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Satellite spin states evolve under the action of solid body
torques and tidal forces. The tidal effects result in a damping
of fast spin rates and, ultimately, in the locking of the spin
into what are known as Cassini states. The dynamical equations
for the satellite spin vector are derived, non-dimensionalized,
and discussed. The non-dimensional parameters that determine
the ultimate fate of the system are identified. A review of Cassini
states is given, and then the effect of a permanent triaxial
deformation on the evolution of the spin vector is explored.
We find that for the parameter ranges of most real Solar System
satellites which have been despun to synchronous rotation,
occupation of Cassini state 1 is the only possible endpoint. The
existence of a non-axially symmetric deformation destabilizes
the higher obliquity Cassini state 2. We discuss the possibility
of tumbling occurring during the spin-down and argue that
this does not effect our basic conclusions. The non-occupancy
of Cassini state 2 (except for the Moon, for which state 1
does not exist) is not a function of initial conditions or spin
configuration occupied at synchronous lock, as previously
hypothesized. © 1996 Academic Press, Inc.

1. INTRODUCTION

In 1643 Cassini published his three laws on the motion
of the Moon (see Colombo 1966) which, slightly re-
phrased, are:

1. The spin period is identical to the orbital period.

2. The spin axis maintains a constant inclination to the
ecliptic plane.

3. The spin axis, orbit normal, and ecliptic normal re-
main coplanar.

The third of these implies that while the Moon’s orbit
precesses, its spin axis precesses at the same rate. The spin
axis precession is caused by the small torque exerted by
the Earth on the Moon’s figure. The Moon is distant
enough from the Earth that the orbit precesses about the
ecliptic plane rather than the Earth’s equatorial plane; this
precession rate is a function of the orbital distance of the
Moon and the mass of the Sun. Why should these two
precession rates even be close, much less equal?

In general, consider a planetary satellite (see Fig. 1)
whose circular orbit normal K is inclined by an inclination
i with respect to an invariable plane normal fi, about which
it precesses with a rate —u (in rad/year). For close plane-
tary satellites, the invariable plane is the planet’s equatorial
plane, and the orbit precession is caused by the oblateness
of the planet. In general, the invariable plane is the satel-
lite’s Laplace plane in the three body system (Goldreich
1966a, Ward 1981). The satellite’s spin angular momentum
in the k direction is tilted by an obliquity 8 with respect
to its orbit-plane normal K. If the satellite is oblate, the
planet exerts a torque which attempts to cause a precession
¢ of the spin axis about K. We will assume in what follows
that the satellite is in principal-axis rotation about its axis
of maximum moment of inertia. Averaged around the sat-
ellite’s orbit, this torque is given by —SC cos 8 sin 6, where
Cis the satellite’s moment of inertia about the spin axis and

_3Gm,C—(A+B)/2

S 273 C

is an angular acceleration (this expression is derived in
Appendix A). In this expression m, is the mass of the
planet, G is the gravitational constant, r is the orbital radius
of the satellite, and A and B are the other two principal
moments of inertia. Because the orbit normal K is not
fixed, this torque actually causes kto precess about fi. Since
the component of angular momentum perpendicular to i
is Cw sin(6 — i), w being the (not necessarily synchronous)
spin rate of the satellite, the solid body torque produces
a precession rate about i of

_ _ Ssinfcos 6 )

wsin(0 — i)’
(If k and K were on the same side of i in Fig. 1 then we
would have sin(# + i) in the denominator instead.) The
answer to the puzzle posed above is that tidal dissipation
in the satellite drives it to a state where these two preces-
sion rates are equal; that is, the obliquity 8 evolves to a
point where
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FIG. 1. Geometry of the problem. The orbital plane of the satellite,
with normal K, precesses about the invariable plane normal n with a
constant inclination i at an angular rate —u. The obliquity of the satellite’s
spin vector k, measured with respect to the orbit normal, is 6. Note that
the azimuthal direction of the spin vector is suppressed in this cartoon.
Torques exerted on the satellite’s oblateness will cause k to precess about
n. When this precession rate matches w, the satellite is said to be in a
generalized Cassini state.

Ssin @ cos 6
wsin(0—i) H @)
Such a satellite is said to be in a “generalized Cassini
state,” adopting Peale’s (1969) usage. If one switches to a
coordinate system fixed relative to the orbit plane that
rotates uniformly with an angular velocity —u, then the
spin axis of a satellite in a generalized Cassini state will
appear stationary (though it is precessing in inertial
space).

Depending on the ratio of S/wu, there can exist two or
four values of the obliquity 6 which satisfy (2) (see Section
3). For most planetary satellites, two of these Cassini states
(denoted §; and S,) seem to be stable end-states of tidal
evolution (see Peale 1974). However, there are no satellites
for which both of these end-states exist found in state S,.
(The Moon is the only satellite found in S,; however, it
has parameter values for which §; does not exist, leaving
S, as the only possible Cassini state). Previously Peale
(1974, 1977) speculated that the selection of state 1 or 2
might involve a probabilistic capture (which should be
small for S5), or a sudden shift of a separatrix when synchro-
nous rotation is reached (which might push any satellite
in §; out of that state). Kadano (1993) suggested that colli-
sions are responsible for knocking satellites out of state 2
(the probability of going from S, to §; being much higher
than the reverse). The question that we address here is:
during the primordial spin-down, or any subsequent de-
spinning event (after being struck by an impactor imparting
a large amount of angular momentum, for example), what
Cassini state will a planetary satellite evolve to? In particu-
lar, why do there not seem to be any satellites occupying
the high obliquity Cassini state 2?

We first derive the orbit-averaged rotational equations
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of motion for a satellite, and convert the equations to a
non-dimensionalized form in Section 2. The presentation
of the paper then examines a progression of more compli-
cated problems (each involving successively more terms in
the equations of motion). Section 3 reviews the concept
of generalized Cassini states. We then move on in Section
4 to discuss the more complete problem of the evolution
of an oblate axisymmetric satellite under the action of tidal
forces (the problem to which the most attention has been
given in previous literature). We show that neglecting the
triaxial shape of the satellite results in there usually being
only one stable end-state, which is selected by the fixed
parameters of the problem. In Section 5, we show that
inclusion of the non-axisymmetric terms does not qualita-
tively alter this conclusion: only S| retains stability when
both §; and S, exist, for physically plausible values of the
parameters. Thus we conclude that all known synchro-
nously locked planetary satellites could only be in state 1
(with the exception of the Moon).

2. THE EQUATIONS OF MOTION

2.1. Variables and equations

We consider a triaxial satellite in a circular, inclined,
and precessing orbit about a planet, and in a state of princi-
pal-axis rotation (i.e., the spin axis k is identical to the axis
of maximum inertia). The coordinate system is coprecessing
with the satellite’s orbit plane. The satellite’s rotational
state is described by Euler angles 8, ¢, ¢ (see Fig. 15 in
Appendix A), and its angular spin velocity w. Note that a
triaxial body is symmetric under ¢ —  + 7. Commonly
used symbols are defined in Table I. As in Fig. I, the
obliquity 6 is measured with respect to the instantaneous
orbit normal K, which in turn is inclined at a constant
angle i (the orbital inclination) relative to the invariable
plane. The ascending node of the satellite’s equator plane
on its orbital plane is defined by the angle ¢, while
¢ locates the long axis of the satellite relative to this
node.

We derive in Appendix A expressions for the rigid body
and tidal torques and then the orbit-averaged, scalar cqua-
tions of motion. The dynamical variable set is (w, 6, ¢, ¢),
where w = wu/S is the dimensionless spin rate. Note from
Eq. (1) that the spin axis precession rate due to the solid
body torque on the satellite oblateness is ) =~ —S cos
0/w, if we neglect the orbital inclination. Thus, apart from
geometrical factors, w is essentially the ratio of the orbit
and spin axis precession rates, u/€). For simplicity, we shall
loosely refer to w as the “‘spin rate”, since it is proportional
to the dimensional spin rate w. The variable ¢, measures
the position of the long axis of the satellite relative to the
planet, in the rotating frame. Defining f as the anomaly
of the planet measured from the ascending node of the
satellite’s equator, then ¢ =  — f. Thus, in some sense,
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TABLE 1
Commonly Used Symbols

Symbol Meaning

Satellite’s moment of inertia about long axis

Solid body angular acceleration in dimensionless units

Satellite’s moment of inertia about intermediate axis

Ratio of solid body torques (B — A to oblateness)

Satellite’s moment of inertia about the spin axis

Fractional tidal despinning rate, in dimensionless units

Anomaly of planet in orbit plane, measured from N

Gravitational constant

Synchronous rotation rate in dimensionless units

Inclination of satellite orbit (w.r.t. invariable
plane)

Orbital normal

Satellite’s spin axis

The tidal Love number of the satellite

Invariable plane normal

Satellite’s mean motion

Orbit precession rate

Planet mass

Spin precession rate from torque on satellite oblateness

Euler angle locating equatorial and orbital line of nodes

Euler angle locating satellite’s long axis

Angular position of A axis relative to planet, ¢y — f

Specific dissipation function of satellite

Radial distance of satellite from planet

The mean radius of the satellite

Spin axis precessional acceleration caused by torque on
oblateness

Generalized Cassini state n

Dimensionless time, wt. Derivatives w.r.t. T are denoted
by a superscript dot

0 Spin obliquity, measured with respect to orbit normal

[/ Critical value of obliquity above which S, is unstable in

full problem

8, Obliquity of Cassini state n

w Spin rate, in dimensional units

w Spin rate, nondimensional, ~,u,/f).

W, Critical spin rate where S,/S, bifurcation occurs

~R Q= O WR >
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when ¢, = 0 the long axis is as ‘“‘aligned as much as possi-
ble” with the instantaneous direction to the planet (for
# = 0 the long axis points directly at the planet when
iy = 0). The interested reader is urged at this point to
read Appendix A.

We find that the important ratios of various parameters
that govern the behavior of the system are best seen if
we non-dimensionalize the equations. The final equa-
tions of motion, averaged over one orbit and one spin
period, are

w=—¢ [w(l —%sin26> — ycos 0]

— B(1 + cos 8)%sin 2y 3)
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6=sinisin¢+esin()[lcosﬂ—z]
w

2
+ gsin 6 (1 + cos 6) sin 244, 4)
¢ =sinicot @cos ¢ + cosi — %cos 6
— g(l + cos 6) cos 2y (5)
o= (@~ ), ©)

where the dot denotes differentiation with respect to the
dimensionless time variable .

