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Abstract Two vibrating bubbles submerged in a fluid
influence each others’ dynamics via sound waves in
the fluid. Due to finite sound speed, there is a delay
between one bubble’s oscillation and the other’s. This
scenario is treated in the context of coupled nonlin-
ear oscillators with a delay coupling term. It has previ-
ously been shown that with sufficient time delay, a su-
percritical Hopf bifurcation may occur for motions in
which the two bubbles are in phase. In this work, we
further examine the bifurcation structure of the cou-
pled microbubble equations, including analyzing the
sequence of Hopf bifurcations that occur as the time
delay increases, as well as the stability of this motion
for initial conditions which lie off the in-phase mani-
fold. We show that in fact the synchronized, oscillating
state resulting from a supercritical Hopf is attracting
for such general initial conditions.
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1 Introduction

Delay is a widely exhibited phenomenon in dynam-
ical systems, characterized by when a system’s cur-
rent state depends at least in part on its history. There
are a wealth of examples of such systems, ranging
from technological to biological. Coupled laser sys-
tems, high-speed milling, population dynamics, and
gene expression are just a handful of examples where
nonnegligible delay presents itself inherently in the
dynamics of the system under study. This paper ex-
amines a system of coupled microbubbles, which are
influencing each other via acoustic waves. Such stud-
ies are motivated in part by medical applications—in
particular, the localized delivery of drugs via bubble
transport. In this process, microbubbles filled with a
drug are used as a vehicle for local delivery and are
propagated to a target site by use of ultrasound forcing
[1, 3, 9]. In such a scenario, it is desirable to have a
complete picture of the dynamical behavior of inter-
acting microbubbles in order to appropriately predict
their motion, for instance, in a feedback system. Full
understanding of the behavior of systems of coupled
microbubbles involves taking into account the speed
of sound in the liquid, which will lead to a delay in in-
duced pressure waves between the bubbles in a cloud.
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Fig. 1 Two bubbles submerged in a liquid. Note that bubble b

also influences bubble a with an induced acoustic wave. Delay
T = d/c where d is the distance between bubbles and c is sound
speed

We will provide here a very brief history of the
study of microbubbles. The first modern analysis in
bubble dynamics was made by Rayleigh [19]. His
work on bubbles assumed an incompressible fluid with
a constant background pressure, which has since been
extended to models of bubble dynamics in a com-
pressible fluid with time-dependent background pres-
sure; see e.g., Plesset [13], Gilmore [4], Plesset and
Prosperetti [14], and Joseph Keller and his associates
[6, 7], as well as many contemporaries including, for
instance, Lauterborn [8] and Szeri [20, 21] and others
[2, 5, 11].

In this work, we consider the dynamics of a system
of two delay-coupled bubble oscillators. The bubbles
are modeled by the Rayleigh–Plesset equation, featur-
ing a coupling term that is delayed as a result of the fi-
nite speed of sound in the fluid. A drawing of the phys-
ical phenomenon under study is presented in Fig. 1.
Manasseh et al. [10] have studied coupled bubble os-
cillators without delay. The source of the delay comes
from the time it takes for the signal to travel from one
bubble to the other through the liquid medium, which
surrounds them. Adding the coupling terms used in
[10], the governing equations of the bubble system are:

(ȧ − c)

(
aä + 3

2
ȧ2 − a−3γ + 1

)
− ȧ3

− (3γ − 2)a−3γ ȧ − 2ȧ = P ḃ(t − T ) (1)

(ḃ − c)

(
bb̈ + 3

2
ḃ2 − b−3γ + 1

)
− ḃ3

− (3γ − 2)b−3γ ḃ − 2ḃ = P ȧ(t − T ) (2)

where T is the delay and P is a coupling coefficient.
Here we have omitted coupling terms of the form
P1b(t − T ) and P1a(t − T ) from Eqs. (1), (2), where
P1 is a coupling coefficient [23]. Note that the equa-
tion follows the form explored by Keller et al. [6]. We
have assumed that the coupling strength is constant,
but a more realistic model could consider the coupling
strength to be reduced with increasing distance, effec-
tively rendering the coupling coefficient P as a de-
creasing function of the delay T .

