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Abstract

This paper concerns the quadratically-damped Mathieu equation:

3x + (�+ � cos t)x + ẋ|ẋ|= 0:

Numerical integration shows the existence of a secondary bifurcation in which a pair of limit cycles come together and
disappear (a saddle-node of limit cycles). In �–� parameter space, this secondary bifurcation appears as a curve which
emanates from one of the transition curves of the linear Mathieu equation for � ≈ 1:5. The bifurcation point along with an
approximation for the bifurcation curve is obtained by a perturbation method which uses Mathieu functions rather than the
usual sines and cosines.
Published by Elsevier Ltd.
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1. Introduction

The Mathieu equation

3x + (�+ � cos t)x = 0 (1)

is a well-known example of a linear di<erential equa-
tion with periodic coe=cients. The stability properties
of the Mathieu equation may be obtained by the use
of Floquet theory; see [1]. A survey of some of the
non-linear variations of the Mathieu equation has been
presented in [2].

∗ Corresponding author.
E-mail address: ramanidv@npt.nuwc.navy.mil (D.V. Ramani).

The quadratically-damped Mathieu equation,

3x + (�+ � cos t)x + ẋ|ẋ|= 0; (2)

which is studied here, has application to the dynam-
ics of passive towed arrays in submarines. The phys-
ical application and the derivation of the equation
has been detailed in [3,4]. In addition to deriving the
quadratically-damped Mathieu equation, the previous
works carried out a linear stability analysis as well as
a small-� non-linear stability analysis via the method
of averaging. These works also contained an incom-
plete analytical treatment of the secondary bifurcation.
The objective of the present work is to complete the
analytical treatment of the secondary bifurcation, to
determine the nature of the bifurcation, and to approx-
imate the bifurcation curve.
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Fig. 1. Transition curves of the linear Mathieu equation.

2. Linear stability and small ” results

Eq. (2) admits the exact solution x ≡ 0. The
stability of this solution is governed by the linear
Mathieu equation, Eq. (1). The origin is considered
stable if all solutions of Eq. (1) are bounded, and un-
stable if an unbounded solution exists. The stability
treatment of Eq. (1) demonstrates the existence of re-
gions in the �–� plane, called tongues, which emanate
from the �-axis at points �=n2=4, where n=0; 1; 2; 3; : : :
[1]. Inside the tongues, the origin is unstable, while
outside the tongues, the origin is stable. The tongues
of instability are said to be bounded by transition
curves. Because the linear Mathieu equation governs
the stability of the origin in the quadratically-damped
Mathieu equation, the transition curves of the linear
Mathieu equation represent bifurcation curves for the
quadratically-damped Mathieu equation (Fig. 1).
Although the linear stability analysis predicts un-

bounded growth inside the tongues, this is not the case
in the non-linear equation (2). Inside the tongues, the
non-linear damping in Eq. (2) balances the parametric
resonance, leading to the existence of a periodic mo-
tion inside the tongues. The method of averaging (see
[5]) can be used both to show that periodic motions
exist inside the instability tongues, and to obtain an ap-
proximation to these periodic motions, valid for small
�. The details of this calculation are given in [4]. These

results predict that at points lying inside the tongue
emanating from � = 1=4; � = 0, Eq. (2) exhibits an
attractive 2:1 subharmonic motion having period 4	.
For this reason the points lying inside this tongue will
be referred to as the 2:1 region. Similarly, at points
lying inside the tongue emanating from � = 1; � = 0,
Eq. (2) is predicted to exhibit a pair of attractive 1:1
periodic motions, each having period 2	. This region
will be referred to as the 1:1 region.

3. Numerical determination of the secondary
bifurcation

Numerical explorations of the non-linear
quadratically-damped Mathieu equation (2) may be
accomplished by generating a PoincarKe map cor-
responding to a surface of section t = 0mod 2	.
Using this technique, a variety of periodic motions
are observed, depending upon where we are in the
�–� parameter plane. Fig. 2 shows schematically the