In the dimensionless system the unit of time is 1/u so
that all time scales are relative to the orbital precession
period (which is 27). In these equations the three terms
involving the orbital inclination result from the precession
of the coordinate system. The (—1/w) term in the ¢ equa-
tion is the precession induced by the torque on the satel-
lite’s oblateness. Terms due to the tidal dissipation involve
the small quantity e(<1), which is the fractional amount
by which the satellite is tidally despun in one time unit,
while terms of order B(~1) are caused by the triaxial shape
of the body, and will average out for non-synchronous
rotation. vy is just the value of @ when the satellite is in
synchronous rotation. The fourth equation links the orien-
tation angle g to the dimensionless spin and orbital rates.
The quantity a(>1) is the solid body angular acceleration
S (due to the satellite oblateness) expressed in the new
time units. « is very much larger than unity for planetary
satellites for the simple reason that the precessional period
is always much longer than the orbital period (see Eq. (7)).
Thus only when w is very close to y does the rate of change
of 5 slow down and prevent the 8 terms from averaging
to zero. For rotation rates much above synchronous we
can effectively ignore the 8 terms.

The parameters «, 8, and y can be expressed as simple
combinations of the moments, the mean motion n, and the
orbit precession rate:

. % (g)z [c - (AC+ B)/2]
u

et
=3 C—(A+B)2

=34 | e=amnl

Specifying these three parameters is equivalent to giving
the three ratios A/C, B/C, and u/n. « is proportional to

(M
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the oblateness of the satellite, but contains the ratio of the
orbital motion to its precession. 8 is simply the ratio of
the two triaxial asymmetries, but is also the ratio of the
non-axisymmetric solid body torque to the axisymmetric
torque, so for an axisymmetric body, 8 = 0. We shall see
later that the fundamental parameter that governs the spin
evolution is y = un/S (i.e., u/§) when the satellite is in
synchronous rotation, to within geometrical factors). When
the dimensionless spin rate o is reduced to vy the satellite’s
spin has reached the synchronous state (cf. Eq. (6)). By
(7) we see that the only way y can exceed unity is for
the moment differences to be very small, or for the orbit
precession to be very rapid. Since u < n, it is probably
true that y < 1 for all planetary satellites except for very
distant or very spherical ones, the Moon being an excellent
example. In this case, due to solar torques, u/n = 0.004,
while [C — (A + B)2)/C = 5 X 107, leading to y = 5.
For Mimas (which is more typical) u/n = 0.003 while
[C — (A + B)2}/C = 0.057, so that y = 0.032.

2.2. Parameter Values

The measurements required to determine the values of
the dimensionless parameters for planetary satellites are
unfortunately scarce. This is especially true for the moment
differences, which are known only for the Moon (Yoder
1995). The moments of Phobos and Deimos are calculated
from Viking images by Rubincam, er al. (1995). From
spacecraft encounters we know the shapes of six other
satellites sufficiently well that we can calculate moment
differences directly from their ellipsoidal shapes (as given
by Dermott and Thomas 1988, Thomas 1988, Thomas 1990,
and Thomas and Dermott 1991). That is, if a > b > ¢ are
the satellite’s principal-axial radii, then we have

B-—A a>-b?
C &+
C—(A+B)2_(@+b)2~c
C a® + b? ’

The parameters «, 8, and vy can thus be calculated from
this information and the known periods and precession
rates (see Table II). As we shall see, vy is really the most
important of these, and we will show that our results about
the stability of the Cassini end states are insensitive to
errors in « and B of less than an order of magnitude. The
nodal precession rates wu are simply calculated from the
planetary values of J,, except for the Moon, which is domi-
nated by solar perturbations (Goldreich 1966b), and whose
precession rate is measured (see Yoder 1995).

We offer one cautionary note regarding the values of 8.
The present values given in Table II are probably larger
than the unknown values that applied during the primor-
dial spin-down phase. Once synchronously locked, the sat-
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TABLE II
Parameter Values for a Selection of Satellites
Object w(°/day) i(®) « B y &
Moon 0.054 5.1 4.5 x 10! 0.11 53259 2 x10°
Deimos 0.018 1.8 77107 029 00002 2x10°
Phobos 0.436 1.9 2.0 X 100 014 0.0012 1 x 103
Io 0.133 003 18X 10* 029 00839 1x10?2
Mimas 1.000 1.6 1.2 x 100 029 00322 3x10°
Enceladus 0.415 002 1.7x10* 032 00371 4x10*
Tethys 0.198 1.1 1.4 X 10* 039  0.0682 1 x 10°?
Miranda 0.056 42 S8 X I0° 035 00079 2x10°
Ariel 0.017 004 35x%10° 044 00250 9x10°

ellites will tend to deform to hydrostatic shapes that con-
form to the tidal gravitational field exerted by the primary,
for which 8 = 3/10. Dermott and Thomas (1988) conclude
that this has happened to Mimas, and the fact that the
shapes of many satellites can be fit well by equilibrium
ellipsoids lends support to this hypothesis. Jankowski er
al. (1989) tabulate moment differences, under the assump-
tion of hydrostatic shapes, for all the regular satellites.
Even for the Moon, Phobos, and Deimos, however, which
are known not to have hydrostatic shapes, 8 is within a
factor of 3 of 0.3. Thus the primordial values of 8 were
probably not less than 1/3 to 1/10 of the values given here.
We shall show that even reducing 8 by an order of magni-
tude will not alter our conclusions.

The tidal despinning parameter ¢ is subject to much
greater uncertainty. In terms of the usual tidal dissipation
factor Q, the tidal phase lag 2(w — n)Ar = 1/Q (Goldreich
and Peale 1970). Except for the Moon for which the ratio
k,/Q = 0.0011 is available (Dickey et al. 1994), we have
arbitrarily chosen At so that Q = 100 at a tidal frequency
2(w — n) = n. For the Love number k, we use

_ 3/2
1+ 192*/(2pgR.)

k>

(Burns 1977) where g = Gmy/R? is the surface gravity of
the satellite, p is its mean density, and the rigidity u* is
taken to be 3 X 10'! dyn/cm? for rocky objects, and 4 X 10"
dyn/cm? for icy ones. The densities of Mimas, Enceladus,
Tethys, Ariel, and Miranda were taken to be 1.2 g/cm?;
for Io we used p = 3.5 g/cm®. For most satellites k, < 1,
and we have

45pR2n?
g ———0
9u*pQ
Since for most satellites the orbit precession rate u o

Jo r’7? < J,n"3, g scales only as !, and thus can be some-
what greater for a distant, large satellite than a close,
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smaller one (compare Mimas and Tethys, or Miranda and
Ariel, in Table II). Since ¢ < 1, the exact value of this
parameter will make little difference to the stability of the
endpoints, and affects only the rate of evolution to those
states. Therefore the likely order of magnitude uncertainty
in the actual value of Q used here is of little concern.

2.3. Review of Approximations

Before we proceed, we review the assumptions involved
in our approach. A circular orbit is assumed for the satel-
lite; a non-circular orbit will induce periodic behavior in
the amplitude of the rigid body torques. One classic effect
of this is to allow the possibility of capture of the satellite
into a non-synchronous spin-orbit resonance, as in the
case of Mercury (Goldreich and Peale 1966). For the low
eccentricities of planetary satellites this capture probability
is small, and apparently did not happen. An eccentric orbit
for the satellite also would allow for chaotic tumbling, the
possibility of which is discussed below. Tidal effects tend
to-circularize satellite orbits in any case, although the time
scale for such orbital evolution is generally longer than
that necessary to damp the spin rate. We also neglect
semimajor axis evolution, since this occurs on an even
longer time scale.

The most serious approximation is our assumption of
principal-axis rotation. This approximation permits us to
average the equations of motion over both the orbital and
spin periods. A satellite struck by a large impactor will
usually have a wobble (non-principal-axis rotation) compo-
nent introduced into its spin. The wobble decay times (see
Burns and Safronov 1973, Harris 1994) of planetary satel-
lites can be comparable to their spin-down times. The
relevant time constants are given by Peale (1977),

3GC
Twobble = WI% (8)
_ wrtCQ
Tdespin - 3Gml2,k2R§’ (9)

where the symbols are defined in Table I. The ratio of the
wobble decay to despinning time scale /7y = 9(n/w)*,
and thus any satellite that is initially spinning much faster
than twice synchronous will have its wobble damped on a
time scale negligible compared to its spin-down time. A
full study of the spin-down of a satellite including non-
principal-axis rotation is beyond our computational abili-
ties since it would require the ability to encompass the
sub-orbital, precessional, and tidal time scales in a single
numerical calculation while directly computing all of the
torques.

The restriction to principal-axis rotation might be seen
as unjustified in light of Wisdom (1987), who observes that
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irregular planetary satellites can be induced to tumble as
the satellite switches from having its long axis circulating
to librating (in the co-rotating reference frame). Beletskii
(1972) showed that in the obliquity range # = 58°-97°
triaxial satellites near synchronous rotation are subject to
wobble instabilities. We will discuss this point further after
we present the results of our study of non-axisymmetric
satellites, where we argue that this effect, although almost
certainly present, does not affect our conclusions regarding
the ultimate stability of the Cassini states.

3. REVIEW OF CASSINI STATES

In the absence of tidal dissipation (i.e., ¢ = 0) Egs.
(3)—(6) describe the precession of the satellite in the rotat-
ing frame. The dynamics are discussed by Henrard and
Murigande (1987), Peale (1977), and Beletskii (1972); we
simply review the principal results in the setting of our
dimensionless equations (which make the behavior fairly
transparent).

3.1. Axisymmetric Satellites

Consider first the case of an axisymmetric satellite (8 =
0) on which no tidal forces act (¢ = 0). (Alternately con-
sider watching a non-synchronous satellite on a time scale
much shorter than that over which tides can affect the spin
vector). The ¢ variable becomes irrelevant, and we are
left with the reduced set of dimensionless equations

®=0

6 =sinisin ¢ (10)

. .1
¢ =sinicot Bcos ¢ + cosi — —cos 4.
)

Not surprisingly, without dissipation the spin rate w is
constant. We can thus think of the spin rate w as a parame-
ter, and the trajectories describe paths in (6, ¢) C S? on
the surface of a sphere. Note that y (and hence the mean
motion n) does not appear in these equations, so there is
nothing special about synchronous rotation.

The terms that do not involve w simply describe the
apparent motion of the spin vector in the orbital frame
due to the precession of the coordinate axes. As a trivial
case, if the satellite is spherical so that w — < and the
orbital inclination i = 0 then the obliquity € is constant
and the spin axis’ azimuthal precession rate is unity, ie.,
the spin vector appears to precess at constant obliquity at
the same rate as the coordinate system (recall that the
orbital precession rate u defines the non-dimensional
time scale).