Equations (1), (2) have an equilibrium solution at

a = ae = 1, b = be = 1 (3)

Analyzing only bubble A, we may determine the
stability of its equilibrium radius by setting a = ae +
x = 1 + x and linearize about x = 0, giving

cẍ + 3γ ẋ + 3cγ x + P ẋ(t − T ) = 0 (4)

Note that, since c and γ are positive-valued param-
eters, if delay were absent from the model (T = 0),
then Eq. (4) would correspond to a damped linear os-
cillator, which tells us that the equilibrium (3) would
be stable. In the presence of delay, the characteristic
equation must be solved to determine if any roots have
positive real part.

Recently, the authors have studied Eqs. (1), (2), and
developed explanations for their bifurcation structure,
including the presence of Hopf [12] and Hopf–Hopf
[24] bifurcations. However, these studies were limited
in that they investigated only a small range of possible
time delays. This work extends the previous by con-
sidering bifurcations that occur with larger delay.

2 Bifurcations of the in-phase mode

As studied previously [12, 26], the system (1), (2) pos-
sesses an invariant manifold called the in-phase man-
ifold given by a = b, ȧ = ḃ. A periodic motion in the
in-phase manifold is called an in-phase mode. The dy-
namics of the in-phase mode are governed by the equa-
tion [18]:

(ȧ − c)

(
aä + 3

2
ȧ2 − a−3γ + 1

)
− ȧ3

− (3γ − 2)a−3γ ȧ − 2ȧ = P ȧ(t − T ) (5)
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We analyze the equilibrium of this equation a =
ae = 1 for Hopf bifurcations, giving rise to oscilla-
tions. When Hopf bifurcations occur, there will be a
change in stability of the equilibrium point. To study
the stability of the equilibrium point, we will analyze
its linearization as provided in Eq. (4). This equation
is a linear differential-delay equation. To solve it, we
set x = expλt (see [15, 22]), giving

cλ2 + 3γ λ + 3cγ = −Pλ exp−λT (6)

We seek the values of delay T = Tcr, which cause
instability. This will correspond to imaginary values
of λ. Thus, we substitute λ = iω in Eq. (6) giving two
real equations for the real-valued parameters ω and T :

Pω sinωT = c
(
ω2 − 3γ

)
(7)

Pω cosωT = −3γω (8)

Note that these equations have infinitely many so-
lutions, as anticipated by the transcendental form of
Eq. (6). In our previous work, only the first solution
was studied. However, a further analysis of the bifur-
cation structure involves analyzing the full solution set
to Eqs. (7), (8). We choose the following dimension-
less parameters based on the papers by Keller et al.
when numerics are required:

c = 94, γ = 4

3
, P = 10 (9)

The solutions to Eq. (6) are then found to be:

ωα =
√

P 2 − 9γ 2 + 12c2γ + √
P 2 + 9γ 2

2c
≈ 2.0493

⇒ Tα = arccos (
−3γ
10 ) + 2πn

ωα

(n ∈ Z) (10)

ωβ =
√

P 2 − 9γ 2 + 12c2γ − √
P 2 + 9γ 2

2c
≈ 1.9518

⇒ Tβ = − arccos (
−3γ
10 ) + 2πm

ωβ

(m ∈ Z) (11)

Notice that, while there are only two frequencies
ωα , ωβ that solve the equations, each of them has
an infinite sequence of Tα , Tβ , respectively, that pairs
with it as a solution. We will designate any delay T at
which a Hopf bifurcation occurs as Tcr, independent of
its corresponding frequency. Because of the solutions
to Eqs. (7), (8) there will be two infinite sequences of

Fig. 2 Amplitude of limit cycle oscillations using numerical
continuation of Eq. (5) for the parameter values in Eq. (9), with
T as the continuation parameter. The Hopf bifurcations occur
in a sequence where Tα is followed by Tβ , and the two limit
cycles coalesce in a saddle node of periodic orbits. The plot is
continued in Fig. 3

Fig. 3 Amplitude of limit cycle oscillations using numerical
continuation of Eq. (5) for the parameter values in Eq. (9), with
T as the continuation parameter. The Hopf bifurcations occur in
a sequence where Tα is followed by Tβ until T ≈ 44, where two
Tα -type Hopf bifurcations occur in a row. This is a continuation
of Fig. 2

solutions that occur simultaneously. Each of the Tα ,
Tβ delays correspond to Hopf bifurcations.

