
Nonlinear Dyn (2012) 69:313–324
DOI 10.1007/s11071-011-0266-1

O R I G I NA L PA P E R

A pair of van der Pol oscillators coupled by fractional
derivatives

M.K. Suchorsky · R.H. Rand

Received: 28 July 2011 / Accepted: 1 November 2011 / Published online: 22 November 2011
© Springer Science+Business Media B.V. 2011

Abstract We consider the stability of the in-phase and
out-of-phase modes of a pair of fractionally-coupled
van der Pol oscillators:

x′′ − ε
(
1 − x2)x′ + x = ε γ Dα(y − x) (1)

y′′ − ε
(
1 − y2)y′ + y = ε γ Dα(x − y) (2)

where Dαx is the order α derivative of x(t), and
0 < α < 1. We use a two-variable perturbation method
on the system’s corresponding variational equations to
derive expressions for the transition curves separating
regions of stability from instability in the α, γ param-
eter plane. The perturbation results are validated with
numerics and through direct comparison with known
results in the limiting cases of α = 0 and α = 1, where
the fractional coupling reduces to position coupling
and velocity coupling, respectively.
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1 Introduction

An increasingly important topic in the literature of
engineering, science, and applied mathematics is that
of fractional calculus and fractional differential equa-
tions. It is attractive to use fractional calculus in mod-
eling phenomena that depend both on the current state
and the overall time history. Application areas in-
clude viscoelasticity, electromagnetics, heat conduc-
tion, control theory, and diffusion [1–7]. Recent liter-
ature has dealt with the treatment of diverse fractional
differential equations. These include fractional linear
oscillators [2, 8–12], a fractional Duffing equation
[8, 13], fractional van der Pol type equations [14–16],
a fractional Mathieu equation [17], a fractional jerk
model [18], a fractional wave equation [2], and equa-
tions exhibiting chaos [19–21].

It is the purpose of the present work to extend the
treatment of a pair of coupled van der Pol oscillators.
The coupling scheme used in previous treatments of
coupled van der Pols involved both springlike cou-
pling and damping coupling. This may be thought of
as being due to coupling by a rheological material
which exhibits both elasticity and dissipation. Such a
system might be more realistically modeled by com-
bining the effects of stiffness and damping into a sin-
gle term consisting of a fractional derivative. Previ-
ous works [22, 23, 29] have considered the stability
of the in-phase and out-of-phase modes of a system
of van der Pol oscillator with varying types of cou-
pling. Consider the system investigated by [22], where
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two van der Pol oscillators are connected through both
position-coupling and velocity-coupling terms:

x′′ − ε
(
1 − x2)x′ + x = ε A(y − x) + ε B

(
y′ − x′)

(3)

y′′ − ε
(
1 − y2)y′ + y = ε A(x − y) + ε B

(
x′ − y′)

(4)

We instead consider the case of fractional-coupling,

x′′ − ε
(
1 − x2)x′ + x = ε γ Dα(y − x) (5)

y′′ − ε
(
1 − y2)y′ + y = ε γ Dα(x − y) (6)

In the limits as α → 0 and α → 1, the fractional-
coupling respectively reduces to position coupling and
velocity coupling. We look for the convergence of our
results with those of previous works in these limiting
cases of α.

We begin the paper with a brief introduction to the
fractional calculus. See, e.g., [1, 24–27].

2 Fractional Derivatives

We begin with an intuitive definition for the fractional
derivative of tk , Dαtk . From there we derive an inte-
gral expression for the fractional derivative. Issues of
convergence are ignored in our derivation, and it may
therefore be thought of as a plausibility argument in-
stead of a rigorous derivation. As shown in Ross [25],
we note that

dm

dtm
tn = n!

