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a b s t r a c t

After reviewing the concept of fractional derivative, we derive expressions for the transi-
tion curves separating regions of stability from regions of instability in the ODE:
. All righ

nical an
x00 þ ðdþ � cos tÞxþ cDax ¼ 0
where Dax is the order a derivative of xðtÞ, where 0 < a < 1. We use the method of har-
monic balance and obtain both a lowest order approximation as well as a higher order
approximation for the n ¼ 1 transition curves. We also obtain an expression for the
n ¼ 0 transition curves.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The fractional calculus and fractional differential equations have recently become increasingly important topics in
the literature of engineering, science and applied mathematics. Application areas include viscoelasticity, electromagnet-
ics, heat conduction, control theory and diffusion [6,8–11,17]. One reason for the interest in this subject comes from
applications which involve new ways of modeling physical systems using tools from fractional calculus. For example,
consider the dynamics of a system which involves the motion of a rheological specimen which exhibits both elasticity
and dissipation. Traditional models of such a system might be based on the following familiar linear differential
equation:
x00 þ cx0 þ kx ¼ 0 ð1Þ
However, an alternative approach would be to combine the effects of stiffness and damping in a single term:
x00 þ lDax ¼ 0 ð2Þ
where Dax is the order a derivative of xðtÞ, where 0 < a < 1 is a parameter, and where l is a coefficient of ‘‘fractance”. As a
varies from 0 to 1, the relative importance of the stiffness and damping terms may be adjusted. See e.g. [26]. Note that Eq. (2)
is linear.

Recent literature has dealt with the treatment of diverse fractional differential equations. These include:

1. Fractional linear oscillator [27,21,29,14].
x00 þ xþ lDax ¼ 0 ð3Þ
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2. Another fractional linear oscillator [10,22,29].
Daxþ x ¼ 0 ð4Þ
3. Fractional Duffing equation [27,4]
x00 þ �Daxþ x3 ¼ 0 ð5Þ
4. Fractional van der Pol equation [28]
x00 � �ð1� x2ÞDaxþ x ¼ 0 ð6Þ
5. Another fractional van der Pol equation [2,25]
Dax� �ð1� x2Þx0 þ x ¼ 0 ð7Þ
6. Fractional jerk model [1]
Daþ2xþ lDaþ1xþ Dax ¼ f ðxÞ ð8Þ
7. Fractional wave equation [10]
@au
@ta
¼ @

2u
@x2 ð9Þ
8. Equations exhibiting chaos [16,7,5].

It is the purpose of the present work to extend the treatment of Mathieu’s equation,
x00 þ ðdþ � cos tÞx ¼ 0; ð10Þ
being an equation which is important in questions of stability of motion as well as in systems which are parametrically ex-
cited, to include the effect of a fractional derivative term:
x00 þ ðdþ � cos tÞxþ cDax ¼ 0 ð11Þ
In the case that a ¼ 1, Eq. (11) represents the familiar damped Mathieu equation [19].
We begin the paper with a brief introduction to the fractional calculus. See e.g. [15,20,17,12,23].

2. Fractional derivatives

We offer a formal derivation of the key formula which defines the fractional derivative of a function xðtÞ, beginning with
an intuitive definition of the fractional derivative of tk, Datk. By ‘‘formal” we mean that issues of convergence will be ignored.
This formal derivation may thus be thought of as a plausibility argument rather than a rigorous derivation. After Ross [20],
we note that
dm

dtm tn ¼ n!

ðn�mÞ! tn�m ð12Þ
where m 6 n are positive integers. Note that Eq. (12) can be written in terms of the gamma function Cðnþ 1Þ ¼ n!:
dm

dtm tn ¼ Cðnþ 1Þ
Cðn�mþ 1Þ t

n�m ð13Þ
Generalizing this by replacing n by k and m by a, where k and a are positive real numbers, we obtain
Datk ¼ Cðkþ 1Þ
Cðk� aþ 1Þ t

k�a ð14Þ
As an example, we compute the order 1/2 derivative of t:
D1=2t ¼ Cð2Þ
Cð3=2Þ t

1=2 ¼ 2ffiffiffiffi
p
p t1=2 ð15Þ
We note that by the law of exponents of derivatives,
D1=2D1=2t ¼ D1=2þ1=2t ¼ d
dt

t ¼ 1 ð16Þ
and we check this by taking the order 1/2 derivative of Eq. (15):
D1=2 2ffiffiffiffi
p
p t1=2 ¼ 2ffiffiffiffi

p
p D1=2t1=2 ¼ 2ffiffiffiffi

p
p Cð3=2Þ

Cð1Þ t0 ¼ 1 ð17Þ
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Now suppose we have a function xðtÞ which is expandable in a Taylor series about t ¼ 0:
xðtÞ ¼
X xðkÞð0Þ

k!
tk ð18Þ
where xðkÞð0Þ is the kth derivative of x evaluated at t ¼ 0. Taking the fractional derivative of both sides,
DaxðtÞ ¼
X xðkÞð0Þ

k!
Datk ¼

X xðkÞð0Þ
k!