Fig. 2. Phase portraits of the PoincarKe Map in the di<erent regions
of the parameter plane in the quadratic Mathieu equation.
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di<erent PoincarKe map portraits that are exhibited by
Eq. (2). In these diagrams both stationary and periodic
motions appear as Mxed points.
We may summarize the features displayed in Fig. 2

as follows: Outside the instability regions, the origin
is always stable, as indicated by a lone spiral to the
origin. Inside the instability regions, the origin is un-
stable, as indicated by a saddle-like x at the origin.
Inside the 2:1 region the two spiral singularities in
the PoincarKe map represent a single period 4	 motion,
whereas in the 1:1 region they represent two period
2	 motions. As the transition curves are crossed into
the 1:1 region or into the 2:1 region below point P,
a supercritical pitchfork bifurcation occurs, and two
new stable singular points are created in the PoincarKe
map, while the origin itself becomes unstable. As the
2:1 region is exited above point P into the region
marked B (see Fig. 2), a subcritical pitchfork bifur-
cation occurs. In this case, the origin becomes sta-
ble and an unstable 2:1 subharmonic periodic motion
is created. As region B is exited into region C, the
1:1 transition curve is crossed, and the expected su-
percritical pitchfork bifurcation curve takes place at
the origin. The origin once more becomes unstable,
while two stable period 2	 motions are born out of the
origin.
Perhaps the most interesting feature displayed in

Fig. 2 corresponds to what happens when we move
from either of regions B or C downward across the
nearly-straight line bifurcation curve emanating from
point P. In this case the two coexisting outermost peri-
odic orbits—the stable and unstable period 4	 orbits—
coalesce and are destroyed in a saddle-node bifurca-
tion. It is seen that this saddle-node bifurcation does
not take place at the origin. It is the goal of this work
to obtain an analytic approximation for this curve on
which this secondary bifurcation takes place.

4. Analytical determination of the secondary
bifurcation

In this section, the secondary bifurcation is investi-
gated by a perturbation method applied at the point P.
In order to cast Eq. (2) in the proper format, we scale
it to

3x + (�+ � cos t)x + 
ẋ|ẋ|= 0; (3)

where the parameter 
 is assumed to be small. We
further expand � and x as follows:

x = x0 + 
x1 + 
2x2 + 
3x3 + 
4x4 + 
5x5 + · · · (4)

�= �0 + 
�1 + 
2�2 + 
3�3 + 
4�4 + 
5�5 + · · · (5)
and further introduce the parameter �1 deMned by

�= �0 + 
�1: (6)

We found it necessary to include terms of O(
5) in
Eqs. (4) and (5) in order to get good agreement with
numerical simulation. The quantities �0 and �0 refer
to the location of P. The parameter �1 measures the
deviation of � from �0 at P. Eqs. (3)–(6) represent a
perturbation expansion o< of the linear Mathieu equa-
tion. Because of this, the solution of the unperturbed
equation will involve Mathieu functions. The pertur-
bation functions xi are each required to be periodic.

When Eqs. (4)–(6) are inserted into Eq. (3) and
terms are collected in powers of 
, the perturbation
equations are

Lx0 = 0; (7)

Lx1 =−(�1 + �1 cos t)x0 − dx0
dt

∣∣∣∣dx0dt

∣∣∣∣ ; (8)

Lx2 =−�2x0 − (�1 + �1 cos t)x1 − 2
dx1
dt

∣∣∣∣dx0dt

∣∣∣∣ ; (9)

Lx3 =−�3x0 − �2x1 − (�1 + �1 cos t)x2

−2
dx2
dt

∣∣∣∣dx0dt

∣∣∣∣−
(
dx1
dt

)2

sgn
[
dx0
dt

]
; (10)

Lx4 =−�4x0 − �3x1 − �2x2 − (�1 + �1 cos t)x3

−2
dx3
dt

∣∣∣∣dx0dt

∣∣∣∣− 2 sgn
[
dx0
dt

]
dx1
dt

dx2
dt

−1
3

(
dx1
dt

)3

�
(
dx0
dt

)
; (11)

Lx5 =−�5x0 − �4x1 − �3x2 − �2x3
−(�1 + �1 cos t)x4

−2
dx4
dt

∣∣∣∣dx0dt

∣∣∣∣− 2
dx1
dt

dx3
dt

sgn
[
dx0
dt

]
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−
(
dx2
dt

)2

sgn
[
dx0
dt

]

− 1
12

(
dx1
dt

)4

�′
(
dx0
dt

)

−
(
dx1
dt

)2 dx2
dt
�
(
dx0
dt

)
; (12)

where

L ≡ d2

dt2
+ (�0 + �0 cos t) (13)

is deMned as the Mathieu operator, and where sgn is
the signum function and � is the Dirac-� function. The
signum and Dirac-� functions arise from the deriva-
tives of the absolute value term in Eq. (3). The details
of the foregoing calculations are included in the doc-
toral thesis of Ramani [6].
The Mrst perturbation equation, Eq. (7), is the lin-

ear Mathieu equation. Because P is on the right-hand
transition curve of the 2:1 instability tongue, Eq. (7)
has as its solution the odd Mathieu function of period
4	 [1]. Therefore

x0 = Af1; (14)

where A is a constant that represents the amplitude of a
periodic motion, and f1 denotes the Mathieu function.
In this case, the second linearly independent solution
of Mathieu’s equation is not used because it is not pe-
riodic. In order to simplify what follows we introduce
the notational convention that any function labeled fi
is an odd function, whereas any function labeled gi is
an even function.
By inserting Eq. (14) into Eq. (8) the following

equation for x1 is obtained

Lx1 =−(�1 + �1 cos t)Af1 − A2ḟ1|ḟ1|: (15)

