε1k14,
(39)

where

k1 = −

∫ 4π

0
f1f2 cos t dt

∫ 4π

0
f2
1 dt

(40)

k2 = −

∫ 4π

0
f1ġ1

∣

∣

∣
ḟ1

∣

∣

∣
dt

∫ 4π

0
f2
1 dt

(41)

k3 = −

∫ 4π

0
k1f1f2 + f1f2 cos t dt

∫ 4π

0
f2
1 dt

(42)

k4 = −

∫ 4π

0
2k2f1f2 + 2f1f4 cos t + 2f1ġ2

∣

∣

∣
ḟ1

∣

∣

∣
dt

∫ 4π

0
f2
1 dt

−

∫ 4π

0
2f1ḟ2ġ1 sgnḟ1 dt

∫ 4π

0
f2
1 dt

(43)

k5 = −

∫ 4π

0
4f1ḟ4ġ1 sgnḟ1 + 2f1ġ4

∣

∣

∣
ḟ1

∣

∣

∣
dt

∫ 4π

0
f2
1 dt

(44)

k6 = −

∫ 4π

0
2f1ḟ3ġ1 sgnḟ1 + 2f1ḟ2ġ2 sgnḟ1 dt

∫ 4π

0
f2
1 dt

−

∫ 4π

0
2f1ġ3

∣

∣

∣
ḟ1

∣

∣

∣
+ 2k1f1f4 + 2k2f1f3 dt
∫ 4π

0
f2
1 dt

−

∫ 4π

0
k4f1f2 + f1f5 cos t dt

∫ 4π

0
f2
1 dt

(45)

k7 = −

∫ 4π

0
k1f1f3 + f1fg cos t + k3f1f2 dt

∫ 4π

0
f2
1 dt

(46)

k8 = −

∫ 4π

0
f1 (k7f2 + k3f3 + k1f6 + f7 cos t) dt

∫ 4π

0
f2
1 dt

(47)

k9 = −

∫ 4π

0
f1 (k6f2 + k4f3 + 2k3f4 + 2k2f6) dt

∫ 4π

0
f2
1 dt

−

∫ 4π

0
f1

(

k5f5 + 2ġ5

∣

∣

∣
ḟ1

∣

∣

∣

)

dt
∫ 4π

0
f2
1 dt

−

∫ 4π

0
f1

(

2ḟ2ġ3 sgn ḟ1 + 2ḟ3ġ2 sgn ḟ1

)

dt
∫ 4π

0
f2
1 dt

−

∫ 4π

0
f1

(

2ḟ6ġ1 sgn ḟ1 + f8 cos t
)

dt
∫ 4π

0
f2
1 dt

(48)

k10 = −
2

3

∫ 4π

0
f1

(

ġ7

∣

∣

∣
ḟ1

∣

∣

∣
+ f11 cos t

)

dt
∫ 4π

0
f2
1 dt

(49)

k11 = −

∫ 4π

0
f1 (k5f2 + 2k4f4 + 2k2f5) dt

∫ 4π

0
f2
1 dt

−

∫ 4π

0
f1

(

2ġ6

∣

∣

∣
ḟ1

∣

∣

∣
+ 2ḟ2ġ4 sgn ḟ1

)

dt
∫ 4π

0
f2
1 dt

−

∫ 4π

0
f1

(

4ḟ4ġ2 sgn ḟ1 + 2ḟ5ġ1 sgn ḟ1 + f9 cos t
)

dt
∫ 4π

0
f2
1 dt

(50)

k12 = −
1

3

∫ 4π

0
f1ḟ

3
2 ġ1δ

′

(

ḟ1

)

dt
∫ 4π

0
f2
1 dt

(51)

k13 = −

∫ 4π

0
f1

(

2ġ8

∣

∣

∣
ḟ1

∣

∣

∣
+ 1

3
f10 cos t

)

dt
∫ 4π

0
f2
1 dt

(52)

k14 = −
1

3

∫ 4π

0
f1ḟ2ġ

3
1δ′

(

ḟ1

)

dt
∫ 4π

0
f2
1 dt

. (53)
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Table 1. Values of ki

k1 -0.176795720204351 k8 -0.005343518899145

k2 0.000449147391502 k9 0.041196711700806

k3 0.023845390107660 k10 0.000000000000001

k4 0.059627911982873 k11 0.243420338228478

k5 0.008051597731526 k12 0.024121956135593

k6 0.133978124987812 k13 0.000000000000000

k7 0.008726800055536 k14 0.003191162023248

Numerical solution of the perturbation Equations (7) –
(11) yields the functions fi and gi (see Appendix) and then
the values of the ki may be found by numerical quadrature,
see Table 1. Because the fi and the gi are required to be
periodic functions, their initial conditions need to be cho-
sen carefully. A shooting procedure was used first to locate
δ0 and ε0, and then to obtain the initial conditions for the
gi. The shooting method returned δ0 = 0.630420248517023
and ε0 = 1.438618533234416 in double precision, in agree-
ment with values obtained by direct numerical integration
of Equation (2).