Using the numerical continuation package DDE-
BIFTOOL [28], we present the amplitude of limit cy-
cle oscillations that are born out of these sequences of
Hopfs in Figs. 2 and 3. Note that the first Hopf bifur-
cation is of Tα-type, followed by one of Tβ type. The
two limit cycles born out of these Hopf bifurcations
grow until they reach a radius at which the two coa-
lesce and annihilate one another in a saddle-node of
periodic orbits. The typical behavior in Fig. 2 is that a
Tα-type Hopf always precedes a Tβ -type Hopf.
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Fig. 4 A Tα -type Hopf bifurcation followed by a Tβ -type.
Here, the Hopf points are situated such that there is still a re-
gion where, after the two limit cycles are annihilated, the equi-
librium point regains stability. Solid lines correspond to contin-
uation whereas dashed lines correspond to jumps which show
the stability of solutions as determined by numerical integration

In Fig. 3, this ordering is reversed at T ≈ 44. Here,
another Tα-type Hopf bifurcation occurs prior to the
Tβ -type Hopf. This generic exchange in order of the
two sequences has as a degenerate case the possibil-
ity that the two Hopf bifurcations align exactly, result-
ing in a Hopf–Hopf bifurcation. This phenomenon has
been studied previously by means of center manifold
reductions [24].

Next, we further examine Figs. 2 and 3 by charac-
terizing representative regions of the figures. We rec-
ognize three distinct “regions” of qualitatively differ-
ent behavior as the delay parameter increases. The first
is presented in Fig. 4, which exhibits a sequence first
of Tα resulting in limit cycle growth, followed by the
incidence of Tβ , which also spawns a limit cycle that
meets the first Hopf curve in a saddle-node of periodic
orbits. After the limit cycles are annihilated, the only
invariant motion is the equilibrium point.

The region presented in Fig. 5 has the same bifurca-
tion structure as that presented in Fig. 4, except that the
trailing Tβ -type Hopf bifurcation occurs close enough
to the next Tα bifurcation such that for any delay value,
there exists two stable periodic motions.

The region presented in Fig. 6 presents sophisti-
cated behavior that is explored in greater depth by the
authors through the use of an analogous system and
the center manifold reduction method [24]. Just prior
to this region (as apparent in Fig. 3), there is a reorder-
ing of the Hopf bifurcation sequence as a result of two
Tα-type Hopfs occurring in a row at T ≈ 44. This re-
ordering is a possibility granted only by the infinite

Fig. 5 A Tα -type Hopf bifurcation followed by a Tβ -type, but
with at least two limit cycles coexisting with the equilibrium
point continuously throughout the parameter range. Solid lines
correspond to continuation whereas dashed lines correspond to
jumps which show the stability of solutions as determined by
numerical integration

Fig. 6 For larger delay, the Hopf curves appear to meet as a
result the reordering of the Hopf points at T ≈ 44. Solid lines
correspond to continuation; the jumps have been omitted

number of roots for λ in Eq. (6) and the fact that Eq.
(5) is an infinite-dimensional dynamical system. As a
result, the behavior in Fig. 6 shows the Hopf curves
apparently intersecting. It should be noted that each
Hopf bifurcation occurs in its own two-dimensional
center manifold, and these amplitude curves are only
a projection of the dynamics of the system.

The primary focus of the forthcoming analysis is
the case where the Tα- and Tβ -type Hopfs follow each
other in that order (i.e., regions corresponding to Figs.
4 and 5).

The Hopf bifurcations may be further characterized
by their criticality. To analyze whether the bifurcations
are supercritical or subcritical, regular perturbations
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may be employed to characterize the motion of the as-
sociated eigenvalues. In particular, we begin with the
characteristic equation (6) and let T = Tcr + μ1. Next,
we establish perturbations on the eigenvalue:

λ = iωcr + K1μ1 + iK2μ1 (12)

That is, assume that �(λ) = 0 whenever μ1 = 0.
Equating the real and imaginary parts of Eq. (6) with
consideration of Eq. (12), and expanding for small μ1

using computer algebra [16, 17] results in:

K1μ1
(−3cω2

cr + 3γ + 3c
)

= −ωcrP sin(Tcrωcr)

+ (
cos(Tcrωcr)

(−ω2
crP − K2TcrωcrP − K1P

)
+ sin(Tcrωcr)(K1TcrωcrP − K2P)

)
μ1 (13)

K2μ1
(−3cω2

cr + 3γ + 3c
) + (3γ + 3c)ωcr + −cω3

cr

= μ1
(
cos(Tcrωcr)(K1TcrωcrP − K2P)

+ sin(Tcrωcr)
(
ω2

crP + K2TcrωcrP + K1P
))

− ωcrP cos(Tcrωcr) (14)

In solving for K1,K2 in terms of μ1, we determine
the “speed” at and direction in which the eigenvalues
cross the imaginary axis. In particular, the sign of K1

is of immediate interest; in particular, K1 > 0 implies
that the roots are moving from the left half-plane to the
right half-plane, implying a stable origin becomes un-
stable. This is one of the conditions for a supercritical
Hopf bifurcation.