Because A represents the amplitude of a motion, it
may be thought of as positive. The constant �1 is cho-
sen to eliminate secular terms. The secular terms are
eliminated by using the Fredholm alternative theorem
which states that for a periodic solution to exist for

Lx = F; (16)

the function F must be orthogonal to the null space of
the adjoint operator L∗. In this case, L is self-adjoint,
and its null space is spanned by the function f1. The

orthogonality condition is expressed as∫ 4	

0
f1F dt = 0: (17)

The Fredholm condition is∫ 4	

0
Af1H1 dt =−

∫ 4	

0
(�1 + �1 cos t)A2f2

1 dt

−
∫ 4	

0
A3f1ḟ1|ḟ1| dt = 0: (18)

The term − ∫ 4	
0 (�1 + �1 cos t)A2f2

1 dt in Eq. (18) can-

not be further simpliMed. In the term− ∫ 4	
0 A3f1ḟ1|ḟ1|

dt, f1 is an odd function and therefore ḟ1 is an even
function. Thus, the integrand in the second term is an
odd function that is periodic over an interval of 4	.
Since the integral of a periodic odd function over a
periodic interval is 0, this term vanishes, leaving

�1

∫ 4	

0
f2
1 dt + �1

∫ 4	

0
f2
1 cos t dt = 0 (19)

or

�1
�1

=−
∫ 4	
0 f2

1 dt∫ 4	
0 f2

1 cos t dt
: (20)

However, the only non-linear term in the analysis to
this point has vanished without having an e<ect on
the integration. Therefore, the relationship between �1
and �1 derived in Eq. (20) must also hold for the lin-
ear Mathieu equation. The ratio of �1 to �1 is the local
slope of the transition curve near the point (�0; �0).
Since P is taken to be the point where the transi-
tion curve has inMnite slope, this forces �1 = 0. From
Eq. (20) this is equivalent to requiring∫ 4	

0
f2
1 cos t dt = 0 (21)

at (�0; �0). This requirement provides an analytical
condition for (�0; �0), the location of point P on the
transition curve.
By substituting �1 =0 back into Eq. (15), the equa-

tion on x1 is now formulated in a solvable way

Lx1 =−�1Af1 cos t − A2ḟ1|ḟ1|: (22)

The Mrst term on the right-hand side of Eq. (22) is an
odd term, whereas the second term is an even term.
By linearity these may be treated independently, and
the sum of their individual particular solutions may be
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used to solve the full equation. Therefore, the func-
tions f2 and g1 are deMned by

Lf2 =−f1 cos t (23)

Lg1 =−ḟ1|ḟ1|: (24)

The solution to the full Eq. (22) is then

x1 = A�1f2 + A2g1: (25)

For the most general periodic solution, an arbitrary
multiple of f1 could be added to the solution for x1. In
fact, because Lf1 = 0, arbitrary multiples of f1 could
be added to any of the odd functions that arise from
the perturbation method. However, we show in Ap-
pendix A that the results of the method are indepen-
dent of the addition of multiples of f1. Moreover, any
such solutions of the homogeneous problem could be
absorbed into x0, representing a change in initial con-
ditions. Therefore, no multiple of f1 will be added to
any of the solutions, in order to ease the algebra. Note
that an arbitrary multiple of f1 cannot be added to any
of the gi. This is because the gi are required to be
even functions. This property would be destroyed by
adding multiples of the odd function f1.
By continuing in a similar fashion, the second Fred-

holm condition becomes

A2�2

∫ 4	

0
f2
1 dt + A2�21

∫ 4	

0
f1f2 cos t dt

+A3�1

∫ 4	

0
f1(g1 cos t + 2ḟ2|ḟ1|) dt

+2A4
∫ 4	

0
f1|ḟ1|ġ1 dt = 0; (26)

which can be solved to yield

�2 =−�21
∫ 4	
0 f1f2 cos t dt∫ 4	

0 f2
1 dt

− 2A2
∫ 4	
0 f1|ḟ1|ġ1 dt∫ 4	

0 f2
1 dt

≡ k1�21 + 2k2A2; (27)

where

k1 =−
∫ 4	
0 f1f2 cos t dt∫ 4	

0 f2
1 dt

(28)

k2 =−
∫ 4	
0 f1|ḟ1|ġ1 dt∫ 4	

0 f2
1 dt

(29)

are constants that need to be computed numerically.