Cðkþ 1Þ
Cðk� aþ 1Þ t

k�a ð19Þ
After Ross [20] we note that
Z t

0
ðt � uÞmundu ¼ m!n!

ðmþ nþ 1Þ! tmþnþ1 ¼ Cðmþ 1ÞCðnþ 1Þ
Cðmþ nþ 2Þ tmþnþ1 ð20Þ
For example, with n ¼ 7 and m ¼ 3, macsyma integrates the LHS to be t11=1320, and direct evaluation of the RHS coefficient
gives 3! 7!/11!=1/1320.

Taking n ¼ k and m ¼ �1� a, we get
Z t

0
ðt � uÞ�1�aukdu ¼ Cð�aÞCðkþ 1Þ

Cðk� aþ 1Þ tk�a ð21Þ
from which we obtain
Cðkþ 1Þ
Cðk� aþ 1Þ t

k�a ¼ 1
Cð�aÞ

Z t

0
ðt � uÞ�1�aukdu ð22Þ
Substituting (22) into (19) we obtain
DaxðtÞ ¼
X xðkÞð0Þ

k!

1
Cð�aÞ

Z t

0
ðt � uÞ�1�aukdu ð23Þ
Interchanging the processes of summation and integration, we obtain
DaxðtÞ ¼ 1
Cð�aÞ

Z t

0
ðt � uÞ�1�a

X xðkÞð0Þuk

k!

� �
du ð24Þ
which gives, using (18),
DaxðtÞ ¼ 1
Cð�aÞ

Z t

0
ðt � uÞ�1�axðuÞdu ð25Þ
To avoid divergence in Eq. (25), we use a trick from Ross [20]. From the law of exponents of derivatives we write
DaxðtÞ ¼ DmD�pxðtÞ ð26Þ
where a ¼ m� p, where 0 < p < 1 and where m is the least integer larger than a. Using Eq. (25), we obtain
DaxðtÞ ¼ dm

dtm
1

CðpÞ

Z t

0
ðt � uÞp�1xðuÞdu ð27Þ
In the case that 0 < a < 1, we have that m ¼ 1 and p ¼ 1� a, giving
DaxðtÞ ¼ 1
Cð1� aÞ

d
dt

Z t

0
ðt � uÞ�axðuÞdu ð28Þ
For example,
D1=2xðtÞ ¼ 1
Cð1=2Þ

d
dt

Z t

0
ðt � uÞ�1=2xðuÞdu ð29Þ
As a check we use this formula to compute the order 1/2 derivative of t:
D1=2t ¼ 1
Cð1=2Þ

d
dt

Z t

0
ðt � uÞ�1=2udu ¼ 1

Cð1=2Þ
d
dt

4
3

t3=2
� �

¼ 2ffiffiffiffi
p
p t1=2 ð30Þ
which agrees with Eq. (15). Eq. (28) can be simplified by taking v ¼ t � u, giving
DaxðtÞ ¼ 1
Cð1� aÞ

d
dt

Z t

0
v�axðt � vÞdv ð31Þ
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Carrying out the differentiation under the integral sign, we obtain
Fig. 1.
DaxðtÞ ¼ 1
Cð1� aÞ

Z t

0
v�ax0ðt � vÞdv þ xð0Þ

ta

� �
ð32Þ
After Ross [20, p. 17], we adopt the convention that xð0Þ ¼ 0, giving the final formula:
DaxðtÞ ¼ 1
Cð1� aÞ

Z t

0
v�ax0ðt � vÞdv ð33Þ
3. Mathieu’s equation

In this section we present a brief summary of the (non-fractional) Mathieu’s equation (10) in order to be able to assess the
effects of the addition of a fractional derivative term as in Eq. (11). See e.g. Stoker [24]. For given values of the parameters d
and �, either all solutions of Mathieu’s equation are bounded (stable) or an unbounded solution exists (unstable). The d—�
parameter plane is thus divided into stable and unstable regions. Although an infinite number of ‘‘resonance tongues”
emerge from the d-axis at d ¼ n2=4, where n ¼ 1;2;3; . . ., most of these are insignificant for small values of �, see Fig. 1. This
is not the case for the tongue emanating from d ¼ 1=4, which is important in applications and is associated with 2:1 subhar-
monic resonance. From perturbation theory it is known [19] that this tongue has the following asymptotic expansion:
d ¼ 1
4
� 1