(n − m)! t
n−m (7)

where m ≤ n are positive integers. Note that (7) can be
written in terms of the gamma function �(n+ 1) = n!:
dm

dtm
tn = �(n + 1)

�(n − m + 1)
tn−m (8)

By using the gamma function we can now general-
ize (8) to include all positive real numbers by replac-
ing n by k and m by α, where k and α are positive real
numbers, and we obtain:

Dαtk = �(k + 1)

�(k − α + 1)
tk−α (9)

As an example, we compute the order 1/2 deriva-
tive of t :

D1/2t = �(2)

�(3/2)
t1/2 = 2√

π
t1/2 (10)

By the law of exponents of derivatives,

D1/2D1/2t = D1/2+1/2t = d

dt
t = 1 (11)

Using this result from the law of exponents, we
check (10) by taking the order 1/2 derivative of it:

D1/2 2√
π

t1/2 = 2√
π

D1/2t1/2 = 2√
π

�(3/2)

�(1)
t0 = 1

(12)

Now suppose that we have a function x(t) which is
expandable in a Taylor series about t = 0,

x(t) =
∑ x(k)(0)

k! tk (13)

where x(k)(0) is the kth derivative of x evaluated at
t = 0. Taking the fractional derivative of both sides,
we have

Dαx(t) =
∑ x(k)(0)

k! Dαtk

=
∑ x(k)(0)

k!
�(k + 1)

�(k − α + 1)
tk−α (14)

Following the treatment in Ross [25], we note that

∫ t

0
(t − u)mun du = m! n!

(m + n + 1)! t
m+n+1

= �(m + 1)�(n + 1)

�(m + n + 2)
tm+n+1 (15)

We look to use (15) in simplifying (14) and hence
tk−α = tm+n+1. This yields an appropriate change of
variables n = k and m = −1 − α, and (15) becomes
∫ t

0
(t − u)−1−αuk du = �(−α) �(k + 1)

�(k − α + 1)
tk−α (16)

Solving for the common term appearing in (14), we
have

�(k + 1)

�(k − α + 1)
tk−α = 1

�(−α)

∫ t

0
(t − u)−1−αuk du

(17)

Substituting (17) into (14), we obtain

Dαx(t) =
∑ x(k)(0)

k!
1

�(−α)

∫ t

0
(t − u)−1−αuk du

(18)
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Interchanging the processes of summation and in-
tegration, we obtain

Dαx(t) = 1

�(−α)

∫ t

0
(t −u)−1−α

{∑ x(k)(0)uk

k!
}

du

(19)

Recognizing our original Taylor expansion for x(t),
(13), we obtain

Dαx(t) = 1

�(−α)

∫ t

0
(t − u)−1−αx(u)du (20)

To avoid divergence of the Gamma function in (20),
we use a trick from Ross [25]. From the law of expo-
nents of derivatives we write

Dαx(t) = DmD−px(t) (21)

where α = m−p, 0 < p < 1, and m is the least integer
larger than α. Using (20), we obtain

Dαx(t) = dm

dtm

1

�(p)

∫ t

0
(t − u)p−1x(u)du (22)

For the case of 0 < α < 1, we have that m = 1 and
p = 1 − α, giving

Dαx(t) = 1

�(1 − α)

d

dt

∫ t

0
(t − u)−αx(u)du (23)

For example,

D1/2x(t) = 1

�(1/2)

d

dt

∫ t

0
(t − u)−1/2x(u)du (24)

As a check, we use this formula to compute the or-
der 1/2 derivative of t :

D1/2t = 1

�(1/2)

d

dt

∫ t

0
(t − u)−1/2udu

= 1

�(1/2)

d

dt

(
4

3
t3/2

)
= 2√

π
t1/2 (25)

which agrees with (10). Equation (23) can be simpli-
fied by taking v = t − u, giving

Dαx(t) = 1

�(1 − α)

d

dt

∫ t

0
v−αx(t − v)dv (26)

Carrying out the differentiation under the integral
sign, we obtain

Dαx(t) = 1

�(1 − α)

(∫ t

0
v−αx′(t − v)dv + x(0)

tα

)

(27)

Following the treatment in Ross [25, p. 17], we
adopt the convention that x(0) = 0, giving the final
formula which is the Riemann–Liouville definition for
the fractional derivative:

Dαx(t) = 1

�(1 − α)

∫ t

0
v−αx′(t − v)dv (28)

3 Stability of the in-phase mode

The system under consideration is composed of two
van der Pol oscillators coupled by the fractional
derivatives of their positions,

x′′ − ε
(
1 − x2)x′ + x = ε γ Dα(y − x) (29)

y′′ − ε
(
1 − y2)y′ + y = ε γ Dα(x − y) (30)