Substituting Eq. (27) back into the last of Eq. (9),
a new equation on x2 is obtained:

Lx2 =−A�21(k1f1 + f2 cos t)
−A2�1

(
g1 cos t + 2ḟ2|ḟ1|

)
−2A3

(
k2f1 + |ḟ1|ġ1

)
: (30)

Each of the three terms on the right-hand side of (30)
is either even or odd, and so the solution for x2 consists
of three terms

x2 = A�21f3 + A
2�1g2 + 2A3f4; (31)

where

Lf3 =−k1f1 − f2 cos t; (32)

Lg2 =−g1 cos t − 2ḟ2|ḟ1|; (33)

Lf4 =−k2f1 − ġ1|ḟ1|: (34)

This procedure is continued at each higher order
of 
. At each stage, the latest �i is obtained from the
Fredholm condition. Using �i, the di<erential equation
on xi is solved. At each stage, we encounter certain
integrals which we leave in unevaluated form and ab-
breviate by using the notation ki as above. The bifur-
cation curve is determined by the values of �i and ki.
For that reason, they are given here. The deMnitions
of the auxiliary functions fi and gi as well as the so-
lutions to Eqs. (7)–(11) are given in Appendix B.
The �i are

�1 = 0; (35)

�2 = k1�21 + 2k2A2; (36)

�3 = k3�31 + k4A
2�1; (37)

�4 = k5A4 + k6A2�21 + k7�
4
1; (38)

�5 = �51k8 + A
2�31k9 + A

3�31k10 + A
4�1k11

+A4�31k12 + A
5�1k13 + A6�1k14; (39)

where

k1 =−
∫ 4	
0 f1f2 cos t dt∫ 4	

0 f2
1 dt

; (40)

k2 =−
∫ 4	
0 f1ġ1

∣∣ḟ1∣∣ dt∫ 4	
0 f2

1 dt
; (41)



496 D.V. Ramani et al. / International Journal of Non-Linear Mechanics 39 (2004) 491–502

k3 =−
∫ 4	
0 k1f1f2 + f1f3 cos t dt∫ 4	

0 f2
1 dt

; (42)

k4 =−
∫ 4	
0 2k2f1f2 + 2f1f4 cos t + 2f1ġ2

∣∣ḟ1∣∣ dt∫ 4	
0 f2

1 dt

−
∫ 4	
0 2f1ḟ2ġ1 sgn ḟ1 dt∫ 4	

0 f2
1 dt

; (43)

k5 =

−
∫ 4	
0 4k2f1f4 + 4f1ḟ4ġ1 sgn ḟ1 + 2f1ġ4

∣∣ḟ1∣∣ dt∫ 4	
0 f2

1 dt
;

(44)

k6 =−
∫ 4	
0 2f1ḟ3ġ1 sgn ḟ1 + 2f1ḟ2ġ2 sgn ḟ1 dt∫ 4	

0 f2
1 dt

−
∫ 4	
0 2f1ġ3

∣∣ḟ1∣∣+ 2k1f1f4 + 2k2f1f3 dt∫ 4	
0 f2

1 dt

−
∫ 4	
0 k4f1f2 + f1f5 cos t dt∫ 4	

0 f2
1 dt

; (45)

k7 =−
∫ 4	
0 k1f1f3 + f1f6 cos t + k3f1f2 dt∫ 4	

0 f2
1 dt

; (46)

k8 =−
∫ 4	
0 f1(k7f2 + k3f3 + k1f6 + f7 cos t) dt∫ 4	

0 f2
1 dt

;

(47)

k9 =−
∫ 4	
0 f1(k6f2 + k4f3 + 2k3f4 + 2k2f6) dt∫ 4	

0 f2
1 dt

−
∫ 4	
0 f1(k5f5 + 2ġ5|ḟ1|) dt∫ 4	

0 f2
1 dt

−
∫ 4	
0 f1(2ḟ2ġ3 sgn ḟ1 + 2ḟ3ġ2 sgn ḟ1) dt∫ 4	

0 f2
1 dt

−
∫ 4	
0 f1(2ḟ6ġ1 sgn ḟ1 + f8 cos t) dt∫ 4	

0 f2
1 dt

; (48)

k10 =−2
3

∫ 4	
0 f1(ġ7|ḟ1|+ f11 cos t) dt∫ 4	

0 f2
1 dt

; (49)

k11 =−
∫ 4	
0 f1(k5f2 + 2k4f4 + 2k2f5) dt∫ 4	

0 f2
1 dt

−
∫ 4	
0 f1(2ġ6|ḟ1|+ 2ḟ2ġ4 sgn ḟ1) dt∫ 4	

0 f2
1 dt

−
∫ 4	
0 f1(4ḟ4ġ2 sgn ḟ1+2ḟ5ġ1 sgn ḟ1+f9 cos t) dt∫ 4	

0 f2
1 dt

;