For an oblate satellite the torque exerted on the equato-
rial bulge modifies this simple solution. The resulting pre-
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FIG. 2. Precession trajectories for the Cassini problem. These panels show the level sets of the Cassini Hamiltonian (11) projected onto the
unit sphere, and thus the paths traced out by the spin axis of an axisymmetric satellite in the rotating coordinate system, for various values of the
(fixed) dimensionless parameter w. At any given value of w, there are values of the Hamiltonian such that the vertices of the parabolic sheets do
not intersect the sphere. The transformation (sin 6 sin ¢, —sin 8 cos ¢, cos §) — (X, Y, Z) is used. The diagrams are relatively insens.iive to the
value of the orbit inclination for i < 10°, except very close to the critical value of w where §; and S, appear (see the discussion in the text). The
locations of the generalized Cassini states (where there is no precession in the rotating frame) are shown.

cession trajectories are closed because Egs. (10) are deriv-
able from the Hamiltonian,

2
.. , , cos” @
H =sinicos ¢V1 — cos? § — cos fcos i + ——

PR (11)
where ¢ and cos @ are the canonically conjugate coordi-
nates. The advantage of this representation is that we im-
mediately realize that the trajectories are just the level set
of the Hamiltonian on the unit sphere. A manifold of
constant H is a parabolic sheet that intersects the unit
sphere along a curve that is one of the precession trajector-
ies. Examples are shown in Fig. 2, for several values of w.
We see that there are up to four special values for the
Hamiltonian, at which the parabolic sheet is tangent to the
sphere (and thus we have a fixed point of the equations
of motion). These are the generalized Cassini states, as
introduced by Colombo (1966) and Peale (1969), and are
by convention numbered S, through S, as shown. One can
examine an orthogonal view of this sphere to get a better

view of three of the four generalized Cassini states, as
shown in Fig. 3. State 4 is a saddle point of the flow,
and the two homoclinic trajectories that pass through it
separate trajectories circulating around S, S;, and S;, which
are centers. S, is on the opposite hemisphere and thus
cannot be seen in Fig. 3. They are referred to as “‘general-
ized” because the first of Cassini’s laws (synchronous
rotation) is not necessarily obeyed. In general there is
nothing special about the satellite’s rotational orientation
relative to the planet while in a generalized Cassini state;
it is not true that a single hemisphere faces the primary
for example. However, S;, S;, and §; are the libration
centers around which the spin vector of a non-synchro-
nously rotating satellite will precess on time scales over
which tides are negligible. We shall see that tidal effects
will eventually drive the satellite to a true synchronous
Cassini state, but the concept of the generalized, non-
synchronous Cassini state is a useful one. Often we will
drop the word ‘generalized’ in what follows, assuming
it to be understood.
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FIG. 3. This figure shows the ¢ = 0 side of the unit sphere (¢ = 0 along X = 0 in this projection), corresponding to the @ = 0.7 panel of Fig.
2. The separatrix through state S, is more clearly visible. S, is on the reverse side of this sphere.

The locations of the Cassini states can be easily obtained
from Eqgs. (10). For a fixed point we clearly must have
sin ¢ = 0 = ¢ = 0 or 7. The ¢ equation then furnishes
the equation for the required value of 6,

. . 1 .
0 =sinicos 68cos ¢ + cosisin § ——cos fsin 8
w

1 (12)
=sin(@ i) = o sin(20),

where if ¢ = (0, 7) then we take the (+, —) sign, respec-
tively. The ¢ = 7 case recovers condition (2) for co-preces-
sion of the spin axis and orbit normal in Fig. 1. For ¢ =
7 there is always a single solution to this equation on 6 €
[0, 7]; this is the location of Cassini state S,. For ¢ = 0
there are three solutions if w < w., a critical value which
~ depends on the orbital inclination, or only one solution
(S3) if > w.. As o decreases through w = w. a saddle-
node bifurcation occurs, creating states S; and S, (Fig. 2).
The critical value for the spin at which the bifurcation
occurs is a function only of the orbit inclination, and a plot
of w. vs i is given in Fig. 4a.

The highest obliquity state for ¢ = 0 is always S, while
if the other two states exist, S, is the lower obliquity of the

two and S, is of intermediate obliquity. This is illustrated in
Fig. 4b, which shows a bifurcation diagram (a plot of the
locations of the equilibrium points as a function of a tun-
able parameter, in this case w) for the obliquities 6 of the
Cassini states as a function of  for an inclination i = 5°.
For rapid orbital precession relative to spin axis precession
(w > ), the two possible Cassini states asymptotically
approach 6 = i for S,, and 6 = m — i for S; that is, aligned
and anti-aligned with the normal to the invariable plane
f. The Moon falls into this category, with i =~ 5.1° and
6, = 6.7°. For slow orbital precession (w < w.), which is
the case for almost all other regular satellites, the four
Cassini states approach (8 = 7/2, ¢ = m) for S, and (0 =
0, /2, m; ¢ = 0) for §;, S4, S, as in the last panel of Fig.
2. Specifically, when  is small, the commonly occupied
state S; lies at 6, = w sin i (see Eq. 12). This is the situation
for most (and possibly all) other despun satellites. Note
that when looking at Fig. 4b one should not think that the
S, and S, branches are in any sense ‘‘close,”” as they are 7
radians apart in ¢.

3.2. Triaxial Satellites

The above results hold only for axisymmetric satellites,
or those that are not near synchronous rotation. For a
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FIG. 4. Properties of the Cassini state problem, in which the spin
rate w is fixed. (top) For high spin rates there are only two fixed points
of the Cassini state equation (12). This plot shows the value of w. below
which there are four Cassini states instead of two. For small i, which is
typical for planetary satellites, w. = 1. (bottom) Obliquities of the Cassini
states for i = 5° (for smaller inclinations the plot changes very little).
The Cassini state obliquities depend on the value of w. Note that the S,/
S4 saddle-node bifurcation occurs at w = 0.8, as expected from the upper
plot. ¢ = 0 for all branches except S,, for which ¢ = 7; the S, and S,
branches are thus not in any sense close to each other.

triaxial satellite close to synchronous rotation, the positions
of the Cassini states (which now obey all three of Cassini’s
laws) shift. For ¢, = constant, we require @ = v and
examine the fixed points of the system:

o = —B(1 + cos )% sin 24y (13)
6= sinisin ¢ + gsin (1 +cos 9)sin2yy (14)
P .1
¢ =sinicot cos ¢ + cosi — ;cos 0

- g(l + cos ) cos 24y. (15)

(If the satellite is close to, but not exactly in, synchronous
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rotation, the fast libration that resuits for the i, variable
(see Section 5) effectively results in the average value of
w being y.) Now, (13) implies that ¢, = mn/2, where m =
0, 1, 2, 3, but because of instabilities explained in Section
5, we need only consider ¢ = 0 or 7. Thus (14) again
implies that ¢ = 0 or 7, and we recover the usual expression
for the obliquities of the Cassini states of a synchronous
triaxial satellite (Peale 1977):

B

sin(@ = i) = isin(w) + ;sin 6(1 + cos 6).

(16)

Again there are two solutions for @ > 1 and four for w <
1, which are numbered in the same fashion as before.
A small displacement from S;, S,, or S; (for a satellite
unaffected by tidal forces) results in the pole precessing
about the fixed point. We will discuss the stability of these
states to tidal perturbations in Section 5.2. For synchronous
bodies, the precession trajectories on the sphere are again
determined by the intersections with a parabolic surface
(see Peale 1977). Observe that even for a triaxial body,
the full Cassini states will only become the precession cen-
ters near synchronous rotation; until w = y the sin 2¢4 and
cos 24, terms rapidly average to zero, and the body will
precess around a generalized Cassini state. Generalized
Cassini states exist for all values of w at particular values
of the spin obliquity. The Cassini states (generalized or
not) would thus seem to be mostly a curiosity, near which
satellites would be found only by chance, were it not for the
fact that they are closely related to the natural endpoints of
tidal evolution for a precessing orbit.

4. EVOLUTION OF AXISYMMETRIC SATELLITES

4.1. Fixed Orbit

Consider an oblate, axisymmetric satellite in a fixed
(non-precessing) orbit. It is easy to show from the dimen-
sional equations of motion in Appendix A that there is
only one, globally asymptotically stable, fixed point, corre-
sponding to synchronous rotation with zero obliquity. The
time scale for the decay is just the classic despinning time
(see Eq. (9)). However, low obliquity satellites with w >
2n are initially driven away from zero obliquity, as was
noted by Darwin (1879) and Goldreich and Peale (1970).
Peale (1977) explains this effect in terms of the torques
on the components of the angular momentum vector. Also
note that satellites beginning with retrograde rotations (cos
6 < 0) can temporarily be driven sub-synchronous. Regard-
less of these interesting detours, the final state is always
6=0,w=n.
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FIG. 5.

Null clines of the axisymmetric system. The solid line is the null cline of the 8 and ¢ equations projected onto the 6, w plane, for the

parameter values of Mimas. The solid S,/$4 null cline does not extend all the way to @ = 0, but in fact stops at w == 4 X 10~* due to the new saddle-
node bifurcation. The dotted lines show the nul] clines of the & equation, for various values of y (the value of vy simply being the value of w at
which the null cline intersects the w axis). All the & null clines have 6 — 7/2 as @ — 0.

4.2. Precessing Orbits

Before analyzing the full four-dimensional equations we
consider the behavior of an axisymmetric satellite (8 = 0)
in a precessing orbit, evolving under the influence of tidal
forces. Equation (6), governing ¢, decouples when
B = 0, reducing Egs. (3)-(6) to what we call the axisymme-
tric system:

02
W= —s{w (1-81112 6) —ycos 0},

6 =sinisin ¢ + esin 9{0050_1},
2 @

; .. cos 6 . cosf
¢ =sinicos ¢——+cosi— .
sin 6

Recall that the tidal dissipation rate e satisfies 0 < e < 1.
Our B8 = 0 restriction is not as artificial as it may appear,
since this set of equations applies even to triaxial satellites
in an average sense as long as the rotation rate does not
closely approach the synchronous value (0 = ¥).

In contrast to the analysis of Cassini states in Section 3,

the spin rate w is no longer a parameter of the system.
Instead, w is now a variable, coupled to the position of the
spin axis. In addition, y (and thus the mean motion n) now
appears as a parameter in the system. From numerical
integrations of Egs. (17) we have found that the final state
and qualitative behavior of the system are determined al-
most completely by y; changes in either the tidal damping
rate ¢ or inclination i do not dramatically alter the tidally
evolved endpoints of the axisymmetric satellite for realistic
ranges of these parameters.