Substituting Equations (35) – (39) into Equation (5),
the following expression for δ is obtained:

δ =δ0 + ε1k14A
6 +

(

ε1k11 + ε31k12 + k5

)

A4

+
(

2k2 + k4ε1 + k6ε
2
1 + k9ε

3
1

)

A2

+
(

k1ε
2
1 + k3ε

3
1 + k7ε

4
1 + k8ε

5
1

)

.

(54)

This equation relates a given value of δ and ε1 to the pre-
dicted amplitude A of the newly bifurcated unstable 2:1
subharmonic 4π-periodic orbit. As a check on all the per-
turbation calculations, we may use this equation to generate
a value of A with which we may compare the perturbation
expression for x(t), that is, Equation (4) supplemented by
the expressions in the Appendix and the values of the ki in
Table 1, with the results of direct numerical integration of
Equation (2). To obtain a comparison, a method of numer-
ically generating the unstable orbit is needed. This can be
done by starting the integration near the stable manifold of
the unstable orbit. If the initial condition is close enough
to the stable manifold, the system will spend enough time
near the unstable orbit to obtain a good approximation of
it.

Figures 3 and 4 offer a comparison between the pre-
dicted unstable periodic orbit obtained from the pertur-
bation method (dashed) and from numerical integration

x

ẋ

0.30.20.10-0.1-0.2-0.3

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

Figure 3. Comparison of numerical and analytical approximations of

unstable periodic orbit in the phase plane. Analytical approximation is

dashed, numerical integration is solid. Here δ = 0.6305, ε = 1.47 and

A = 0.2542. δ0 ≈ 0.6304, and ε0 ≈ 1.4386.

(solid) for δ = 0.6305 and ε = 1.47. For these values of
the parameters, Equation (54) predicts A ≈ 0.2542. Figure
3 shows a phase portrait of the system, while Figure 4 shows
the time history of the system. For these values of δ and
ε, the agreement between the analytical approximation and
the numerical integration is quite good. For comparison,
the location of P was determined to be about δ0 ≈ 0.6304
and ε0 ≈ 1.4386.

As the value of δ is increased away from the transi-
tion curve and towards the secondary bifurcation curve,
the agreement between the analytical and numerical solu-
tions worsens. Figures 5 and 6 show the approximations for
δ = 0.631 and ε = 1.47, with the bifurcation point P located
at δ0 ≈ 0.6304 and ε0 ≈ 1.4386. Despite the small change
in δ there is a marked change in the agreement. These fig-
ures suggest that the power series may not converge close
to the bifurcation curve. The lack of accuracy could be due
to either the number of terms taken being too small or the
radius of convergence of the series not being large enough to
reach the bifurcation curve. In the former case, more terms
could be added, but the computational difficulties increase
considerably with each step. In the latter case, the power
series expansion will not give reasonable agreement near the
bifurcation curve, no matter how many terms are taken.

With these convergence problems in mind, we now pro-
ceed to attempt to obtain an analytical expression for the

7 Copyright  2001 by ASME
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Figure 4. Comparison of numerical and analytical approximations of un-

stable periodic orbit as a time history. Analytical approximation is dashed,

numerical integration is solid. Here δ = 0.6305, ε = 1.47 and

A = 0.2542. δ0 ≈ 0.6304, and ε0 ≈ 1.4386.
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Figure 5. Comparison of numerical and analytical approximations of

unstable periodic orbit in the phase plane. Analytical approximation is

dashed, numerical integration is solid. Here δ = 0.631, ε = 1.47 and

A = 0.2542. δ0 ≈ 0.6304, and ε0 ≈ 1.4386.
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Figure 6. Comparison of numerical and analytical approximations of

unstable periodic orbit as a time history. Analytical approximation is

dashed, numerical integration is solid. Here δ = 0.631, ε = 1.47
and A = 0.2542. δ0 ≈ 0.6304, and ε0 ≈ 1.4386.

secondary bifurcation curve. We begin by setting up a con-
venient local coordinate system in parameter space centered
at point P , as follows: Note that in Equation (54), the spe-
cial case of A = 0 corresponds to a bifurcation which pro-
duces a periodic orbit at the origin. This bifurcation occurs
along the transition curve. Therefore, by setting A = 0 an
expression for the transition curve can be obtained. A nat-
ural choice of coordinates is suggested by this observation.
The new coordinates are defined by

u = ∆ −
(

k1ε
2
1 + k3ε

3
1 + k7ε

4
1 + k8ε

5
1

)

(55)

v = ε1, (56)

where ∆ ≡ δ − δ0. The coordinate u measures the distance
in δ from the transition curve. The coordinate v measures
the distance in ε from P .