Applying the conditions guaranteed by Eqs. (10),
(11) subsequently into the expression for K1 in Eq.
(13) gives a long expression, for which we substitute
in parameter values. For the first several ωα-type Hopf
bifurcations, the sequence of K1 is provided in Ta-
ble 1, whereas for the first several Tβ -type Hopf bi-
furcations, the sequence of K1 is provided in Table 2.

Given the exchange of stability that occurs at these
Hopf bifurcations, we therefore conclude that the Tα

values for delay correspond to supercritical Hopf bi-
furcations, whereas those corresponding to Tβ corre-
spond to subcritical bifurcations.

3 Stability of the in-phase mode

In the previous section, we established that in response
to an increase in delay T , there is a bifurcation struc-

Table 1 Sequence of the first several Tα -type Hopf bifurcations
and their corresponding values of K1

n Tcr K1

1 0.9673 0.0979

2 4.0332 0.0836

3 7.0992 0.0701

4 10.1651 0.0585

5 13.2311 0.0488

6 16.2970 0.0410

7 19.3630 0.0346

Table 2 Sequence of the first several Tβ -type Hopf bifurcations
and their corresponding values of K1

n Tcr K1

1 2.2035 −0.0840

2 5.4226 −0.0712

3 8.6417 −0.0595

4 11.8608 −0.0496

5 15.0799 −0.0415

6 18.2990 −0.0349

7 21.5181 −0.0296

ture, which alternates between supercritical and sub-
critical Hopf bifurcations. We drew this conclusion by
analyzing the stability of the origin and inferring the
stability of the periodic motion after bifurcation. How-
ever, there is a direct way to approach the stability of
the in-phase mode by means of perturbations.

The two-variable expansion method is a well-
known procedure for analyzing the amplitude and sta-
bility of limit cycles born in a Hopf bifurcation [15]. In
a previous study, the authors performed second-order
averaging [18] on the system for small delay. The two
variable method is analogous to the second-order aver-
aging approach and both methods will generate a set of
differential equations for the amplitude and frequency
of the limit cycle, as well as the approach of solutions
that start sufficiently close to the limit cycle.

To begin, we introduce two variables: one fast, an-
other slow:

ξ = Ωt (15)

η = ε2t (16)

Note that we expand immediately to O(ε2); this is
necessary because the nonlinearities are of quadratic
order. This expansion will result in the following ap-
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plications of the chain rule:

dx

dt
= Ω

∂x

∂ξ
+ ε2 ∂x

∂η

d2x

dt2
= Ω2 ∂2x

∂ξ2
+ 2Ωε2 ∂2x

∂ξ∂η
+ ε4 ∂2x

∂η2

(17)

Likewise, the time-delay term will also be affected
by the chain rule [27]:

ẋ(t − T ) = Ω
∂x(ξ − ΩT,η − ε2T )

∂ξ

+ ε2 ∂x(ξ − ΩT,η − ε2T )

∂η
(18)

We now introduce another asymptotic series that
builds a frequency-amplitude relationship into the
limit cycle:

Ω = ωcr + ε2k2 (19)

Now is the pivotal point at which we perturb off of
the critical delay. This is done to eventually retrieve an
asymptotic approximation for the dynamics of the sys-
tem in the in-phase manifold past the Hopf bifurcation.
In order to accomplish this, we set

T = Tcr + ε2μ2 (20)

The quantity ΩT may be expanded, dropping terms
smaller than O(ε2):

ΩT = ωcrTcr + ε2(μ2ωcr + k2Tcr) + · · · (21)

In the derivation that follows, the shorthand xd =
x(ξ − ωcrTcr, η) is adopted [25]. We wish to expand
Eq. (18) taking into account Eq. (21). To fully expand
this delay term in terms of its constituent derivatives,
we note that:

∂

∂ξ
x
(
ξ − ΩT,η − ε2T

)

= ∂

∂ξ
x
(
ξ − (

ωcr + ε2k2
)(

Tcr + ε2μ2
)
,

η − ε2(Tcr + ε2μ2
)) + · · ·

= ∂

∂ξ
x
(
ξ − ωcrTcr − ε2(k2Tcr + μ2ωcr),

η − ε2Tcr
) + · · ·

= ∂

∂ξ
x(ξ − ωcrTcr, η)

− ε2(k2Tcr + μ2ωcr)
∂2

∂ξ2
x(ξ − ωcrTcr, η)

− ε2Tcr
∂2

∂ξ∂η
x(ξ − ωcrTcr, η) + · · ·

which we write as:

∂

∂ξ
x
(
ξ − ΩT,η − ε2T

)

= xdξ − ε2xdξξ (k2Tcr + μ2ωcr) − ε2Tcrxdξη + · · ·
Therefore, the expansion for Eq. (18) is:

ẋd = (
ωcr + ε2k2

)
xξ (t − T ) + ε2xη(t − T ) + · · ·

= (
ωcr + ε2k2

)(
xdξ − ε2xdξξ (k2Tcr + μ2ωcr)

− ε2Tcrxdξη + · · · ) + ε2xdη + · · ·
= ωcrxdξ − ε2((μ2ω

2
cr + k2Tcrωcr

)
xdξξ

− k2xdξ + Tcrωcrxdηξ − xdη

) + · · · (22)

Next, the solution to the differential equation is ex-
panded in powers of ε:

x(ξ, η) = x0(ξ, η)+ εx1(ξ, η)+ ε2x2(ξ, η)+ · · · (23)

Using Eqs. (23), (22) along with the perturbations
(17), (19), and (20), the Taylor series expansion of Eq.
(5) may be equated for the distinct orders of ε. This
yields three equations (O(1), O(ε), and O(ε2)):

L(x0) = 0 (24)

L(x1) = 1

2c

((
2ω3

crx0ξ − 2cω2
crx0

)
x0ξξ − 3cω2

crx
2
0ξ

+ 24ωcrx0x0ξ + 20cx2
0

)
(25)

L(x2) = −(
4c3ωcrx0ξη + (

2c2x3
0ξ

+ 8x3
0ξ

+ 2Px0dξ x
2
0ξ

)
ω3

cr + ((−3x0x
2
0ξ

+ 6x1ξ x0ξ

)
c3

− 2Pc2μ2x0dξξ + (−24x0x
2
0ξ

+ (16x1ξ − 2Px0dξ x0 + 2Px1dξ )x0ξ

+ 2Px0dξ x1ξ

)
c
)
ω2

cr

+ ((
4c3x0ξξ − 2PTcrx0dξξ c

2)k2

+ ((
64x2

0 − 24x1
)
x0ξ

− 24x0x1ξ + 2Px0dξ x
2
0

− 2Px1dξ x0 − 2Px0dξ x1
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− 2Px0dξηTcr
)
c2)ωcr

+ (8x0ξ + 2Px0dξ )c
2k2

+ (
68x3

0 − 56x1x0
)
c3

+ (8x0η + 2Px0dη )c
2)/(2c3) (26)

where

L(xi) = ω2
crxiξξ + 4ωcr

c
xiξ + 4xi + Pωcr

c
xidξ (27)

From (27) we see that L(x0) = 0 can be solved for
x0dξ , and using this, appearances of x0d in Eq. (25)
have been replaced by non-delayed values of x0, x0ξ ,

and x0ξξ .
Equation (24) has the solution

x0(ξ, η) = A(η) cos(ξ) + B(η) sin(ξ) (28)

Inserting Eq. (28) into Eq. (25) and expanding ap-
propriately gives the result:

L(x1) =
(

ω3
cr − 12ωcr

2c

(
A2 − B2)

+5ω2
cr + 20

2
AB

)
sin(2ξ)

+
(

5ω2
cr + 20

4

(
A2 − B2)

+ 12ωcr − ω3
cr

c
AB

)
cos(2ξ)

−
(

ω2
cr − 20

4

)(
A2 + B2) (29)

Note that L(x1) has no secular terms since all O(ε)

terms are quadratic, as expected. Eq. (25) has the so-
lution:

x1(ξ, η) = C(η) cos(ξ) + D(η) sin(ξ)