At this point, our approach differs qualitatively from
that of Peale (1974), who studied the tidal evolution of
Mercury into a Cassini state. Peale’s approach was to ig-
nore the & equation and numerically integrate the re-
maining system around one precessional cycle, during
which the spin rate of the satellite will change only very
slightly. Since the position of the Cassini states will not
change if the spin rate w is constant (Fig. 4), over a single
precession the Cassini state position (and hence the preces-
sion trajectory) is fixed. Thus Peale examined the sense of
drift of the obliquity 6, numerically integrated over a single
precession trajectory, a full numerical integration being
prohibitive at the time. He presented his results of the
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form of plots of the averaged rate of drift of the obliquity
(6) as functions of 8, for various values of w/y = w/n. This
produced the classic picture (see Fig. 6.3 of Peale 1977) in
which he showed that tides will tend to drive the satellite
to whichever generalized Cassini state is contained within
the same separatrix loop (through S,) as the initial condi-
tion. Thus, satellites which would precess around S, if there
were no tides will be driven to S;, and similarly for S,.
Peale also found that S is unstable: objects whose spin
obliquities are larger than that of the S, separatrix (includ-
ing most retrograde spins) would have their endpoints—
neglecting effects due only to the synchronous spin lock—
decided by their initial conditions, which would determine
which of S, or S, the trajectory would be drawn to as it
“crossed” the S, separatrix. Numerical integrations which
follow the tidal dissipation of the spin rate are now quite
feasible, and we show below that the picture just sketched
is largely, but not entirely, correct. The main difficulty is
due to the fact that although both S; and S, are attractive
in 6, ¢ space, one of them is usually spin-rate unstable for
an axisymmetric satellite.

To understand this, we must study the flow of Egs. (17).
We might hope to analyze these equations by setting € =
0 and studying the unperturbed system (the regular Cassini
equations (10)). However, because @ = 0 in the £ = 0 limit,
the system is structurally unstable (see Guckenheimer and
Holmes 1983) and Eqgs. (17) are considered a singular per-
turbation problem. As a result, none of the features of the
unperturbed system (such as equilibria, closed orbits, etc.)
that exist for the Cassini state equations (10) can be guaran-
teed to exist for & # 0. In fact, the small & terms in the
axisymmetric system lead to behavior that is qualitatively
different from that of the Cassini equations. First note that
the very high obliquity branch of fixed points related to

S, is removed. This is easily seen since @ = 0 in Egs.
(17) requires
cos 0
=y 18
YT An)sin? 6 (18)

which is impossible for 6 > 7/2, since w is strictly positive
and the right hand side is negative. The S; branch is thus
rendered non-existent by tides (an excellent example of
the structural instability of the problem; the branch is not
simply made unstable, it is completely removed by the
global bifurcation), and no axisymmetric satellite can ever
find spin stability at obliquities larger than 90° (within the
approximations of our model). Full equilibrium requires
that (18) be satisfied, which is true on a two-dimensional
surface in (w, 6, ¢) space called the @ null cline (although
it is clearly independent of ¢, &, and i). The 6, ¢ null cline
is almost identical to the locations of the fixed points in
the Cassini problem since ¢ < 1. Only if w ~ g7/sin i and
6 is not small does the new term in the 6 equation modify
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the structure. This actually creates a second saddle-node
bifurcation, connecting the previously distinct S, and S,
branches, as discussed by Quinn (1995).

The equilibrium points of Egs. (17) are determined by
overlaying the @ null cline onto the 6, ¢ null cline. Figure
5 shows a sequence of these null clines for various values
of . The 6, ¢ null cline is so weakly dependent on y that
we have chosen to use y = 0.032 corresponding to Mimas.
Every @ null cline tends to w = 0 as § —» 7/2 and to w =
v for small 6. For any given value of y the @ null cline
usually intersects the 4, ¢ null cline only once (except in
a small range of y discussed below, where the Sy, S4 saddle-
node bifurcation appears). These intersections determine
the approximate location of the real equilibrium points of
the axisymmetric system (approximate since the plotted 6,
¢ null cline will depend on i and v, but this dependence
is very weak for the small inclinations and gammas of most
planetary satellites).

The sign of @ changes as the null cline is crossed. Thus
trajectories that exist to the right and above the line & =
0 drift to the left (in this region @ < 0) while trajectories
to the left and below this line drift to the right (& > 0).
We see that for small y the only null cline intersection
occurs along the §; branch, and that for large vy the only
intersection occurs along the S, branch. Almost all plane-
tary satellites (excepting the Moon) are in the former
regime.

To illustrate the consequences of these points, we over-
lay three sample trajectories of the axisymmetric system
onto the previous diagram for y = 0.4. Figure 6a shows
the damping of a satellite that begins at low obliquity,
spinning at twice the synchronous rate (w = 2vy). Since this
state is to the right of the @ null cline, @ < 0 and the
spin is reduced on a time scale of ¢(1/e) (recall that the
precession time scale is order unity). Trajectories simulta-
neously damp (on the same 1/e time scale) to the nearest
6, ¢ null cline (remember that ¢ is not shown in this
projection). In Fig. 6a these considerations simply result
in the satellite despinning to the equilibrium point on S,
while maintaining a low obliquity. In contrast, Fig. 6b illus-
trates the behavior of the same initial spin vector, excepting
that the initial spin rate is now changed to three times
synchronous. The satellite is attracted to the S, manifold,
and drifts along it past the §,/S, saddle-node bifurcation
since it is attracted to ¢ = 7. The fast oscillation apparent
in the figure is the time scale over which the spin vector
precesses around the generalized Cassini state. As an ap-
proximate view we can think of this as the spin vector
following one of the precession trajectories shown in Fig.
2 (the w = 1 panel being approximately correct at the start
of the integration). The satellite is then forced to remain
near S, until it has despun all the way down to w = &vy/
sin i, at which point it encounters the new saddle-node
bifurcation at high obliquity, where it ‘‘falls off”” and tran-
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FIG. 6. Trajectories in the axisymmetric system, for the parameter values y = 0.4, i = 1.5°, and & = 3 X 107>, Three initial conditions are
illustrated, with the identical null clines superimposed in each case. All the trajectories eventually reach the only stable equilibrium point given by
the intersection of the null clines. (a) An initial condition at twice the synchronous rate (w = 2y = 0.8) started a low obliquity simply despins (being
to the right of the & null cline) to synchronous rotation. (b) An initial condition started at three times the synchronous rate is attracted to the high
obliquity $, branch, and proceeds to follow it down to a very low spin rate, before it falls off the S, branch at high obliquity (see text). The obliquity
is then rapidly reduced and the satellite is spun up (now being to the left of the @ null cline) to the synchronous rate. (c) An initial condition started
at three times the synchronous rate but with an obliquity greater than 90° (that is, retrograde spin) is attracted to the high obliquity S, branch, and
then evolves as in Fig. 6b. It is also possible in this case for the trajectory to pass through the S, branch, be attracted to the S, branch and proceed

directly to the equilibrium point as in Fig. 6a.

sits very rapidly over to the S; manifold (this is similar to
the phenomena discussed by Holden and Enreux 1993).
Notice that in the final regime it is now to the left of
the @ null cline and thus its spin rate increases toward
synchronous. As a final case, we show in Fig. 6c the evolu-
tion of a satellite again started at three times the synchro-

nous rate, but with a retrograde spin (8 > #/2). The satellite
despins and is captured by the S, null cline, along which
evolution proceeds as in Fig. 6b; however note that it is
also possible to pass through the S, null cline, drop down
to the S; null cline, and go directly to the fixed point
(without collecting $200). To aid visualization, we show in
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FIG. 7. The trajectory shown in Fig. 6¢ is here projected onto the
¢, 0 plane (i.e., orthogonal to Fig. 6¢). Note that zero obliquity is at the
top of the page, so that the low obliquity S state is at the upper corners.
The initial condition is in the bottom center (6, = 1.9, ¢, = 7). The
trajectory evolves upward, is temporarily captured around generalized
state S,, near 6 = 1, and damps down to it as its obliquity slowly increases
due to the decreasing spin rate. The generalized Cassini state then follows
the 8, ¢ null cline and ¢ drifts slowly to lower values until the trajectory
passes the S,/8; saddle-node bifurcation. The spin pole then rapidly
evolves up to zero obliquity and is captured around Sy, to which it damps.

Fig. 7 the Fig. 6¢c trajectory projected onto the ¢, 6 plane.
The initially high obliquity spin vector is captured into
libration around $,, and gradually damps down to the equi-
librium point. However, the spin is simultaneously damp-
ing and thus the generalized Cassini state about which the
libration takes place is gradually moved to higher obliqui-
ties, and the trajectory follows this motion. As the spin
rate continues to drop, the generalized Cassini state moves
away from ¢ = 7 (the dark tail in the center of the figure)
due to encountering the S,/S, saddle-node bifurcation dis-
cussed above, at which point it rapidly evolves up to low
obliquities, where S, is located.

Similar considerations hold for the large y case (see
Fig. 8). Here initial conditions initially above and below
synchronous are driven to the only available equilibrium

0.5

----------

L e e e B S S L S e 2

0 0.5 1 15 2
w
T T T T T T
L ] PR R
1.5 2
FIG. 8. Two trajectories in the axisymmetric system, for y = 1.2,

i = 15° and ¢ = 3 X 1073 Changing the value of y has shifted the
location of the equilibrium point. The null clines are superimposed in
both cases; again the only available end state is given by their intersection.
(a) An initial condition above synchronous simply despins to the fixed
point. (b) Initial conditions below synchronous are forced to spin up.
This particular trajectory exhibits an expected change in precession ampli-
tude as the lower saddle-node bifurcation is passed when S, (which it
had been precessing around) disappears.

point, on the S, branch, as determined by the intersection
of the null clines. In this case the result is more intuitive
since the regular Cassini state analysis would claim that
only Cassini state S, exists, and thus it is logical that this
is the only possible endpoint. In contrast, for small y the
classic analysis would indicate that both S, and S, are
possible endpoints, but we have seen that the S, branch is
in fact spin unstable.