(50)

k12 =−1
3

∫ 4	
0 f1ḟ3

2 ġ1�
′(ḟ1) dt∫ 4	

0 f2
1 dt

; (51)

k13 =−
∫ 4	
0 f1(2ġ8|ḟ1|+ 1

3f10 cos t) dt∫ 4	
0 f2

1 dt
(52)

k14 =−1
3

∫ 4	
0 f1ḟ2ġ31�

′(ḟ1) dt∫ 4	
0 f2

1 dt
: (53)

Numerical solution of the perturbation Eqs. (7)–
(11) yields the functions fi and gi (see Appendix B)
and then the values of the ki may be found by nu-
merical quadrature, see Table 1. Because the fi and
the gi are required to be periodic functions, their ini-
tial conditions need to be chosen carefully. A shoot-
ing procedure was used Mrst to locate �0 and �0, and
then to obtain the initial conditions for the gi. The
shooting method returned �0 = 0:630420248517023
and �0 = 1:438618533234416 in double precision, in
agreement with values obtained by direct numerical
integration of Eq. (2).

Table 1
Values of ki

k1 −0:176795720204351 k8 −0:005343518899145
k2 0.000449147391502 k9 0.041196711700806
k3 0.023845390107660 k10 0.000000000000001
k4 0.059627911982873 k11 0.243420338228478
k5 0.008051597731526 k12 0.024121956135593
k6 0.133978124987812 k13 0.000000000000000
k7 0.008726800055536 k14 0.003191162023248



D.V. Ramani et al. / International Journal of Non-Linear Mechanics 39 (2004) 491–502 497

Substituting Eqs. (35)–(39) into Eq. (5), the fol-
lowing expression for � is obtained:

�= �0 + �1k14A6 + (�1k11 + �31k12 + k5)A
4

+(2k2 + k4�1 + k6�21 + k9�
3
1)A

2

+(k1�21 + k3�
3
1 + k7�

4
1 + k8�

5
1): (54)

This equation relates a given value of � and �1 to
the predicted amplitude A of the newly bifurcated un-
stable 2:1 subharmonic 4	-periodic orbit. As a check
on all the perturbation calculations, we may use this
equation to generate a value of A with which we may
compare the perturbation expression for x(t), that is,
Eq. (4) supplemented by the expressions in Appendix
B and the values of the ki in Table 1, with the re-
sults of direct numerical integration of Eq. (2). To
obtain a comparison, a method of numerically gener-
ating the unstable orbit is needed. This can be done
by starting the integration near the stable manifold
of the unstable orbit. If the initial condition is close
enough to the stable manifold, the system will spend
enough time near the unstable orbit to obtain a good
approximation of it. The stable manifold was found
by a bisection method, and involved choosing an ap-
propriate initial condition accurate to 16 signiMcant
Mgures.
Figs. 3 and 4 o<er a comparison between the

predicted unstable periodic orbit obtained from the
perturbation method (dashed) and from numerical
integration (solid) for � = 0:6305 and � = 1:47. For
these values of the parameters, Eq. (54) predicts A ≈
0:2542. Fig. 3 shows a phase portrait of the system,
while Fig. 4 shows the time history of the system. For
these values of � and �, the agreement between the an-
alytical approximation and the numerical integration
is quite good. For comparison, the location of P was
determined to be about �0 ≈ 0:6304 and �0 ≈ 1:4386.
As the value of � is increased away from the

transition curve and towards the secondary bifurca-
tion curve, the agreement between the analytical and
numerical solutions worsens. Fig. 5 and 6 show the
approximations for � = 0:631 and � = 1:47, with
the bifurcation point P located at �0 ≈ 0:6304 and
�0 ≈ 1:4386. Despite the small change in � there
is a marked change in the agreement. These Mgures
suggest that the power series may not converge close
to the bifurcation curve. The lack of accuracy could
be due to either the number of terms taken being too

Fig. 3. Comparison of numerical and analytical approximations of
the unstable periodic orbit in the phase plane. Analytical approxi-
mation is dashed, numerical integration is solid. Here �=0:6305,
� = 1:47 and A = 0:2542. �0 ≈ 0:6304 and �0 ≈ 1:4386.