+ E(η) cos(2ξ) + F(η) sin(2ξ) + G(η)

(30)

where the coefficients C,D are arbitrary functions of
η, and where E,F , and G are known functions of A

and B . We substitute Eq. (30) for x1 into Eq. (26) and
eliminate resonance terms by equating to zero the co-
efficients of cos(ξ) and sin(ξ). Doing so yields the
“slow flow” equations on coefficients A and B . The
slow flow equations on A and B both contain 588

terms, so we omit printing them here. However, the
equations are all of the form

dA

dη
= Y111A

3 + Y112A
2B + Y121AB2 + Y122B

3

+ Y101A + Y102B (31)

dB

dη
= Y211A

3 + Y212A
2B + Y221AB2 + Y222B

3

+ Y201A + Y202B (32)

where Yijk are all constant functions depending on the
parameters c, P and Tcr, ωcr.

In order to solve the system of Eqs. (31), (32), we
transform the problem to polar coordinates, setting:

A(η) = R(η) cos
(
θ(η)

)
B(η) = R(η) sin

(
θ(η)

)
This results in a slow flow equation of the form

dR

dη
= Γ1R

3 − Γ2μ2R (33)

dθ

dη
= Γ3R

2 + Γ4μ2 + k2 (34)

where the Γi are known constants.
Equilibria of the slow flow equations correspond to

limit cycles in the full system. The nontrivial equilib-
rium point for Eq. (33) will give a prediction for the
amplitude of the corresponding limit cycle depending
on μ2. We choose k2 such that when Eq. (33) is at
equilibrium for some Req, then dθ

dη
= 0 in Eq. (34). Ta-

ble 3 provides results of the perturbation method for
the given Tα parameter values.

Finally, we note that for the Hopf bifurcations in
Table 3, Γ1 and Γ2 are both positive. This shows that

Table 3 Results of the Two-Variable Expansion method for the
parameter values P = 10, γ = 4

3 on Eq. (5) where � = ε2μ2 =
T − Tcr

n Tcr Req/
√

� k2/�

0 0.9672 1.4523 −1.4506

1 4.0332 0.81566 −0.45758

2 7.0991 0.62844 −0.27136

3 10.165 0.52993 −0.19314

4 13.231 0.46676 −0.14984

5 16.297 0.42187 −0.12240

6 19.362 0.38784 −0.10346
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Fig. 7 Continuation and perturbation methods compared for a
series of Hopf points. Dashed lines correspond to perturbation
results, whereas solid lines correspond to continuation

limit cycles occur for μ2 > 0. Furthermore, it confirms
our earlier analysis suggesting that Hopf bifurcations
which occur with time delay Tα are supercritical be-
cause linearization about the equilibrium radius Req

yields that the equilibrium point of the slow flow (cor-
responding to the limit cycle that is the in-phase mode)
is stable.

A comparison of these results with numerical con-
tinuation is provided in Fig. 7. The continuation curves
were generated using DDE-BIFTOOL.

4 Stability of the in-phase manifold

While the above analysis has ascertained that, for the
Hopf bifurcations associated with time delay Tα , the
in-phase mode is stable, the question remains for the
original equations (1), (2) whether the motion is sta-
ble. That is, we have so far analyzed the dynamics
only when restricted to the initial conditions a = b,
ȧ = ḃ, and we have ascertained the local stability of
the in-phase mode restricted to this space. However,
if more general initial conditions are considered, will
the periodic motions born out of the supercritical Hopf
bifurcations be stable?

To answer this question, we will no longer restrict
our analysis to the in-phase manifold equation (5) and
instead will investigate the full system (1), (2). We will
again recognize that these equations exhibit the equi-
librium solution ae = be = 1, so we will look at de-
viations from that motion. We set a = ae + εx, b =
be + εy, solve for ẍ and take the Taylor series approx-
imation for the system for small ε. After dividing both

sides by a shared factor of ε, this will transform the
system (1), (2) into:

cẍ + 4ẋ + 4cx + P ẏ(t − T )

= 1

2c

(((
28x2 − 3ẋ2)c2

+ c
(
24ẋ + 2P ẏ(t − T )

)
x

− 8ẋ2 − 2P ẏ(t − T )ẋ
)
ε
)

− 1

2c2

(
c3(68x3 − 3ẋ2x

)
+ c2((64ẋx2 + 2P ẏ(t − T )