There does, however, exist a narrow range of y values
(approximately from y = 0.5 to near y = w,; see Fig. 5)
for which two stable equilibrium points exist, although this
region is probably not occupied by any real satellites. This
range is determined by the fact that for 6 near #/2, and
writing £ = #/2 — 6, we must have to lowest order w =
2y£in order to satisfy (18). However, on the 6, ¢ null cline,
with i = 0 and ¢ = 7, we have w = £ near § = 7/2. Thus,
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even if this null cline reaches almost to w = 0 (as it will
do for ey/sin i < 1), the two curves will not intersect if
v < 0.5. The upper limit depends slightly on i, but for small
i no second equilibrium point occurs for y > @, ~ 1. In
fact, only the Moon is known to have y > 1, and it is
unlikely that any other satellites have y > 0.1. (The lunar
case is especially interesting since substantial orbital evolu-
tion has occurred; see Ward 1975.) Thus, we shall not worry
further about this intermediate regime, even though it is
the only regime in which there are in fact two stable end-
points, the choice of which does depend on the initial
conditions, as was Peale’s (1974) original suggestion.

We have also fairly thoroughly explored parameter
space for the problem, including large orbital inclinations
(up to 30°) and large values of ¢ (up to almost unity). In
these regimes, when vy is of order unity, one finds many
interesting dynamical phenomena, including globally sta-
ble limit cycles and chaotic attractors. Since these occur
for unphysical parameter values we will not present these
results here (but see Quinn 1995).

We have seen that the final endpoint in the tidal evolu-
tion of a perfectly axisymmetric satellite is determined
completely by the value of v; for y < 0.5 only S is accessi-
ble, while for v > w, S, is the only possibility. Rather
surprisingly, we find that for the very small values of y
that are typical for planetary satellites, an initially rapidly
spinning object (w > ) or one that finds itself near the
high obliquity branch, could be driven down to an ex-
tremely small spin rate of @ ~ gy/sin i at high obliquity
before transiting over to the S, equilibrium point at @ =
v and @ ~ < sin i. This behavior would seem unrealistic
since we know that when the satellite crosses o = v, (i.e.,
passes through synchronous rotation), any existing triaxi-
ality in the satellite will serve as a moment arm, the torque
on which may act to stabilize the synchronous spin rate.
This unfortunately complicates our simple picture of tidal
evolution and requires a more complete treatment, which
we now present.

5. THE COMPLETE EQUATIONS

Planetary satellites are not perfectly axisymmetric. We
expect that the torque associated with B — A may have
a dramatic effect upon the rotation as a state of near-
synchronous spin is reached, and inhibit the sub-synchro-
nous rotation illustrated in Fig. 6b. The dimensionless pa-
rameter B (see Eq. (7)) expresses the relative importance
of the non-axisymmetric B — A moment compared to
the rotation-induced C — A moment. Therefore we now
examine the complete set of equations (3)—(6), which in-
clude the effects of a permanent non-axial moment of
inertia. Recall that o > 1 (typically a == 10*-107). Thus,
unless w == v, 4 (which indicates the position of the long
axis of the satellite relative to the planet) varies on an
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orbital time scale, and circulates at a tremendous rate com-
pared to the other angles (which vary on the precession
time scale). Therefore we expect that all the i, terms will
average to zero until the rotation of the body is very close
to synchronous. In fact, we expect that the terms involving
o will be completely unimportant to the qualitative evolu-

tion until
1
ov=c(3)

at which point these terms ‘“‘turn on.” Numerical simula-
tions confirm that this is indeed the case. The average
behavior of the system is perfectly well described by the
axisymmetric equations (17) as long as (19) is not satisfied.
The axial asymmetry just superimposes a very high fre-
quency oscillation on the @ evolution, with an amplitude
proportional to 8. We can therefore apply our knowledge
of the behavior developed for the axisymmetric case until
synchronous rotation is reached.

(19)

5.1. Long-Axis Libration

In near-synchronous rotation, the B — A torques will
completely dominate the system since for all real satellites
the B terms are orders of magnitude larger than most of
the other terms in the equations (ie., 8 > ¢ in the &
equation, and B/w > 1 in the § and ¢ equations). Because
of this, we can gain some insight by ignoring all terms
except the B terms. Assuming that this results in no net
change in 6 or ¢ over a complete i cycle, we examine
just the w and ¢ equations in the limit of small obliquity
when there are no tidal terms:

@ = —4f sin(24y)
th = o ~ ).

Combining these into a single equation and switching back
to dimensional units yields

3B-A
U
T2 ¢

n?sin(2yy) = 0. (20)

This is the same as Eq. (5) of Goldreich and Peale (1966),
used to study the spin—orbit coupling of Mercury, but with
the orbital eccentricity set equal to zero. The character of
the trajectories of this equation is effectively a rigid rod
pendulum equation (doubly periodic since the system is
symmetric under ¢ — Y + 7). The points (¢, = 0, ¢ =
@/2, 3m/2) are unstable since this effectively interchanges
the axes so that B — A <0, in which case (20) has exponen-
tially growing solutions. Should a satellite near ¢, = 0 (or
7) in synchronous lock be struck so as to have its spin rate
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FIG. 9. A bifurcation diagram for the full equations, using the ¢, i, and B8 values appropriate for Mimas. For any value of vy, the location of
the fixed points can be located (Mimas has y = 0.032). Two unstable branches (¢ near #/2 and 3#/2) have been omitted. The solid and open dots
locate positions on the S, and S, branches, respectively, where the eigenvalues change sign (the positions of these two dots are close, but not
coincident). Note that the S and S, branches are superposed on the ¢ plot, but that this plot shows clearly the separation of the S4 and S, branches

(compare with the 8 plot). See the text for further discussion.

increased by a small amount iy, the satellite will simply
librate about the % = 0 (or 7) fixed point. It is easy to
show that as long as ¢ < V8B (or ¥p<
nV3(B — A)/C in dimensional units) the satellite will be
driven back to synchronous rotation (that s, ¢, = 0) before
iy can complete 1/4 of a revolution (recall that this is i,
not ), and the satellite will librate with constant amplitude
about the fixed point ¢ = 0, ® = vy on a short time scale
(of order the orbital period divided by V(B — A)/C).

A simple calculation shows that an impactor of order
1073 of the mass of Mimas, striking its surface obliquely
at 20 km/sec, is required to break the synchronous lock.

In fact, this would likely shatter Mimas. Close satellites,
once they have deformed to a hydrostatic shape, are un-
likely to have ever been knocked out of their synchronous
locks. However, more distant satellites require a smaller
impact since the necessary additional spin rate scales as
n = a 372, Thus lapetus, for example, could be knocked
out of synchronous rotation and damped again, perhaps
interchanging the leading and trailing hemispheres. Lis-
sauer (1985) discusses these issues.

Even if not knocked out of its synchronous lock, a
disturbed satellite will librate around the fixed point.
The tidal torque will then damp out this libration, on
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a time scale of order 1/e. To see this, include the tidal
term in the spin evolution equation; if @ is librating near
zero (i.e., around S;), then averaged over such a libration
we have

w=—g(w—7y)—4Bsin 2y, (21)

Y= oo —7) (22)
Setting s = @ — vy and linearizing around the fixed point
(s = 0, ¢y = 0) gives eigenvalues (to lowest order
in ) of

A~ —%8 +\V/"8ap. 23)
The negative real part gives a damping time scale for the
libration amplitude of 2/e. Numerical simulations of the
full set of equations for low obliquity confirm that this
result holds for the full system. For Mimas, this libration
damping time scale is approximately 1000 years.

A similar analysis for a system librating around a high
obliquity fixed point (@ = 7/2) yields eigenvalues with real
parts of —&/4, and so it would seem that we should again
damp to the equilibrium point, albeit at a slightly slower
rate. In fact, we show below that for the high obliquity
limit the approximations made in truncating the full system
to (21)-(22) are too severe.

5.2. Bifurcation Diagram

To learn about the global structure of the full four-
dimensional equations, we examine a bifurcation diagram
(Fig. 9). Since ¢ is very small, it has little impact upon the
location of the fixed points. Both i and 8 vary over small
ranges, so we use y (which varies by orders of magnitude)
as our tunable parameter. We see that the ¢y equation
demands w = . To determine the other variables at an
equilibrium point, we first solve the @ = 0 equation for i
to give

(24)

. ey (1 - cos 6>
sin(24o) = - —2% (1 + cos 0) '

We use this to eliminate sin(2¢4) in the é equation and
write

_&esinf 3 —cosb
2sini (1 + cos 6)

sin ¢ (25)

Substitution of these results in the ¢ equation leads to
a transcendental equation for the values of 6 at which
equilibrium points exist,
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0=f() == 1—sin2¢>sini2?sg+cosi

né
(26)

- %cos 0 g(l + cos O)V1 — sin®(2¢y),

where the signs on some of the terms depend on which
branch of the solutions we pick for the cosines derived
from (24) and (25). Two of the i branches (i near /2,
3%/2) are always unstable (the long axis being perpendicu-
lar to the direction to the planet), so we will only consider
the branches near 0 or 7; thus we choose the negative sign
on the B/y term in (26). We can solve for the zeroes of
the function f(6) to find the equilibrium value of 6 and
then use (24) and (25) to determine the location of the
equilibrium points. Clearly for small € we expect both
and ¢ to be close to 0 or 7, and (26) reduces essentially
to the Cassini state expression (16) for o = 7. Figure
9 shows a bifurcation diagram for the parameter values
appropriate to a Mimas-like object (v is tunable, so the
diagram locates the equilibrium points for Mimas only for
v = 0.032). A similar diagram for a Moon-like object is
shown as Fig. 10. In these diagrams, the small deviations
of p and ¢ from the values 0 or 7 represent the balance
between the solid body and residual tidal torques at syn-
chronous rotation. Note that the latter is non-zero for
0 # 0 (see Eq. (48) in Appendix A).

Figures 9 and 10 are qualitatively similar to that for the
Cassini problem (cf. Fig. 4), but there are some important
differences. The tunable parameter is vy, not o (w is of
course forced to be vy at the equilibrium points). The S,
S, saddle-node bifurcation has moved to a larger value of
v since the Cassini state positions are influenced by the 8
term (see Eq. (16)). The §; branch behaves as before, and
the S, branch still goes to small obliquities (6, — i) for
large spin rates. On the S; branch, at synchronous rotation
for y < 1, equilibrium in (15) implies that sin 6, = -y sin
i/(1 + 2B). An important change is that for large obliquities
the S, and S, branches are no longer asymptotic to 6 =
7/2. This is because the ¢ equation has been radically
modified at small spin rates. These high obliquity branches
must approximately satisfy

1—$[cos0+(1+cos¢9)B]=0,

since i and i are small, and cot 8 does not diverge. The first
term (cos i to lowest order) is simply the orbit-precession
induced change in ¢. For most satellites, y < 1, and so the
second term must be made small by the obliquity contribu-
tions. When 8 was zero, this was simply done by having
8 — m/2 and thus cos 8 — 0, representing decreasing the
averaged torque on the oblateness of the satellite by bring-
ing the rotation pole close to the orbit plane. With a perma-
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FIG. 10. A bifurcation diagram for lunar parameter values. See the caption to Fig. 9.

nent non-axial deformation, this no longer eliminates the
averaged torque since the nonaxial torque remains. In fact,
the two solid body torques must be balanced against each
other, which implies an obliquity greater than 90°. The
requirement on 6 is

Y-8

cos(92=1+ﬁ.