Fig. 4. Comparison of numerical and analytical approximations of
the unstable periodic orbit as a time history. Analytical approxi-
mation is dashed, numerical integration is solid. Here �=0:6305,
� = 1:47 and A = 0:2542. �0 ≈ 0:6304 and �0 ≈ 1:4386.

small or the radius of convergence of the series not
being large enough to reach the bifurcation curve.
In the former case, more terms could be added, but
the computational di=culties increase considerably
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Fig. 5. Comparison of numerical and analytical approximations of
the unstable periodic orbit in the phase plane. Analytical approx-
imation is dashed, numerical integration is solid. Here �= 0:631,
� = 1:47 and A = 0:3811. �0 ≈ 0:6304 and �0 ≈ 1:4386.

Fig. 6. Comparison of numerical and analytical approximations of
the unstable periodic orbit as a time history. Analytical approxi-
mation is dashed, numerical integration is solid. Here � = 0:631,
� = 1:47 and A = 0:3811. �0 ≈ 0:6304 and �0 ≈ 1:4386.

with each step. In the latter case, the power series
expansion will not give reasonable agreement near
the bifurcation curve, no matter how many terms are
taken.

With these convergence problems in mind, we now
proceed to attempt to obtain an analytical expression
for the secondary bifurcation curve. We begin by set-
ting up a convenient local coordinate system in pa-
rameter space centered at point P, as follows: Note
that in Eq. (54), the periodic motion has an amplitude
A which approaches 0 as we approach the bifurca-
tion point. This bifurcation occurs along the transition
curve. Therefore, by setting A = 0 an expression for
the transition curve can be obtained. A natural choice
of coordinates is suggested by this observation. The
new coordinates are deMned by

u= �− (k1�21 + k3�
3
1 + k7�

4
1 + k8�

5
1); (55)

v= �1; (56)

where � ≡ � − �0. The coordinate u measures the
distance in � from the transition curve. The coordinate
v measures the distance in � from P.
In the new coordinates, Eq. (54) takes the form

u= vk14A6 + (vk11 + v3k12 + k5)A4

+(2k2 + k4v+ k6v2 + k9v3)A2: (57)

The secondary bifurcation curve can be obtained by
noting that Eq. (57) generates a series expansion for
u in terms of v for small values of A. If the value of
v is Mxed—equivalently, if the value of �1 is Mxed—
then Eq. (57) can be considered to give the value of
A as the value of u is varied. Since u is a measure of
the distance from the transition curve, this curve gives
the dependence of A on �. For a given value of u there
should be two real, positive values of A, corresponding
to the two periodic motions (one stable and one un-
stable) that exist in this region of the parameter plane.
The bifurcation occurs when these two motions come
together. In terms of the u–A curve, this happens at
a vertical tangency in the curve, or when du=dA = 0.
This condition, along with Eq. (57), gives two condi-
tions on u, v, and A. A can be eliminated from these
equations, resulting in a single equation between u
and v.
Because of the slow convergence of the series in

Eq. (57), illustrated by Figs. 3 and 4 and Figs. 5 and 6,
directly following the prescription above will not yield
the bifurcation curve. Even assuming that the radius
of convergence of the series will allow extension to
the bifurcation curve, a prohibitive number of terms
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may be needed to actually obtain satisfactory conver-
gence. To improve the convergence properties of the
power series, Pad:e approximants are used. The the-
ory of PadKe approximants is discussed in [5,7]. The
fundamental idea of PadKe summation is to replace a
truncated power series by a rational function of poly-
nomials, which has the same Taylor series as the trun-
cated power series.
To apply the method to this problem, Eq. (57) is

converted to a PadKe approximant. For this case, there
are three possible approximants

u= a3b3 + a2b2 + ab1; (58)

u=
−ab31

a2(b1b3 − b22) + ab1b2 − b21
; (59)

u=
a2(b1b3 − b22)− ab1b2

ab3 − b1 ; (60)

where a= A2, and

b1 = 2k2 + k4v+ k6v2 + k9v3; (61)

b2 = vk11 + v3k12 + k5; (62)

b3 = vk14: (63)

Each of the three approximants needs to be tested in-
dividually for good convergence. Of the three, only
Eq. (59) gives adequate convergence results. By tak-
ing the derivative of Eq. (59) with respect to a and
then eliminating a, substituting the values of the bi and
then the ki, the following numerical equation relating
u and v can be obtained

u= 0:01465v+ 0:06596v2: (64)