There exists an in-phase manifold defined by x = y.
On this manifold the coupling term vanishes, and the
system is reduced to two identical van der Pol oscilla-
tors. An approximate solution for this mode exists and
is the limit cycle of the uncoupled van der Pol equa-
tion. To determine the stability of the in-phase mode,
we look at small disturbances from it. The variational
equations govern the evolution of these small distur-
bances. To obtain the variational equations, we intro-
duce the small deviations φ = x − u and ψ = y − u

where u is the in-phase mode u(t) = x(t) = y(t). Sub-
stituting these expressions into (29)–(30) and ignoring
nonlinear terms yields

φ′′ − ε
(
1 − u2)φ′ + (1 + 2 ε uu′)φ

= ε γ Dα(ψ − φ) (31)

ψ ′′ − ε
(
1 − u2)ψ ′ + (1 + 2 ε uu′)ψ

= ε γ Dα(φ − ψ) (32)

Defining the quantities w = φ + ψ and v = φ − ψ

uncouples these equations:

w′′ − ε
(
1 − u2)w′ + (1 + ε 2uu′)w = 0 (33)

v′′ − ε
(
1 − u2)v′ + (1 + ε 2uu′)v = −2 ε γ Dαv

(34)
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Observe that (33) is also the variational equation
corresponding to a single van der Pol oscillator, mean-
ing that it is obtained when one considers a small
deviation from the limit cycle of the van der Pol
equation. This then implies that within our system of
fractionally-coupled van der Pols, (33) governs devia-
tions from the in-phase mode that themselves lie on the
in-phase manifold. Since the limit cycle of the van der
Pol equation is known to be orbitally stable, we follow
[22] and conclude that (33) does not cause instability
of the in-phase solution within our coupled system.

Equation (34) governs deviations transverse to the
in-phase manifold. We examine whether this type of
deviation will cause instability by employing a two-
variable perturbation method. We begin the perturba-
tion method by defining

ξ = ω t, η = ε t (35)

where ω is the power series expansion in ε for the fre-
quency of the van der Pol’s limit cycle as given by (16)
in Storti [22]:

ω = 1 + O
(
ε2) (36)

By the chain rule the quantities v′ and v′′ become

v′ = ωvξ + ε vη (37)

v′′ = ω2 vξ ξ + 2ωε vξ η + ε2 vηη (38)

Recalling (28) for 0 < α < 1, we define the frac-
tional derivative as

Dαx(t) = 1

�(1 − α)

∫ t

0
z−α x′(t − z) dz (39)

Osler [28] has shown that, for a function of the form
x(ξ) where ξ = ω t ,

Dα
t x(ξ) = ωα Dα

ξ x(ξ) (40)

We assume that, for functions of two arguments
x(ξ, η) where η = ε t ,

Dα
t x(ξ, η)

= ωα Dα
ξ x(ξ, η) + o(1) (41)

= ωα

�(1 − α)

∫ ξ

0
z−α xξ (ξ − z, η) dz + o(1) (42)

From (36)–(38) and (42), in terms of ξ and η, (34)
becomes

vξ ξ + 2ε vξη − ε
(
1 − u2)vξ + (1 + 2ε uuξ )v

+ O
(
ε2)

= −2ε γ
1

�(1 − α)

∫ ξ

0
z−α xξ (ξ − z, η)dz + o(ε)

(43)

The in-phase mode, the van der Pol limit cycle, can
be approximated by power series in ε:

u = 2 cos ξ + O(ε) (44)

We posit a power series solution for v:

v(ξ, η) = v0(ξ, η) + ε v1(ξ, η) + · · · (45)

Substituting these two power series expressions
(44)–(45) into (43) and collecting terms, we obtain

O(1): Lv0 = 0 (46)

O(ε): Lv1 = −2v0ξ η − (1 + 2 cos ξ)v0ξ

+ (4 sin 2ξ) v − 2γ Dα
ξ v0 (47)

where L is the linear operator, Lv0 = v0ξξ + v0. The
general solution to (46) is given by

v0 = A(η) cos ξ + B(η) sin ξ (48)

This general solution is substituted into the O(ε)

equation (47), and resonant terms are identified. De-
noting the nonresonant terms as NRT, we have

Lv1 = 2A sin ξ + 2A′ sin ξ − 2B ′ cos ξ

− 2γ Dα
ξ

(
A(η) cos ξ + B(η) sin ξ

) + NRT
(49)