2
�� 1

8
�2 þ Oð�3Þ ð34Þ
In addition to the aforementioned tongues, there is also a transition curve separating stable from unstable regions emanating
from the origin in the d—� plane. It has the following expansion:
d ¼ �1
2
�2 þ 7

32
�4 þ Oð�6Þ ð35Þ
If a damping term is added, we obtain the damped Mathieu equation:
x00 þ ðdþ � cos tÞxþ cx0 ¼ 0 ð36Þ
The effect of the damping term on the shape of the transition curves is to detach each of the tongues from the d-axis, thereby
requiring a minimum value of � for instability to occur [19]. In the case of the n ¼ 1 tongue, Eq. (36) has the following expan-
sion, see Fig. 2:
d ¼ 1
4
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � c2

p
þ Oð�3Þ ð37Þ
4. Fractional Mathieu equation

In this section we use the method of harmonic balance to obtain approximate expressions for the transition curves in the
fractional Mathieu equation:
Transition curves in Mathieu’s equation (10). Displayed are Eqs. (34) and (35) as well as other curves whose equations are not listed here. See [19].



Fig. 2. Transition curves (37) in the damped Mathieu equation (36). The upper curve corresponds to c ¼ 0:5. The middle curve corresponds to c ¼ 0:1. The
lower curve corresponds to c ¼ 0.
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x00 þ ðdþ � cos tÞxþ cDax ¼ 0 ð38Þ
From Floquet theory [19] it is known that on the transition curves there exist periodic solutions to (38) with period p or 2p.
Thus in order to obtain an approximation for the n ¼ 1 transition curves, we posit a truncated Fourier series:
x ¼ A cos
t
2
þ B sin

t
2
þ � � � ð39Þ
In substituting (39) into (38) we need to compute the fractional derivative Dax, where 0 < a < 1, which we do by using the
definition (33):
Dax ¼ 1
Cð1� aÞ

Z t

0
v�ax0ðt � vÞdv ð40Þ

Z t

0
v�ax0ðt � vÞdv ¼ 1

2

Z t

0
v�a �A sin

t � v
2
þ B cos

t � v
2

� �
dv ð41Þ
Here we use the trig identities:
cos
t � v

2
¼ cos

t
2

cos
v
2
þ sin

t
2

sin
v
2

ð42Þ

sin
t � v

2
¼ sin

t
2

cos
v
2
� cos

t
2

sin
v
2

ð43Þ
and Eq. (41) becomes
Z t

0
v�ax0ðt � vÞdv ¼ 1

2
cos

t
2

Z t

0
v�a B cos

v
2
þ A sin

v
2

� �
dv

þ 1
2

sin
t
2

Z t

0
v�a B sin

v
2
� A cos

v
2

� �
dv ð44Þ

¼ 1
2a cos

t
2
ðBIc þ AIsÞ þ

1
2a sin

t
2
ð�AIc þ BIsÞ ð45Þ
where
Ic ¼
Z t=2

0
w�a cos wdw and Is ¼

Z t=2

0
w�a sin wdw ð46Þ
Although these integrals cannot be evaluated in closed form for general values of t, maxima is able to evaluate them in the
limit as t !1:
Z 1

0
w�a cos wdw ¼ Cð1� aÞ sin

ap
2

and
Z 1

0
w�a sin wdw ¼ Cð1� aÞ cos

ap
2

ð47Þ



R.H. Rand et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3254–3262 3259
After [28,27] we approximate Ic and Is in Eqs. (45) and (46) by their values in Eq. (47) in what follows, thereby restricting
attention to the large t limit. Thus we find from Eq. (40) the following expression for the fractional derivative:
Dax ¼ 1
2a cos

t
2

B sin
ap
2
þ A cos

ap
2

� �
þ 1

2a sin
t
2
�A sin

ap
2
þ B cos

ap
2

� �
ð48Þ
Next we substitute (39) and (48) into (38) and collect terms, equating to zero coefficients of sin t
2 and cos t

2. Eliminating A and
B from the resulting two equations gives the following approximate expression for the n ¼ 1 transition curves:
d ¼ 1
4
� c

2a cos
ap
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22a�2 � 4c2 sin2 ap

2

q
2aþ1 ð49Þ
As a check, we substitute a ¼ 1 in Eq. (49), in which case the fractional derivative in Eq. (38) becomes an ordinary first deriv-
ative and we obtain Eq. (37) corresponding to the damped Mathieu Eq. (36). Fig. 3 displays the transition curves (49) for var-
ious values of a.

We may obtain a higher order approximation by replacing the original ansatz (39) by the following:
x ¼ A cos
t
2
þ B sin

t
2
þ G cos

3t
2
þ H sin

3t
2
þ � � � ð50Þ
Proceeding as before we obtain an algebraic equation relating d; � and a which is too complicated to list here. See Fig. 4 where
it is displayed along with Eq. (49) for a ¼ 1=2.