Eq. (64) can be written in terms of � and � by substi-
tuting Eq. (55). Finally, a relationship between � and
� may be obtained

�=−0:00534�5 + 0:04716�4 − 0:13696�3

+0:14908�2 + 0:01551�+ 0:58301: (65)

Eq. (65) is an approximation to the secondary bi-
furcation curve.
Fig. 7 shows the analytical and numerical ap-

proximations to the bifurcation curve. The analytical
approximation, shown as a solid line, is in close

Fig. 7. Comparison of analytical and numerical approximation to
the secondary bifurcation curve. Analytical approximation is the
solid line, numerical values are points.

agreement up to � = 2:5, at which point it becomes
less reliable. The perturbation method is assumed
to be valid in the neighborhood of �0 ≈ 1:4386,
so the approximation in Eq. (65) is working quite
well.
In cases such as the present one, it seems that the

bifurcation curve should arise from a tangency with
the transition curve. Since the bifurcation is assumed
to occur at a point along the transition curve which
has a vertical tangency, the bifurcation curve itself is
assumed to have a vertical tangency. In the present
instance, this is not the case. The analytical expression
for the bifurcation curve is nearly vertical, but it is not
truly vertical.

5. Conclusions

The bifurcations in the quadratically-damped Math-
ieu equation were studied. Special focus was given to
the region of the �–� parameter plane around point
P, the point of inMnite slope along the right transi-
tion curve of the 2:1 instability region. In this region
a bifurcation sequence was numerically identiMed. It
was observed that above P an unstable periodic mo-
tion is born by crossing out of the instability region.
On the other hand, below P, a stable periodic motion
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is born by crossing into the instability region. More-
over, a secondary bifurcation curve in which the previ-
ously mentioned stable and unstable periodic motions
merge, was seen to emanate from point P.
In order to obtain an approximation for this sec-

ondary bifurcation, a new approach was developed.
This involved perturbing directly o< of Mathieu’s
equation and using Mathieu functions instead of the
usual sines and cosines. An interesting feature of this
method is its semi-analytical nature. Because Math-
ieu functions do not have closed-form representations
that are easy to manipulate, the method needed to be
executed semi-analytically, that is, certain integrals
had to be evaluated by numerical quadrature.
When combined with PadKe approximants, the

perturbation method recovered an acceptable ap-
proximation to the secondary bifurcation curve in a
neighborhood of point P. In fact, the resulting ap-
proximation was seen to be reasonable for values of
� up to 2.5. However, since the perturbation method
itself can be expected to be valid only in a neighbor-
hood of point P, this agreement must be viewed as
serendipitous.
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Appendix A. Invariance of the ki

The solution to the perturbation equations, and thus
the predictions of the method, depend on the values
of the detuning parameters, �i, which in turn depend
on the constants ki. In the solution of the perturbation
equations it was mentioned that arbitrary multiples of
f1 could be added to any odd function and to any of
the xi. The purpose of this section is to demonstrate
that the ki, and therefore the results of the method, are
not a<ected by addition of multiples of f1.

Theorem 1. Consider the functions fi, their cor-
responding constants ki, and the new functions f̃i

de;ned by

f̃i = cif1 + fi (A.1)

and their corresponding constants k̃ i. For arbitrary
choice of ci

k̃ i = ki: (A.2)

Proof. The proof of this theorem is obtained by direct
computation of the k̃ i. Suppose that A has been chosen
and that x0 = Af1. Then Lf2 =−f1 cos t. Now, deMne
f̃2 = c2f1 + f2: (A.3)

From Eq. (28)

k̃1 =−
∫ 4	
0 f1f̃2 cos t dt∫ 4	

0 f2
1 dt

=−
∫ 4	
0 f1(f2 + c2f1) cos t dt∫ 4	

0 f2
1 dt

: (A.4)

Since the denominators of all the ki are identical and do
not vary they will be ignored from now on. Expanding
the numerator gives

k̃1

∫ 4	

0
f2
1 dt =−

∫ 4	

0
f1f2 cos t dt

−c2
∫ 4	

0
f2
1 cos t dt: (A.5)

The Mrst term on the right-hand side is the numerator of
k1. The second term on the right-hand side gives zero
as a result of the Mrst Fredholm condition, Eq. (21).
Therefore, k̃1 = k1.
Because k2 depends on f1 and g1, it is not a<ected

by addition of f1, and is therefore invariant.
The situation becomes increasingly complicated for

the other ki. From Eq. (42)

k3 =−
∫ 4	
0 f1(k1f2 + f3 cos t) dt∫ 4	

0 f2
1 dt

: (A.6)