The fractional derivative (39) cannot be computed
in closed form. Instead we approximate the fractional
derivative by evaluating the integral in the limit as
ξ → ∞ and therefore expect our results to be valid
for steady state [8, 14]:

Dα
ξ v0(ξ, η) = 1

�(1 − α)

∫ ξ

0
z−α

(−A(η) sin(ξ − z)

+ B(η) cos(ξ − z)
)
dz (50)

= cos ξ

�(1 − α)

∫ ξ

0
z−α

(
A(η) sin z
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+ B(η) cos z
)
dz

+ sin ξ

�(1 − α)

∫ ξ

0
z−α

(−A(η) cos z

+ B(η) sin z
)
dz (51)

= cos ξ

�(1 − α)

(
A(η)Is + B(η)Ic

)

+ sin ξ

�(1 − α)

(−A(η)Ic + B(η)Is

)
(52)

where

Ic =
∫ ξ

0
z−α cos z dz, Is =

∫ ξ

0
z−α sin z dz (53)

In the limit as t → ∞ these integrals become
∫ ∞

0
z−α cos z dz,= �(1 − α) sin

α π

2
,

∫ ∞

0
z−α sin z dz = �(1 − α) cos

α π

2

(54)

Combining the results of (52)–(54) yields the final
expression for our approximation to Dα

ξ v0(ξ, η),

Dα
ξ v0(ξ, η)

= cos ξ

(
A(η) cos

α π

2
+ B(η) sin

α π

2

)

+ sin ξ

(
−A(η) sin

α π

2
+ B(η) cos

α π

2

)
(55)

Applying (55) to (49) yields

Lv1 =
(

2A + 2A′ + 2γ

(
A sin

απ

2

− B cos
απ

2

))
sin ξ

+
(

−2B ′ − 2γ

(
A cos

απ

2

+ B sin
απ

2

))
cos ξ + NRT (56)

We obtain the slow flow equations by setting the
secular terms to zero:

A′ =
(

−1 − γ sin
απ

2

)
A + γ B cos

απ

2
(57)

B ′ = −γ A cos
απ

2
− γ B sin

απ

2
(58)

Fig. 1 Stability of the in-phase mode as predicted by the per-
turbation method. S denotes stable and U unstable. Regions I
and III are both stable and composed of nodes and foci. Regions
II, IV, and V are unstable. Regions II and IV are filled with sad-
dles, and region V is composed of unstable nodes and foci, cf.
(61)–(62)

This is a linear system of equations and can be writ-
ten in matrix form,
[
A′
B ′

]
= [

M
] [

A

B

]
(59)

with coefficient matrix

M =
[

−1 − γ sin απ
2 γ cos απ

2

−γ cos απ
2 −γ sin απ

2

]

(60)

We categorize the stability of the system by analyz-
ing the trace, tr, and determinant, det, of the coefficient
matrix M :

tr = −1 − 2γ sin
απ

2
(61)

det = γ

(
γ + sin

απ

2

)
(62)

There are two ways in which the system can change
stability: one when det = 0 with tr < 0 and, secondly,
when tr = 0 with det > 0, which corresponds to a
Hopf bifurcation. The critical transition curves for sta-
bility tr = 0 and det = 0 are plotted in Fig. 1, and the
regions of stability and instability are found.

These results are checked by numerically integrat-
ing (34) with u given by (44) and ε = 0.1. A large
number of discrete points in the α vs. γ parameter
space are chosen, and the system is then integrated
for each γ , α pair and checked for fulfillment of our
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Fig. 2 Comparison of perturbation method’s stability results
for the in-phase mode previously shown in Fig. 1 with numerical
integration of (34) with u given by (44) and ε taken as ε = .01.
The asterisks represent stable parameter values, and the circles
unstable

chosen criterion for stability. Both the perturbation
method and numerical results are shown in Fig. 2. The
asterisks represent stable parameter values, and the cir-
cles unstable. These results are in good agreement with
our perturbation method’s results previously shown in
Fig. 1 in that they both predict a stability change near
the line γ = 0 as well as a wedge of stability in the
γ < 0 region.