In the new coordinates, Equation (54) takes the form

u =vk14A
6 +

(

vk11 + v3k12 + k5

)

A4

+
(

2k2 + k4v + k6v
2 + k9v

3
)

A2.
(57)

The secondary bifurcation curve can be obtained by
noting that Equation (57) generates a series expansion for
u in terms of v for small values of A. If the value of v
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is fixed – equivalently, if the value of ε1 is fixed – then
Equation (57) can be considered to give the value of A as
the value of u is varied. Since u is a measure of the distance
from the transition curve, this curve gives the dependence
of A on δ. For a given value of u there should be two
real, positive values of A, corresponding to the two periodic
motions (one stable and one unstable) that exist in this
region of the parameter plane. The bifurcation occurs when
these two motions come together. In terms of the u-A curve,
this happens at a vertical tangency in the curve, or when
du
dA

= 0. This condition, along with Equation (57), gives
two conditions on u, v, and A. A can be eliminated from
these equations, resulting in a single equation between u
and v.

Because of the slow convergence of the series in Equa-
tion (57), illustrated by Figures 3 – 4 and Figures 5 – 6,
directly following the prescription above will not yield the
bifurcation curve. Even assuming that the radius of con-
vergence of the series will allow extension to the bifurcation
curve, a prohibitive number of terms may be needed to ac-
tually obtain satisfactory convergence. To improve the

convergence properties of the power series, Padé ap-

proximants are used. The theory of Padé approximants
is discussed in (Bender and Orszag, 1978) and (Rand, 1994).
The fundamental idea of Padé summation is to replace a
truncated power series by a rational function of polynomi-
als, which has the same Taylor series as the truncated power
series.

To apply the method to this problem, Equation (57) is
converted to a Padé approximant. For this case, there are
three possible approximants

u = a3b3 + a2b2 + ab1 (58)

u =
−ab3

1

a2 (b1b3 − b2
2) + ab1b2 − b2

1

(59)

u =
a2

(

b1b3 − b2
2

)

− ab1b2

ab3 − b1

, (60)

where a = A2, and

b1 = 2k2 + k4v + k6v
2 + k9v

3 (61)

b2 = vk11 + v3k12 + k5 (62)

b3 = vk14. (63)

Each of the three approximants needs to be tested individu-
ally for good convergence. Of the three, only Equation (59)
gives adequate convergence results. By taking the deriva-
tive of Equation (59) with respect to a and then eliminating

δ

ε

10.80.60.40.20

3

2.5

2

1.5

1

0.5

0

Figure 7. Comparison of analytical and numerical approximation to sec-

ondary bifurcation curve. Analytical approximation is the solid line, nu-

merical values are points.

a, substituting the values of the bi and then the ki, the fol-
lowing numerical equation relating u and v can be obtained

u = 0.01465v + 0.06596v2. (64)

Equation (64) can be written in terms of δ and ε by substi-
tuting Equation (55). Finally, a relationship between δ and
ε may be obtained

δ = − 0.00534ε5 + 0.04716ε4 − 0.13696ε3

+ 0.14908ε2 + 0.01551ε + 0.58301.
(65)

Equation (65) is an approximation to the secondary bifur-
cation curve.

Figure 7 shows the analytical and numerical approxi-
mations to the bifurcation curve. The analytical approxi-
mation, shown as a solid line, is in close agreement up to
ε = 2.5, at which point it becomes less reliable. The pertur-
bation method is assumed to be valid in the neighborhood
of ε0 ≈ 1.4386, so the approximation in Equation (65) is
working quite well.

In cases such as the present one, it seems that the bi-
furcation curve should arise from a tangency with the tran-
sition curve. Since the bifurcation is assumed to occur at
a point along the transition curve which has a vertical tan-
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gency, the bifurcation curve itself is assumed to have a ver-
tical tangency. In the present instance, this is not the case.
The analytical expression for the bifurcation curve is nearly
vertical, but it is not truly vertical.