To see how k3 is a<ected, it is Mrst necessary to de-
termined how f3 is a<ected. From the deMnition of f3

Lf̃3 = k1f1 − f̃2 cos t
= k1f1 − (f2 + c2f1) cos t: (A.7)
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Expanding this even further

Lf̃3 =−k1f1 − f2 cos t − c2f1 cos t: (A.8)

The Mrst two terms of the equation give the original
deMnition of f3. The last term of the equation will give
rise to f2, from Eq. (23). Thus,

f̃3 = f3 + c2f2 + c3f1 (A.9)

and

k̃3

∫ 4	

0
f2
1 dt =−

∫ 4	

0
f1(k1f̃2 + f̃3 cos t) dt:

(A.10)

Expanding this again

k̃3

∫ 4	

0
f2
1 dt

=−
∫ 4	

0
k1f1(f2 + c2f1) dt −

∫ 4	

0
f1 cos t

×(f3 + c2f2 + c3f1) dt: (A.11)

Collecting terms in the ci yields

k̃3

∫ 4	

0
f2
1 dt =−

∫ 4	

0
f1(k1f2 + f3 cos t) dt

−c3
∫ 4	

0
f2
1 cos t dt

−c2
∫ 4	

0
(k1f2

1 + f1f2 cos t) dt:

(A.12)

The Mrst term on the right-hand side is the numer-
ator of k3. The second term on the right-hand side
is zero by Eq. (21). In the last term, k1

∫ 4	
0 f2

1 dt =

− ∫ 4	
0 f1f2 cos t dt, by Eq. (28). Therefore the last

term vanishes, leaving k̃3 = k3.
This computation can be carried out for all of the

ki in a similar manner.

Appendix B. De'nitions of fi and gi

In this appendix we present deMnitions for the
functions in the perturbation method at point
P. The method for developing these is given

in the text.

x0 = Af1; (B.1)

x1 = A�1f2 + A2g1; (B.2)

x2 = A�21f3 + A
2�1g2 + 2A3f4; (B.3)

x3 = A2�21g3 + A
4g4 + A3�1f5 + A�31f6; (B.4)

x4 = A�41f7 + A
2�31g5 + A

3�21f8 + A
4�1g6

+A5f9 +
A6

3
f10 +

A3�31
3
g7 + A4�21f11 + A

5�1g8;

(B.5)

where

Lf1 = 0; (B.6)

Lf2 =−f1 cos t; (B.7)

Lf3 =−k1f1 − f2 cos t; (B.8)

Lf4 =−k2f1 − ġ1|ḟ1|; (B.9)

Lf5 =−k4f1 − 2k2f2 − 2f4 cos t

−2ġ2|ḟ1| − 2ḟ2ġ1 sgn ḟ1; (B.10)

Lf6 =−k3f1 − k1f2 − f3 cos t; (B.11)

Lf7 =−k7f1 − k3f2 − k1f3 − f6 cos t; (B.12)

Lf8 =−k6f1 − k4f2 − 2k2f3 − 2k1f4 − 2ġ3|ḟ1|
−2ġ2ḟ2 sgn ḟ1 − 2ġ1ḟ3 sgn ḟ1 − f5 cos t;

(B.13)

Lf9 =−k5f1 − 4k2f4 − 2ġ4|ḟ1| − 4ġ1ḟ4 sgn ḟ1;
(B.14)

Lf10 =−ḟ3
2 �(Aḟ1); (B.15)

Lf11 =−ġ21ḟ2�(Aḟ1); (B.16)

Lg1 =−ḟ1|ḟ1|; (B.17)

Lg2 =−g1 cos t − 2ḟ2|ḟ1|; (B.18)
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Lg3 =−k1g1 − g2 cos t − 2ḟ3|ḟ1| − ḟ2
2 sgn ḟ1;

(B.19)

Lg4 =−2k2g1 − 4ḟ4|ḟ1| − ġ21 sgn ḟ1; (B.20)

Lg5 =−k3g1 − k1g2 − g3 cos t − 2ḟ6|ḟ1|
−2ḟ2ḟ3 sgn ḟ1; (B.21)

Lg6 =−k4g1 − 2k2g2 − g4 cos t − 2ġ2ġ1 sgn ḟ1

−2ḟ5|ḟ1| − 4ḟ4ḟ2 sgn ḟ1; (B.22)

Lg7 =−ġ31�(Aḟ1); (B.23)

Lg8 =−ġ1ḟ2
2 �(Aḟ1): (B.24)
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