27)

For small y, which is typical, this requires cos 6, < 0. For
v > (3 this condition is not relevant because the obliquities
become small and the first term of the ¢ equation cannot
be ignored.

The stability of the fixed points was determined by a
linear analysis and examination of the eigenvalues at each

point. The S; branch has four complex eigenvalues with
negative real parts and is thus always stable in the full
problem. The S, branch always has two of its four eigenval-
ues strictly real, one positive and the other negative. The
other two eigenvalues on the S, branch change sign below
a certain value of v (shown by the solid dot in Figs. 9 and
10). These two eigenvalues are complex, with positive real
parts for y smaller than this value, and with negative real
parts above it (until the S, branch ceases to exist at the
saddle-node bifurcation). Thus S, is still unstable with the
inclusion of the B — A terms, and exponentially so since the
positive real root, corresponding to the saddle structure, is
large. The S, branch shows a similar behavior, with the
real parts of two of its four complex eigenvalues changing
sign. Above a particular value of y (shown by the open
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circle in the figures) it has four complex eigenvalues with
negative real parts (as does S;) and is therefore stable,
but below this value the complex eigenvalues have two
negative and two positive real parts, and the fixed point
is thus unstable. The positive real parts are both small, and
the instability occurs only on the tidal time scale. This is an
extremely important result since most planetary satellites
have y < 1 and thus, if they were ever at high obliquity,
would lie in this regime. The location of the change in
stability of S, and S, is not a strong function of 8. Decreas-
ing B by an order of magnitude from the values shown in
Fig. 14 only lowers the stability changeover points by a
factor of 2 in y. Thus, a very small primordial value of 38
will not result in the upper branch of fixed points being
freed from their instability. In summary, ) is stable, and
S, unstable, for all values of y (for which they exist). S, is
stable only for values of vy greater than the value indicated
by the open circle (at order unity).

We present in Appendix B a calculation showing that
there is a critical value of the obliquity 6, = 68° =~ 1.18
radians above which all fixed points in the bifurcation dia-
gram are unstable. Observe in Figs. 9 and 10 that the
stability changeover points all occur for this value of the
0, regardless of the value of y at which the branches first
satisfy this condition. The lack of stability of this high
obliquity branch is best discussed in conjunction with the
results of our numerical studies.

5.3. Numerical Results

Numerically, we are facing the daunting computational
task of following the spin behavior of the satellite (on a
time scale of 1/a), but for tidal evolution time scales,
@1/e). Thus the numerical “dynamic range” required is
Aale) ~ 105-10'3, Only recently has computer hardware
advanced to the point where the lower end of this range
is feasible. Since Mimas has a/e = 3 X 107, we will use it
to illustrate our results, but firmly believe that our results
are insensitive to the changes in these parameters. In fact,
for the purposes of the integrations in regards to both
computational speed and ease of viewing the evolution in
the figures, we have increased ¢ by a factor of 10. We have
confirmed that the resulting evolutions are simply sped up
by the same factor; the final states and all the qualitative
features are identical to the more exact integration.

The most common case of interest would be that of a
satellite with y < 1 having its libration damped to S;. This
is illustrated in Fig. 11, for the case of Mimas starting at
twice synchronous. The time step in the integrator (we
used a simple fourth order Runge-Kutta algorithm) is
smaller than the spin period in the rotating frame (ie.,
dr < 1/e) in order to correctly average out the effects of
the axial asymmetry. For Mimas this requires a time step
10* times smaller than used before in the calculations of
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Figs. 6-8. As discussed above, for w > y the average behav-
ior of w(7) is the same as in the axisymmetric system, but
with a high frequency oscillation superimposed. Only when
o =1y = 0.032 is reached do the 8 terms in the equations
turn on, at which point the long axis of the satellite is
captured into libration. At this point the pendulum equa-
tion (20) is the correct approximate view of the phase
space, and the libration is gradually damped out by the
tidal terms, on a time scale of (2/g), as predicted by (23).
In Fig. 11 the continued circulation of ¢ is an artifact of
the coordinate system, since the spin axis is very close to
the pole.

Synchronous locking to S, in the lunar case is very similar
to the Mimas case, and will not be illustrated. Note that
the instability of the §, branch discussed above is not rele-
vant to the lunar case since the final obliquity of =~ 6.7°
is smaller than 6. = 68°. We also will not illustrate the
evolutions of satellites that begin at high obliquity and
evolve directly to S;. This reasonably common behavior
(which could occur in Fig. 6c if the trajectory had passed
through the S, branch and fallen directly down to §;) de-
pends on the initial conditions, but does not bear directly
on our question of the non-occupancy of S,.

Our final topic is the behavior of satellites that find
themselves near the high obliquity branch of fixed points
(the low vy, high @ region in Fig. 9). In the previous section
we observed that a perfectly axisymmetric satellite which
was attracted to the upper branch would be forced to spin
down to extremely small spin rates (w == gy/sin i; see Fig.
6b) before eventually crossing over to the §; state. This
behavior seems unlikely, since as synchronous rotation is
passed axial asymmetries would be expected to lock the
spin rate, trapping the satellite in S,. However, the bifurca-
tion diagram (Fig. 9) shows that fixed points along the
upper branch are unstable above 6.

In fact, we find that for the realistic parameter values
of Table II, satellites are never drawn even close to the
high obliquity fixed point. Trajectories that are initially
attracted to the high obliquity branch (and thus are in
some sense precessing around S, in a narrow range of 6
near 7/2 as in the @ = 0.1 panel of Fig. 2) do not approach
the full (four-dimensional) equilibrium state. What hap-
pens instead is illustrated in Fig. 12, in which a trajectory
initially attracted to the S, branch is displayed, picking up
the evolution at twice synchronous. The time scale for
damping the precession amplitude around the fixed point
is comparable to the time scale for damping the spin rate
to synchronous (cf. Fig. 6b), so the spin vector still has some
reasonably large amplitude in # around the generalized
Cassini state. (The precession around the generalized Cas-
sini state is visible as the dark ellipse near = #/2 in the
lower left panel of Fig. 12.) Then, as w approaches vy, the
synchronous lock dramatically alters the behavior. The
satellite “rolls up” to S, with a short period of sub-synchro-
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An illustration of synchronous capture. Mimas is started at twice the synchronous spin rate, and despins until ¢4 is captured into

libration at 7 == 430 (corresponding to 685 years of real time). The structure visible in the plots is due to beating between the various precessions and
the output sampling rate. Note that after the lock  oscillates above and below synchronous and that the amplitude of the obliquity libration increases.

nous behavior (which is not unexpected for a high obliquity
satellite being acted upon by tides; see Section 4.1). This
basic pattern of behavior, with minor modifications, is fol-
lowed by all high-obliquity satellites that we have inte-
grated which spin down along the upper branch. Note
that during the sub-synchronous phase, the mean spin rate
continues to drop until the @ null cline is crossed, so the
axisymmetric system is, even at this stage, an approxi-
mate guide.

However, during the period after w drops below 0.04
in Fig. 12, the B8 terms are never really negligible. This
is illustrated by the w(f) plot, in which the amplitude
of the fast oscillation is evidence of the contributions

of these terms. One possible interpretation of the post-
S, behavior, as originally suggested by Peale (1974), is
that we may view the problem in terms of the Cassini
state precession trajectories of Fig. 2. Examining the
o = 0.1 panel, we view the trajectory just before the
synchronous lock as precessing around S,, inside the
“critical parabola” that is really the separatrix through
S;. However, as Egs. (12) and (16) show, the position
of the Cassini state will suddenly shift to higher obliquity
when the B terms cease to average out. This results in
the critical parabola suddenly “jumping’’ down the sphere
(this is illustrated in Jankowski e al. 1989). If the spin
vector is left above the new critical trajectory then the
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FIG. 12. Spin damping of an initially rapidly rotating (5X synchronous) Mimas. A factor of 10 increase in & has been used to facilitate viewing.
The spin axis is initially librating around the high obliquity branch (8 = /2, ¢ = 7) and follows it down to low spin rates. However, as synchronous
rotation is approached (w = y = 0.032) the satellite rolls up to the low obliquity S; state. The null clines for the axisymmetric system are shown
in the top panel for reference, and the synchronous spin rate is shown as the dashed line in the bottom right panel.

tides would proceed to damp the obliquity to S;. In fact,
this interpretation seems to explain Fig. 12 quite well if
we assume that the B8 terms are always acting below
o = 0.45.

The situation is somewhat more complicated than this
if we wish to explain why no primordial satellites were
trapped in S,, because the amount that the critical parabola
shifts depends on 8. If primordial satellites had smaller
values of B8 than those we assume here, or large orbital
inclinations (e.g., Triton—see Jankowski et al. 1989), it is
not clear that the critical parabola jump would always be
sufficient to remove the satellite from S,. However, we saw
before that in fact the high obliquity fixed point of the full

equations is unstable for § > 6.. Even if we exquisitely
tune the variables so that the satellite is started very near
this equilibrium point, behavior like that shown in Fig. 13
results. The linear stability of the 6 and ¢ equations is
apparent; more importantly, this figure shows that the two
eigenvalues with positive real parts produce an unstable
growth in the libration amplitude of the long axis. The
ultimate consequences are shown in Fig. 14; the libration
grows until the long axis breaks into circulation and the
satellite then evolves to lower w along the S, branch until
it “falls off”” and is damped to the low obliquity (S,) state.
This figure is very interesting because it is illustrative of
all of the restricted problems discussed in this paper. In
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Instability of S, in the full equations. An object started with Mimas-like parameters near the high obliquity fixed point is driven toward

it in the 6 and ¢ variables, but ¢, and the spin rate w exhibit an instability.

the initial and final states where y is librating, the pendu-
lum-like equation (20) is the best approximation. The satel-
lite breaks free at ¢ = 2250 and once i begins to circulate
the axisymmetric system is the appropriate view of the
system (as evidenced by the monotonic drop in w). In fact,
over short time scales during this period over which the
spin is roughly constant, the generalized Cassini state pic-
ture is valid, with the spin pole precessing around S, on a
skinny ellipse (since the 6 amplitude is small while the ¢
amplitude is large). This lasts until ¢+ =~ 3700 when the
trajectory encounters the axisymmetric system’s S,/S, sad-
dle-node bifurcation at @ = g7y/sin i ~ 0.003, whereupon
the obliquity drops dramatically (as in Fig. 6b). The axisym-

metric regime ends at ¢ = 4100 when the long axis is again
captured into libration, which is then damped as the system
approaches the only stable equilibrium point of the full
set of equations, at S.