Our results also agree with those of Storti and Rein-
hall [22] in the limiting cases of α = 0 and α = 1,
which respectively correspond to position coupling
and velocity coupling. In the case of α = 0, we find
the in-phase mode to be stable for all values of the cou-
pling coefficient. However note that “all values” mean
all values for which the perturbation method is valid
and therefore can reasonably be classified as coeffi-
cients of O(1). This agrees with [22], where they find
a loss of stability at a coupling coefficient of −0.5/ε

which is beyond the scope of our perturbation method.
For the case of α = 1, our results agree with [22] in
that stability of the in-phase mode is lost as the cou-
pling coefficient transitions from a positive value to a
negative one.

4 Stability of the out-of-phase mode

Next we consider the stability of the out-of-phase
mode. The out-of-phase mode is characterized by the

motions where x = −y = q . Substituting x = −y = q

into each of our coupled van der Pol equations, (29)
and (30), they admit identical equations. This one
equation, (63), must therefore be satisfied for the out-
of-phase mode to exist:

q ′′ − ε
(
1 − q2)q ′ + q = −2 ε γ Dαq (63)

We seek to determine for which values of parame-
ters γ and α will (63) exhibit periodic motions. A two-
variable expansion is applied to answer this question.
Periodic solutions can then be identified as fixed points
in the slow flow equations produced from applying
this perturbation method. Mirroring our in-phase anal-
ysis, we begin by again defining ξ = ω t , η = ε t , and
ω = 1 + O(ε2) as in (35)–(36). By the chain rule, q ′
and q ′′ become

q ′ = ωqξ + ε qη (64)

q ′′ = ω2 qξ ξ + 2ωε qξ η + ε2 qηη (65)

Recall that from (41) with ω = 1 + O(ε2) the frac-
tional derivative is given by

Dα
t q(ξ, η) = Dα

ξ q(ξ, η) + o(1) (66)

We posit a power series solution for q:

q(ξ, η) = q0(ξ, η) + ε q1(ξ, η) + O
(
ε2) (67)

Substituting (64)–(66) into the equation governing
the out-of-phase motion (63) and collecting terms, we
obtain:

O(1): Lq0 = 0 (68)

O(ε): Lq1 = −2q0ξ η + (
1 − q2

0

)
q0ξ − 2γ Dα

ξ q0

(69)

where L is the linear operator, Lq0 = q0ξξ + q0. The
general solution to (68) is given by

q0 = A(η) cos ξ + B(η) sin ξ (70)

Substituting this general solution into the O(ε)

(69), we collect the resonant terms and identify non-
resonant terms as NRT:

Lv1 = sin ξ

(
AB2

4
+ 2A′ + A3

4
− A

)

+ cos ξ

(
−2B ′ − B3

4
− A2 B

4
+ B

)



A pair of van der Pol oscillators coupled by fractional derivatives 319

− 2γ Dα
ξ

(
A(η) cos ξ + B(η) sin ξ

) + NRT

(71)

Recall our approximation for the fractional deriva-
tive (55),

Dα
ξ q0(ξ, η)

= cos ξ

(
A(η) cos

α π

2
+ B(η) sin

α π

2

)

+ sin ξ

(
−A(η) sin

α π

2
+ B(η) cos

α π

2

)
(72)

Substituting this expression into (71), the resonant
terms are collected and set to zero to obtain the slow
flow equations:

A′ = − AB2

8
− A3

8
+ A

2

− γ A sin
α π

2
+ γ B cos

α π

2
(73)

B ′ = − A2 B

8
− B3

8
+ B

2

− γ B sin
α π

2
− γ A cos

α π

2
(74)

To uncouple the slow flow equations, we transform
to polar coordinates:

q0 = R(η) cos
(
t − θ(η)

)
(75)

R′ = −R3 + R(8γ sin απ
2 − 4)

8
(76)

θ ′ = −γ cos
απ

2
(77)

Since θ ′ equals a constant, it will not change the
periodic nature of q0 in (75), but it will alter the period.
Periodic solutions are then seen to correspond to fixed
points in the R slow flow equation. Solving R′ = 0 for
the amplitude R of these periodic solutions yields

R = 2

(
1 − 2γ sin

απ

2

)1/2

(78)

This amplitude and hence the out-of-phase solution
will exist for parameter γ and α pairs satisfying