CONCLUSIONS
The bifurcations in the quadratically-damped Mathieu

equation were studied. Special focus was given to the re-
gion of the δ- ε parameter plane around point P , the point
of infinite slope along the right transition curve of the 2:1
instability region. In this region a bifurcation sequence was
numerically identified. It was observed that above P an un-
stable periodic motion is born by crossing out of the insta-
bility region. On the other hand, below P , a stable periodic
motion is born by crossing into the instability region. More-
over, a secondary bifurcation curve in which the previously
mentioned stable and unstable periodic motions merge, was
seen to emanate from point P .

In order to obtain an approximation for this secondary
bifurcation, a new approach was developed. This involved
perturbing directly off of Mathieu’s equation and using
Mathieu functions instead of the usual sines and cosines.
An interesting feature of this method is its semi-analytical
nature. Because Mathieu functions do not have closed-form
representations that are easy to manipulate, the method
needed to be executed semi-analytically, that is, certain in-
tegrals had to be evaluated by numerical quadrature.

When combined with Padé approximants, the pertur-
bation method recovered an acceptable approximation to
the secondary bifurcation curve in a neighborhood of point
P . In fact, the resulting approximation was seen to be rea-
sonable for values of ε up to 2.5, although since the pertur-
bation method itself can be expected to be valid only in a
neighborhood of point P , this agreement must be viewed as
serendipitous.
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APPENDIX: DEFINITIONS OF fi AND gi

In this appendix we present definitions for the functions
in the perturbation method at point P. The method for
developing these is given in the text.

x0 = Af1 (66)

x1 = Aε1f2 + A2g1 (67)

x2 = Aε21f3 + A2ε1g2 + 2A3f4 (68)

x3 = A2ε21g3 + A4g4 + A3ε1f5 + Aε31f6 (69)

x4 = Aε41f7 + A2ε31g5 + A3ε21f8 + A4ε1g6

+ A5f9

A6

3
f10 +

A3ε31
3

g7

+ A4ε21f11 + A5ε1g8,

(70)

where

Lf1 = 0 (71)

Lf2 = −f1 cos t (72)

Lg1 = −
∣

∣

∣
ḟ1

∣

∣

∣
(73)

Lf3 = −k1f1 − f2 cos t (74)

Lf4 = −k2f1 − ġ1

∣

∣

∣
ḟ1

∣

∣

∣
(75)

10 Copyright  2001 by ASME



Lg2 = −g1 cos t − ḟ2

∣

∣

∣
ḟ1

∣

∣

∣
(76)

Lf5 = −k4f1 − 2k2f2 − 2f4 cos t

− 2ġ2

∣

∣

∣
ḟ1

∣

∣

∣
− 2ḟ2ġ1 sgnḟ1

(77)

Lf6 = −k3f1 − k1f2 − f3 cos t (78)

Lf7 = k7f1 + k3f2 + k1f3 + f5 cos t (79)

Lf8 = k6f1 + k4f2 + 2k2f3 + 2k1f4 + 2ġ3

∣

∣

∣
ḟ1

∣

∣

∣

+ 2ġ2ḟ2 sgn ḟ1 + 2ġ1ḟ3 sgn ḟ1 + f5 cos t
(80)

Lf9 = ġ2
1 ḟ2δ

(

Aḟ1

)

(81)

Lf10 = −ḟ3
2 δ

(

Aḟ1

)

(82)

Lf11 = −ġ2
1 ḟ2δ

(

Aḟ1

)

(83)

Lg3 = −k1g1 − g2 cos t − 2ḟ3

∣

∣

∣
ḟ1

∣

∣

∣
− ḟ2

2
sgnḟ1 (84)

Lg4 = −2k2g1 − 4ḟ4

∣

∣

∣
ḟ1

∣

∣

∣
− ġ1

2 sgnḟ1 (85)

Lg5 = k3g1 + k1g2 + g3 cos t + 2ḟ6

∣

∣

∣
ḟ1

∣

∣

∣

+ 2ḟ2ḟ3 sgn ḟ1

(86)

Lg6 = k4g1 + 2k2g2 + g4 cos t + 2ġ2ġ1 sgn ḟ1

+ 2ḟ5

∣

∣

∣
ḟ1

∣

∣

∣
+ 4ḟ4ḟ2 sgn ḟ1

(87)

Lg7 = −ġ3
1δ

(

Aḟ1

)

(88)

Lg8 = −ġ1ḟ
2
2 δ

(

Aḟ1

)

(89)
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