In a similar fashion we may obtain approximations for the other transition curves. For example, in order to obtain an
expression for the n ¼ 0 transition curve which passes through the origin in the d—� plane, we start with the ansatz:
x ¼ A cos t þ B sin t þ Gþ � � � ð51Þ
Proceeding as before we obtain the following expression for the n ¼ 0 transition curve:
ðKc � 1Þ�2 þ ð�2 � 2c2 þ 4Kc � 2Þdþ 4ð1� KcÞd2 � 2d3 ¼ 0 ð52Þ
where K ¼ cos ap
2 . Fig. 5 shows the n ¼ 0 transition curve for various values of a. We note that the shape of the transition

curve does not change very much for a in the range [0, 1].

5. Discussion

In the case of the n ¼ 1 transition curves (see Eq. (49) and Fig. 3), we see that a change in the order a of the fractional
derivative affects the shape and location of the transition curves. This effect can be characterized by the location of the low-
est point on the transition curve, which represents the minimum quantity of forcing amplitude � necessary to produce insta-
bility. Let us refer to this minimum value of �, for a given value of a, as �min. See Fig. 6, where Eq. (49) is displayed as a surface
in d—�—a space.
Fig. 3. n ¼ 1 transition curve, Eq. (49), in the fractional Mathieu Eq. (38) for c ¼ 0:1 and a ¼ 0; 0:5;1.



Fig. 5. n ¼ 0 transition curve, Eq. (52), in the fractional Mathieu equation (38) for c ¼ 0:1 and a ¼ 0;0:5;1. The leftmost curve corresponds to a ¼ 0. The
middle curve corresponds to a ¼ 0:5. The rightmost curve corresponds to a ¼ 1.

Fig. 4. Transition curves in the fractional Mathieu equation (38) for a ¼ 0:5 and c ¼ 0:1. First and second order approximations, as obtained by the method
of harmonic balance. The first order approximation is given by Eq. (49). The second order approximation has 51 terms and is too long to list here.
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In order to obtain an expression for �min, we may differentiate Eq. (49) with respect to �, giving the slope of the transition
curve, and require this slope to be infinite. We find:
�min ¼ 2c
sin ap

2

2a

� �
ð53Þ
See Fig. 7, where �min is plotted as a function of a. The greatest effect is observed where this curve achieves its maximum,
shown by a dot in Fig. 7. Let us refer to the corresponding value of a as a�. Then we may obtain an expression for a� by dif-
ferentiating Eq. (53) with respect to a and setting d�min=da equal to zero. We find:
a� ¼ 2
p

arctan
p

2ln2
� 0:735 ð54Þ
Let us refer to the corresponding value of �min as ��min. We find:
��min � 1:099c ð55Þ



Fig. 6. Eq. (49) displayed in d—�—a space for c ¼ 0:1

Fig. 7. Plot of �min , the minimum quantity of forcing amplitude � necessary to produce instability, as a function of fractional derivative order a, Eq. (53). The
greatest effect is observed where this curve achieves its maximum, shown as a dot here, and referred to as a� in the text.
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This effect is reminiscent of the (non-fractional) damped Mathieu equation (36), cf. Fig. 2, which corresponds here to a ¼ 1.
Note from Fig. 7, that when a lies in the range (0.5, 1), the values for �min are all greater than �min for Eq. (36). Thus we may say
that the damping effect of the fractional derivative term in Eq. (38), for 0:5 < a < 1, is greater than that of the (non-frac-
tional) damped Mathieu equation (36).

Note also that in contrast to non-fractional damping, fractional damping also moves this lowest point on the transition
curve in a horizontal direction, see Fig. 3, thereby effectively changing the resonant value of d.

On the other hand, in the case of the n ¼ 0 transition curves (see Eq. (52) and Fig. 5), we see that there is very little change
as a is varied.
6. Conclusion

In this paper we have used the method of harmonic balance to obtain explicit approximate expressions for the n ¼ 1 and
n ¼ 0 transition curves separating regions of stability from regions of instability in the fractional Mathieu equation (38). We
showed that by changing the value of the order of the fractional derivative, a, the shape and location of the n ¼ 1 transition
curve can be changed. In particular we showed that the minimum quantity of forcing amplitude � necessary to produce
instability was greatest for a� � 0:735.
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This work represents a first step in developing a complete theory of fractional parametric excitation. Related work that
lies ahead could include the effects of phenomena that have been applied to non-fractional Mathieu equations, such as non-
linearity [19], quasiperiodic forcing [30], delay [13], partial differential equations [18] and slow passage through resonance
[3].
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