1 − 2γ sin
απ

2
> 0 (79)

This result is shown in Fig. 3 with the parameter
plane divided into two regions, where in each region

Fig. 3 The perturbation method predicts the out-of-phase mode
to exist only in region I as denoted by ∃, cf. (79). The out-
-of-phase mode does not exist in region II as noted in the figure
by � symbol

the out-of-phase mode either exists or does not exist,
and the transition curve is given by sin α π

2 = 1
2γ

, cf.
(79). This out-of-phase mode existence result agrees
with the results of Storti and Reinhall [22] in the limit
of α → 1 where the fractional coupling reduces to the
velocity coupling. For this velocity-coupling case, it
is known that an out-of-phase motion will exist for
a coupling coefficient less than 0.5, which is the re-
sult we recover in our analysis. At this critical cou-
pling coefficient, the out-of-phase limit cycle is cre-
ated or destroyed in a Hopf bifurcation. The pertur-
bation analysis indicates this as we see that the limit
amplitude grows from an initial amplitude of zero. It
is also known that the out-of-phase motion will only
exist in the position-coupling case for a coupling co-
efficient greater than −0.5/ε. In this case the out-of-
phase motion loses stability in an infinite period bifur-
cation. This bifurcation is not detected by the pertur-
bation method since a coupling coefficient of O(1/ε)

is beyond its region of validity.
Next we seek to determine the stability of the out-

of-phase mode in the parameter region of existence.
The stability will again be studied through the corre-
sponding variational equations, and we begin by in-
troducing the small deviations φ = x − q and ψ =
−y − q where q(t) is the out-of-phase mode. Sub-
stituting these expressions into the coupled van der
Pol equations (29)–(30) and ignoring nonlinear terms
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yields

φ′′ − ε
(
1 − q2)φ′ + (1 + 2 ε q q ′)φ

= −ε γ Dα(ψ + φ) (80)

ψ ′′ − ε
(
1 − q2)ψ ′ + (1 + 2 ε q q ′)ψ

= −ε γ Dα(φ + ψ) (81)

Defining the quantities w = φ + ψ and v = φ − ψ

uncouples the equations:

w′′ − ε
(
1 − q2)w′ + (

1 + ε 2q q ′)w = −2 ε γ Dαw

(82)

v′′ − ε
(
1 − q2)v′ + (

1 + ε 2q q ′)v = 0 (83)

Observe that (82) is also the variational equation
corresponding to (63), which is the equation that the
out-of-phase mode satisfies. The equation on w there-
fore represents small deviations in the out-of-phase
plane x = −y. We can determine if these w type devi-
ations will give rise to instability from the previous
two-variable analysis by considering the stability of
the fixed points of (76). Let δR be a small deviation
from R∗ where R∗ is the fixed point of (76). Substitut-
ing R = R∗ + δR into (76) and Tayloring the expres-
sion with respect to δR about zero yields

δR′ = −3R2∗ + 8γ sin απ
2 − 4

8
δR + O

(
δR2) (84)

The fixed point R∗ satisfies (78), which reduces
(84) to the form

δR′ = −R2∗
4

δR + O
(
δR2) (85)

The fixed points of the slow flow are therefore
asymptotically stable, and deviations that lie on the
out-of-phase plane will not cause the out-of-phase
mode to become unstable.

Returning now to the v variational equation, (83),
we perform a two-variable expansion to determine if
deviations transverse to the plane of the out-of-phase
mode will cause instability. Again we begin by defin-
ing ξ = ω t , η = ε t , and ω = 1 + O(ε2) as in (35)–
(36). By the chain rule, v′ and v′′ become

v′ = ωvξ + ε vη (86)

v′′ = ω2 vξ ξ + 2ωε vξ η + ε2 vηη (87)

We posit a power series solution for v,

v(ξ, η) = v0(ξ, η) + ε v1(ξ, η) + O
(
ε2) (88)

The out-of-phase mode q is approximated as the
limit cycle found in the previous two-variable pertur-
bation method on (63):

q = R(η) cos
(
t − ψ(η)

)
(89)

=
((

4 − 8γ sin
α π

2

)1/2

+ O(ε)

)

× cos

(
t − ε γ cos

απ

2
t + O

(
ε2)

)
(90)