Thus, even if the satellite remained inside the critical
parabola after the synchronous spin lock, the tidal insta-
bility of the fixed point prevents the satellite from damp-
ing to synchronous rotation at S,. This also holds for
any satellites which, for any reason, find themselves near
the upper obliquity branch close to synchronous rotation.
We believe that it is ultimately for this reason that
satellites with low values of y cannot be found in Cassini
state S,.
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around $; (in 6, ¢) slowly drifts and the spin rate drops until the S,/S, saddle-node bifurcation of the axisymmetric problem is crossed, at which
point the obliquity 6 is rapidly damped to near zero. The satellite is then captured by and damped to S; at synchronous rotation.

6. DISCUSSION AND CONCLUSIONS

The conclusion that the S, state is unstable for small y
should not be sensitive to our approximations. Although
it is true that the wobble decay times may not be negligible
compared to the despinning times for some satellites, the
wobble will eventually damp out and should the satellite
be near S, the instability illustrated in Fig. 13 will result
in its removal from that state. Perhaps more interesting is
the importance of the possibility of chaotic tumbling to
our results. Wisdom (1987) showed that irregular satellites
on eccentric orbits would begin to tumble as their long
axes attempted to switch from circulation to libration.

Through a limited number of numerical simulations of the
full Euler equations of motion, including the solid body
although not tidal torques, and abandoning the principal-
axis assumption, we find that the most irregular satellites
(e.g., Phobos) do indeed tumble during the passage into
libration, even when their orbits are circular. More regular
objects (e.g., Mimas) do not, and a comparison of the Euler
integration with Egs. (3)—(6) shows an excellent match at
low obliquity. At high obliquities, using current moment
differences like those in Table 2, we find that the satellites
are unstable to tumbling for spin rates as high as twice
synchronous. Thus details of trajectories computed from
the averaged equations for irregular satellites at high obliqg-
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FIG. 15.

Coordinate system for the problem. Here all of the angles
shown in Fig. 1 have been transferred to a single origin. The 1J plane is
the orbit plane, while the ij plane is the equatorial plane of the satellite.
The invariable plane normal n is in the JK plane. The ascending node
N is in the direction K X k, and is where the anomaly f of the planet is
measured from. The 8, ¢,  variables are the usual Euler angles (but
note that ¢, =  — f, not , appears in the averaged equations of motion).

uity (e.g., Fig. 12) are undoubtedly incorrect. Only very
close to S, (@ < 1.1 y, 6 within 0.1 radians of 6,) does the
tumbling motion cease in the Euler integration (which
neglects tidal effects).

Beletskii (1972) showed that near-synchronous satellites
that are in principal axis rotation about the short axis, with
their long axis pointed at the planet, are prone to wobble
instabilities if 58°15' < § < 97°15’. His model neglects tidal
effects; the physics of this instability is thus completely
different from the tidal instability of the previous section,
which persists for all § > 68°. Moreover, from (27), the
location of S, for satellites with 8 =03 andy < 1is 6, =
103°, so S, would be at higher obliquity than the wobble
instability regime for most natural satellites.

Our intent has been to find a reason why no satellites
can be in Cassini state 2. Although several possibilities
have been advanced in the literature (collisions knocking
satellites out of S, the spin lock shifting the critical parab-
ola, or wobble instabilities), none of these suggestions re-
ally firmly establishes why some satellites could not have
avoided these processes. The tidal instability that we pre-
sent is unavoidable, and no satellite can exist in principal
axis rotation near S, for large obliquity.

In conclusion, we have derived orbit-averaged equations
for the evolution of the spin vector, including non-axisym-
metric terms corresponding to the resonant argument ()
at synchronous rotation. In doing this, we have adopted
the principal-axis assumption that most previous authors
have invoked; this approximation is probably quite reason-
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able for satellites that begin at high rotation rates (since
their wobble-decay time will be short compared to the
despinning time) and for those that remain at low obliquity.
We have used a simple, physically-motivated tidal model
with Q@ ~ 1l/(frequency). The non-dimensionalization of
the equations then reveals the fundamental parameters
that govern the behavior. The axisymmetric system of
equations discussed in Section 4 is fruitfully viewed as a
superposition of the regular Cassini problem (Fig. 2) and a
slow drift in w due to the tidal effects. The only equilibrium

_point for the axisymmetric system is S, for y = u/Q} < 0.5,

and S, for v = o, (Fig. 5). Two endpoints (i.e., S; or S5)
are possible only in the narrow range 0.5 <y < w., where
real satellites are unlikely to be found. Figure 6 illustrates
some typical evolutionary trajectories.

The full set of equations requires synchronous rotation
(w = 7) for equilibrium, and near this rotation rate the
libration of the long axis is the dominant phenomenon
since the torques produced on the B — A moment are very
large. Linear stability analysis shows that tidal effects cause
librations to be damped around S; whenever it exists; how-
ever, S, is unstable in the full problem when it is located
at high obliquity (i.e., when 6, > 6. = 68°). Numerical
integrations confirm this expected capture into synchro-
nous rotation at S;, and the long-term instability of S,
(see Figs. 12-14). Integrations of initial conditions that are
found near S, show that damping to this state does not
occur for y < 1 due to the tidal instability, and thus capture
into §; is inevitable. Since it seems that all tidally despun
planetary satellites except the Moon satisfy y < 1, we have
a firm explanation for the lack of tidally evolved satellites
found in high obliquity spin states.

7. APPENDIX A

A satellite’s rotational motion may be described using
two coordinate systems defined by the sets of orthogonal
unit vectors {ijk} and {IJK] (see Fig. 15). The IJK system
is fixed with respect to the precessing orbit, with K defined
by the orbit normal. I is defined by the ascending node of
the orbit on the invariable plane, while J completes a right-
handed triad. The IJK system regresses about the normal
to the invariable plane, n, with constant angular velocity

—un = —u(sin iJ + cos iK), (28)
where i is the (constant) orbital inclination relative to the
invariable plane.

The second set of unit vectors (ijk} is body-fixed and
aligned with the principal axes of its inertia ellipsoid. Its
orientation with respect to the orbital axes is specified by
the Euler angles ¢, 6, and ¢, as shown in Fig. 15. The spin
axis is assumed to coincide with the axis of maximum
inertia, k, so that the rotational angular velocity w = wk
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and the satellite’s obliquity 6 = cos™!(k - K). Note that the
obliquity is measured with respect to the instantaneous
orbit normal K. The ascending node of the satellite’s equa-
tor (i.e., ij) plane on its orbital (IJ) plane is defined by the
unit vector N = K X Kk/sin 6. In the IJK system

k = sin #sin ¢l — sin 6 cos ¢J + cos K (29)

and
N =cos ¢I +sin ¢ J.
The equations of motion in the precessing IJK frame are

Clw'k + wk’ —wu(n XKk)] =T, (31)
where I' is the external torque exerted on the satellite and
primes denote differentiation with respect to time. We may
separate I into a component I'; due to the torque exerted
by the planet on the satellite’s non-spherical figure, and
the tidal torque exerted by the planet I',. Before deriving
explicit expressions for these torques, we first use (31) to
derive the equations governing the variations of w, 6, and
¢ separately. This is done most expeditiously by forming
scalar products of the equation of motion with the unit
vectors k, K, and N in turn (cf. Goldreich and Peale 1968):

Cw' =k-T, (32)
C[w' cos § — w8 sin 6 + wusinisin fsin ¢] = K- T, (33)

and

C[w¢' sin 0 — wu(sinicos 6cos ¢ + cosisin §)] = N-T.
(34)

k, K, and N are nor an orthogonal basis set, as k- K = cos
6. Combining (32) and (33) gives

—Csin 00’ =[K-T' — k-T cos 0)/w (35)

— Cusinisin Osin ¢.

Equations (32), (34), and (35) govern the evolution of the
magnitude and orientation of the satellite’s spin vector.

7.1. Solid Body Torque

The instantaneous torque exerted by the planet on the
permanent figure of the satellite is given by MacCul-
lagh’s formula:

F1=

29 1(C - B)(x-j)(r- Wi

r5

(36)
+(A=O)r-K)@-Dj+ (B - A)(r-i)(r jK],

(30)
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where A = B < C are the principal moments of inertia
associated with the axes i, j, and k, respectively. In order
to average this torque over both an orbital period and one
rotation of the satellite, we write r and the unit vectors i,
J, and k in terms of the mutually orthogonal vectors K, N,
and M = K X N. For a circular orbit, the longitude of the
planet measured from the I direction, A, increases linearly
with time and the planet’s position is given by

r = r(cos fN + sin fM), (37)
where f= A — ¢. The principal axes are given by the expres-
sions

i=cos ¢y N + sin ¢ycos M + sin sin H K
j=-—sin ¢y N + cos ¢ycos §M + cos sin 6K
k= —sin 6M + cos K.

(38)

Substituting the above expressions into (36), forming
the scalar products I'; -k, I'; - K, and T, - N, and then con-
ducting a partial averaging over complete cycles of ¢and A,
at constant values of 6 and ¢, we obtain after considerable
algebra (checked using the computer algebra package
MACSYMA) the desired average torque components,

(I' k) =T -K)

39
_36m, (B — A)(1 + cos 8)Xsin 2(yy — f)§ )

8r’
and
3G
(T, *N) = — Sr’fp (B — A)sin 6(1 + cos 6)(cos 2(¢ — f))
3G (40)
- 2;?" [C — (B + A)/2] sin 6 cos 6,

where the () notation denotes a time average we have not
taken, and will not take, for the following reason. For non-
synchronous rotation ¢ — f’ = w — n, where n is the
orbital mean motion, so that sin 2(¢ — f) and cos
2(y — f) average to zero, and there is no contribution from
the terms proportional to B — A to the average torque.
However, as the satellite nears a state of synchronous rota-
tion, ¢ — f' goes to zero and these terms turn on. Eventu-
ally the torque associated with these terms acts to stabilize
the synchronous rotation state (Goldreich and Peale 1966).
For simplicity, we write

h=¢-—f=¢+d—a, (41)

where i, becomes constant for synchronous rotation. Geo-
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metrically, % is the broken angle between the satellite’s
minimum moment of inertia axis (i) and the direction to
the planet, broken at the ascending node. We must stress
that 4 is not just the Euler angle locating the long axis.