=
(

4 − 8γ sin
α π

2

)1/2

cos t + O(ε) (91)

q2 = R2(η) cos2(t − ψ(η)
)

(92)

=
(

4 − 8γ sin
α π

2
+ O(ε)

)

× cos2
(

t − ε γ cos
απ

2
t + O

(
ε2)

)
(93)

=
(

2 − 4γ sin
α π

2
+ O(ε)

)

× (
1 + cos

(
2t + O(ε)

))
(94)

=
(

2 − 4γ sin
α π

2

)
(1 + cos 2t) + O(ε) (95)

Substituting (86)–(95) into the v variational equa-
tion (83) and collecting terms, we obtain:

O(1): Lv0 = 0 (96)

O(ε): Lv1 =
(

1 + 8γ sin
απ

2
cos2 t − 4 cos2 t

)
v0ξ

− 2v0η ξ +
(

4 − 8γ sin
απ

2

)

× cos t sin t v0 (97)

where L is the linear operator, Lv0 = v0ξξ + v0. The
general solution to (68) is given by

v0 = A(η) cos ξ + B(η) sin ξ (98)

Substituting this general solution into the O(ε)

equation (69) and grouping and identifying nonreso-
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nant terms as NRT, we have

Lv1 = sin ξ

(
2A′ − 4γ sin

απ

2
A + A

)

+ cos ξ

(
−2B ′ + 4γ sin

απ

2
B − B

)
+ NRT

(99)

The resonant terms are set to zero to obtain the slow
flow equations

A′ = A

2

(
4γ sin

απ

2
− 1

)
(100)

B ′ = B

2

(
4γ sin

απ

2
− 1

)
(101)

From the slow flow equations we see that there is
only one criterion for system stability,

sin
απ

2
<

1

4γ
(102)

In Fig. 4 the upper curve divides the parameter
plane into regions where the out-of-phase mode ex-
ists and regions where it does not exist as given by
sin α π

2 = 1
2γ

, cf. (79), and was previously shown in
Fig. 3. The lower curve of Fig. 4 divides the region
where the out-of-phase mode exists into stable and un-
stable regions and is given by sin α π

2 = 1
4γ

, cf. (102).
The perturbation method’s results are again com-

pared with numerics. The results of repeated integra-
tion of (83) with q given by (91), ε = 0.1, and for
a large number of discrete α, γ parameter pairs are
shown in Fig. 5. The asterisks represent stable param-
eter values, and the circles unstable. The numerics are
in good agreement with our perturbation method’s re-
sults.

Comparing our results again with those of Storti
and Reinhall [22] in the limiting cases of α = 0 and
α = 1, we find good agreement. For α = 0, we find
the out-of-phase mode to be stable for all values of the
coupling coefficient in the region of validity of our per-
turbation method. This agrees with [22] as they find
the out-of-phase mode to be stable for all parameter
values greater than 0.5/ε, which is beyond the scope
of our perturbation method. For the case of α = 1,
as the coupling coefficient is decreased from a value
larger than 0.5 to a negative value, Storti and Reinhall
[22] find that the out-of-phase mode transitions from
not existing to being unstable and then finally stable.
This transition trend is also seen in our results.

Fig. 4 The perturbation method predicts the out-of-phase mo-
tion to be stable in region Ia and unstable in region Ib, cf. (102).
The out-of-phase motion does not exist in region II, cf. (79). S is
stable, U is unstable, and � means “does not exist”

Fig. 5 Comparison of the out-of-phase perturbation method’s
results with numerical integration of (83) with q given by (91)
and ε = 0.1. The asterisks represent stable parameter values,
and the circles unstable. � represents that the out-of-phase mode
does not exist

5 Conclusion

In this paper we considered a system of two van der
Pol oscillators connected through fractional coupling.
There exists an in-phase mode and an out-of-phase
mode respectively defined by x = y and x = −y. To
determine the stability of a given mode, we looked at
small disturbances from it. The variational equations
govern the evolution of these small disturbances. We
performed a two-variable perturbation method on the
variational equations to determine if these small dis-
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Fig. 6 Stability results for both the in-phase and out-of-phase
modes. In region A, the in-phase mode is stable, and the out-of
phase mode does not exist as denoted by (S, �). In region B, the
in-phase mode is stable, and the out-of-phase mode is unstable,
(S, U). In region C, both the in-phase and out-of-phase modes
are stable, (S, S). In region D, the in-phase mode is unstable,
and the out-of-phase mode is stable, (U, S). In region E, both
modes are again stable, (S, S)

turbances would grow or decay implying then that the
mode is respectively unstable or stable.

Each mode had a corresponding set of variational
equations composed of one equation governing distur-
bances in the plane of the mode and a second equation
governing disturbances transverse to the plane of the
mode. For both the in-phase and out-of-phase modes,
instability was seen to only be caused by disturbances
transverse to the plane.

The stability results for both modes are plotted in
the α, γ parameter plane, Fig. 6. These transition
curves were obtain from the two-variable perturba-
tion method and were shown to be in good agreement
with numerical integration. Additionally we have rec-
onciled our results with those of [22] in the limiting
cases of α = 0 and α = 1, where the fractional cou-
pling reduces to position coupling and velocity cou-
pling, respectively. Our work predicts that for all val-
ues of 0 ≤ α ≤ 1, there will be at least one region of
bistability in the parameter plane meaning that both
the in-phase and out-of-phase modes will be stable and
the asymptotic behavior would then depend on initial
conditions.

Appendix

The simple Euler’s method is utilized in our numerical
integration program, and to use this algorithm, we be-

gin by expressing (34) as a system of first-order equa-
tions:

v′
1 = v2 (103)

v′
2 = ε

(
1 − u2)v2 − (

1 + 2 ε uu′)v1 − ε γ Dαv1

(104)

Uniformly discretizing the interval t = nh, n =
0,1,2, . . . , Euler’s method gives

v1n+1 = v1n + hv2n (105)

v2n+1 = v2n + h
(
ε
(
1 − u2

n

)
v2n

− (
1 + 2 ε un u′

n

)
v1n − 2 ε γ Dα

nv1
)

(106)

The subscript n denotes that the variable is being
evaluated at t = nh. What remains to be defined so
that (105) and (106) can be implemented is the frac-
tional derivative Dα

nv1. From (39) we have

Dα
nv1 = 1

�(1 − α)

∫ nh

0
z−α v′

1(nh − z) dz (107)

This integral expression is computed using the
trapezoid rule. Note that the integrand becomes infi-
nite at the lower integration bound and the trapezoid
rule will fail. To avoid this divergence, we rewrite
(108) using the additivity of definite integrals:

Dα
nv1 = 1

�(1 − α)

(∫ h

0
z−α v′

1(nh − z) dz

+
∫ nh

h

z−α v′
1(nh − z) dz

)
(108)

We then approximate z−α by h−α in the first inte-
gral and evaluate

Dα
nv1 = 1

�(1 − α)

(
h−α(v1n − v1n−1)

+
∫ nh

h

z−α v′
1(nh − z) dz

)
(109)

The second integral may now be computed us-
ing the trapezoid rule with z taking the same uni-
formly distributed values of t used in applying Euler’s
method:

Dα
nv1 = 1

�(1 − α)

(

h−α(v1n − v1n−1)
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+ h

2

(

h−αv′
1n−1

+ (nh)−αv′
10

+
n−1∑

m=2

2 (mh)−α v′
1n−m

))

(110)

= 1

�(1 − α)

(

h−α(v1n − v1n−1)

+ h

2

(

h−αv2n−1 + (nh)−αv20

+
n−1∑

m=2

2 (mh)−α v2n−m

))

(111)

This summation will have to be calculated at each
time step to then be used in (106). The sum is also
growing at each step, and to ease the computation
time, it can be written as a vector inner product, where
the two vectors will be updated at each step:

h−αv2n−1 +
n−1∑

m=2

2 (mh)−α v2n−m + (nh)−αv20

= m̄1n • m̄2n (112)

m̄1n = [
h−α, 2(2h)−α, . . . , 2((n − 1)h)−α, (nh)−α

]

(113)

m̄2n = [
v2n−1 , v2n−2 , . . . , v20

]
(114)

m̄1n+1 = [
m̄1n(1 : n − 1), 2(nh)−α,

(
(n + 1)h

)−α]

(115)

m̄2n+1 = [
v2n , m̄2n

]
(116)
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