The component of (I';-N) proportional to
C — (A + B)/2 is the usual torque responsible for the
precession of the spin axis of the satellite about the orbit
normal, and is independent of the rotation rate.

Finally, we may combine the above expressions for the
torque components to write a complete expression for the
average solid-body torque,

(') = —CR(1 + cos 8) sin 2¢p[k + K]
— [CR sin 6(1 + cos 6) cos 244 + CS sin O cos G]IN,

(42)
where we have introduced the shorthand notations
_3Gm,B—-A
R= 33 C (43)
and
3G —
§= my, C (B+A)/2. (44)

2r3 C

Both R and S are angular accelerations due to the planetary
torque on the satellite’s solid body deformations. Torques
containing the coefficient R (which is proportional to the
triaxiality) can be seen to average out in a complete iy
cycle (if 8 is roughly constant during that cycle). S is the
angular acceleration exerted due to the oblateness of the
satellite; the precession induced by this torque primarily
affects the ¢ variable.

7.2. Tidal Torque

The planet exerts an additional torque on the satellite
due to the phase lag in the tidal bulge it raises. Goldreich
and Peale (1968) give expressions for the components of
the tidal torque, I'; - k and I';- K, in terms of sums over
components in the Fourier expansion of the tidal potential
due to Kaula (1964). Even for zero eccentricity, however,
the resulting expressions are rather lengthy. A more direct,
physical approach is to modify the MacDonald (1964) tide
formalism, in which the tidal bulge is modeled as a hydro-
static equilibrium tide which lags the tide-raising potential
by a constant angle, 8. Instead of fixing &, which is some-
what unphysical, we assume a constant tidal time lag, At.
This particular formalism, also known as the “frequency-
dependent” tide model in the context of the Kaula expan-
sion, has the added virtue for our current purposes that the
angular phase lag goes smoothly to zero for synchronous
rotation, and reverses sign for sub-synchronous rotation.
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In terms of the usual tidal dissipation factor Q, the tidal
phase lag 2(w — n)Ar = 1/Q (Goldreich and Peale 1970).

Denoting the retarded position of the planet relative to
the satellite in body-fixed coordinates by p, the tidal torque
is then given by (Goldreich and Peale 1970)

_ 3k,Gm2RS (r- p)p X
FZ - r6 p2r2 »

(45)

where k, is the satellite’s second-order Love number
and R; is the satellite’s mean radius. Allowing for both
the orbital and rotational motion during the interval Ar,
we find

p=r— (nK X r)Ar + (wk X r)At. (46)

Writing r = r(cos AI + sin AJ), and using Eq. (29), we have

(p X r)/r* = w At[sin #sin ¢ cos A — sin O cos ¢ sin AJE (47)
-wAtk + nAtK.

For w At < 1 and n At < 1, pr = r? Averaging
the resulting expression for I'; over an orbit, we then
obtain

Ty =~ %[wk + (wcos 6 — 2n)K], (48)
where
_ 3k,Gm3R;
T=—C@ A (49)

For w > n and small 6, wT can be identified as the satellite’s
tidal angular deceleration rate (c.f Eq. (9)). Finally, we
evaluate the scalar products

CT

T k)= — > [2w — wsin? 6 — 2n cos 6] (50)

and

Iy K)= —%T[chosa—bz]. (51

Clearly, (I';-N) = 0. The latter expressions may also be
derived from those given by Goldreich and Peale (1968) for
e = 0, by assuming that their individual Fourier component
phase lags, £mpq = Ompq At, where the o, are the tidal
component frequencies.
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7.3. Equations of Motion

We substitute expressions (39), (40), (50), and (51) for
the solid body and tidal torque components into Egs. (32),
(34), and (35) to obtain the final orbit-averaged equations
of motion:

w' = —T[w <1 —%‘-sin2 0) — ncos 0]

— R(1 + cos 6)?sin 2yx (52)
0 = pusinisin¢ + Tsin 6 lcos()——’1
® 2 w
R _. .
+ ” [sin 6(1 + cos 6)] sin 2y (53)
) o 4 S
¢’ = u[sinicot #cos ¢ + cosi] — ;cos 0
R
o (1 + cos 8) cos 2¢s. (54)

For non-synchronous rotation, (sin 2¢p) = (cos 2¢g) =
0 and Egs. (52), (53), and (54) form a complete set. For
rotation near the synchronous rate we also need an equa-
tion for . Starting with the elementary expression for
the rotational angular velocity relative to inertial space

w=¢'K+ 0N+ y'k — un,

we obtain for the component of angular velocity about the
C axis

w. =1 + ¢' cos @ + u(sin i cos ¢ sin 6 — cos i cos 6).
This expression is identical to that given by Peale (1974),
as Eq. (9). Now, the satellite’s sidereal mean motion, for
small orbital inclination, is

n=XA —pu

so we have, from Eq. (41),

o=y + ¢ — N
w-—n+ ¢'(1—cosb)
— u(1 — cosicos 8 + sin i cos ¢ sin 6),

where we have assumed that w, = w (i.e., principal axis
rotation). In fact, we will use the simpler approximate ex-
pression

Yo=w —n, (55)
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where the neglected terms of {¢') and ¢{u) are generally
small compared with w — n, and are of the same size as
the off-axis components w, and w;, which have already
been neglected by our initial assumption of principal
axis rotation.

7.4. Non-dimensionalization

We switch to a dimensionless set of variables via the
following transformations:

T=Mut, W=ZwW, Yy==n

21k
Lix

(56)

Llx

a=S/u’> B , €=Tlu.

The angles 6, ¢, and ¢, are unchanged. However, the
dimensionless spin rate w and mean motion y are expressed
not in units of u (1/u being the dimensionless time unit),
but in units of S/u. This quantity is, to within a factor of cos
0, the precessional acceleration of the satellite (in inertial
space) due to the oblateness torque in one time unit. When
these substitutions are made, the dimensionless equations
of motion (3)-(6) result.

8. APPENDIX B

In an attempt to explain the instability of S,, we linearize
Eqgs. (3)-(6) around an equilibrium point, say (¢eq, weq,
0eq> ¢eq), to obtain the first variational equations on (8,
dw, 86, 6¢). We find the following equation governing the
evolution of §6:

86 = {273 sin Beq(1 + cos 6.4) cos 2(//eq} S

+ {sin i cos ¢y} 6

+ {5 sin Goq — %sin Oeq(1 + cos b4) sin 2(//eq} Sw
+ {% (2.COS Beq + 1)(cOS 6 — 1)
+ 5(2 €08 foq — 1)(cos 8q + 1) sin 2¢eq} 86.

However, (24) requires that g is small, of ¢{ey/B) and
we assume that sin i < B/y. As a result, when compared
to the coefficient of iy, which is of ¢{B/y), the remaining
coefficients are small in the above equation (we are assum-
ing that sin i < 1). Consequently, we neglect all terms in
this variational equation, except that of Sy,
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Under these conditions, the variational equation for 8¢
decouples; 8¢ does not appear in the equations governing
Yy or dw, and we have neglected its appearance in the
equation governing 66. This leads to the system

56 = {% sin f.q(1 + cos O.q) cos 2(//eq} Sy,

6{//0 =« 6(0’

8w = —{2B(1 + cos B.q)* cos 24r.q} Shy (57)

- {% (1 + cos? 9eq)} Sw — {e7y sin Geq(1 — cOs beq)

e 2B sin 0€q(1 + cos oeq) sin 2¢eq} 50,

which is simply a linear, third-order, constant-coefficient
ordinary differential equation, approximating the evolu-
tion near a high obliquity equilibrium point. The eigenval-
ues of this system (zeros of a third-order polynomial) are
easily computed, and, in fact, can be found in closed form.
However, the calculations quickly become unwieldy, even
when using computer algebra systems such as MACSYMA
or Maple. In addition, the coefficients depend on the loca-
tions of the equilibrium points, which must be deter-
mined numerically.

Using the numerically obtained locations of the equilib-
rium points on S,, we find that, as hoped, Eqgs. (57) are
unstable for small y and stable for large vy, just as are the
full triaxial equations (see Figs. 9 and 10). At the transition
between stability and instability of S,, these simplified
equations possess one negative real eigenvalue and a pair
of purely imaginary eigenvalues. This indicates the exis-
tence of a Hopf bifurcation in Egs. (57) and results in the
change of stability along this branch of equilibria (along
with additional minor conditions which are satisfied; see
Guckenheimer and Holmes 1983). As a final calculation
we find the location at which S, changes stability; specifi-
cally, we locate the points at which there exists a pair of
purely imaginary eigenvalues. A general third-order poly-
nomial A*> + ;A2 + A + ¢, = 0 has a pair of purely
imaginary roots if ¢y = cic;. Subsequently obtaining the
characteristic polynomial of Eqs. (57) and satisfying the
above relationship, we find that our requirement of pure
imaginary eigenvalues is satisfied if

ey{cos? Oq — 4 cOs beq + 1} (58)
— 4B 5in? B4 sin 2¢feq = 0.
Using (24) to obtain the equilibrium value of sin 24,

surprisingly we find that (58) reduces to an expression with
no parameter dependence,
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C08* Beq — 3 COS? Beq + 9 cOS O — 3 = 0,

which can be solved for 8.4 to yield

— _ 1/3 2 }
Ocq arccos{ 2+ 2V3)13 4 @+ 23" +1 )

=1.187 = 6, = 68°.

As a result of this unexpected simplification, our branch
of solutions changes stability when 6., > 6., independent
of the parameters. However, the location of the bifurcation
in ¢y, o, and ¢ does depend on the parameter values.
Because of the neglected terms in Egs. (57), this result
is expected to carry over only approximately to the full
set of Egs. (3)-(6). However, noting Figs. 9 and 10, we
find good agreement between the location of the Hopf
bifurcation and 6,.. We find that as the remaining parame-
ters are varied, the location of the bifurcation is constant
in 0 to several significant figures (although the other state
variables will change). Observe that exactly the same anal-
ysis carries through for S, resulting in the same value of
0., but this does not affect the overall stability of the
fixed point since the positive real root (contained in the ¢
variational equation) is always present above and below
the Hopf bifurcation. In summary, if a satellite has a value
of y which results in there existing fixed points at obliquities
that have 6 > 6, then these fixed points will be unstable.
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