)
x2 + 2ẋ3)

+ c
(−24ẋ2 − 2P ẏ(t − T )ẋ

)
x + 8ẋ3

+ 2P ẏ(t − T )ẋ2)ε2 + O
(
ε3) (35)

cÿ + 4ẏ + 4cy + P ẋ(t − T )

= 1

2c

(((
28y2 − 3ẏ2)c2

+ c
(
24ẏ + 2P ẋ(t − T )

)
y

− 8ẏ2 − 2P ẋ(t − T )ẏ
)
ε
)

− 1

2c2

(
c3(68y3 − 3ẏ2y

)

+ c2((64ẏy2 + 2P ẋ(t − T )
)
y2 + 2ẏ3)

+ c
(−24ẏ2 − 2P ẋ(t − T )ẏ

)
y + 8ẏ3

+ 2P ẋ(t − T )ẏ2)ε2 + O
(
ε3) (36)

Note that we have already substituted γ = 4
3 from

Eq. (9). In the nomenclature of the above formulation,
Eqs. (1), (2) support a Hopf bifurcation in the in-phase
manifold x = y = f (t) (the periodic motion):

cf̈ + 4ḟ + 4cf + P ḟ (t − T )

= 1

2c

(((
28f 2 − 3ḟ 2)c2

+ c
(
24ḟ + 2P ḟ (t − T )

)
f

− 8ḟ 2 − 2P ḟ (t − T )ḟ
)
ε
)

− 1

2c2

(
c3(68f 3 − 3ḟ 2f

)

+ c2((64ḟ f 2 + 2P ḟ (t − T )
)
f 2 + 2ḟ 3)

+ c
(−24ḟ 2 − 2P ḟ (t − T )ḟ

)
f + 8ḟ 3

+ 2P ḟ (t − T )ḟ 2)ε2 + O
(
ε3) (37)
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We have found the approximate solution of Eq. (37)
for c = 94, P = 10, and T = Tcr + � to be

f (t) = Req cos
((

ωcr + ε2k2
)
t
)

(38)

where Req, k2 are calculated in the previous section
for delays Tcr corresponding to supercritical Hopfs;
see Table 3. The goal is to determine the stability of
the motion f (t) in Eq. (38). To do this, one may ana-
lyze the linear variational equations of Eqs. (35), (36).
Setting x = δx + f,y = δy + f and expanding for
small δx, δy results in the linear variational equations
shown in Eqs. (39), (40). Note that here the notation
ẋd = ẋ(t − Tcr) and the same for y is used.

cδẍ + 4cδẋ + 4δx + Pδẏd

= −1

c

(
(3ḟ δẋ − 28f δx)c2

+ (−12f δẋ + (−P ḟd − 12ḟ )δx − f Pδẏd
)
c

+ (P ḟd + 8ḟ )δẋ + P ḟ δẏd
)
ε

+ (((
6f ḟ δẋ + (

3ḟ 2 − 204f 2)δx)
c3

+ ((−6ḟ 2 − 64f 2)δẋ
− (4Pf ḟd + 128f ḟ )δx − 2Pf 2δẏd

)
c2

+ (
(2Pf ḟd + 48f ḟ )δẋ

+ (
2P ḟdḟ + 24ḟ 2)δx + 2Pf ḟ δẏd

)
c

− (
4P ḟdḟ + 24ḟ 2)δẋ

− 2P ḟ 2δẏd
)
ε2)/(2c2) + O

(
ε3) (39)

cδÿ + 4cδẏ + 4δy + Pδẋd

= −1

c

(
(3ḟ δẏ − 28f δy)c2

+ (−12f δẏ + (−P ḟd − 12ḟ )δy − f Pδẋd
)
c

+ (P ḟd + 8ḟ )δẏ + P ḟ δẋd
)
ε

+ (((
6f ḟ δẏ + (

3ḟ 2 − 204f 2)δy)
c3

+ ((−6ḟ 2 − 64f 2)δẏ
− (4Pf ḟd + 128f ḟ )δy − 2Pf 2δẋd

)
c2

+ (
(2Pf ḟd + 48f ḟ )δẏ

+ (
2P ḟdḟ + 24ḟ 2)δy + 2Pf ḟ δẋd

)
c

− (
4P ḟdḟ + 24ḟ 2)δẏ

− 2P ḟ 2δẋd
)
ε2)/(2c2) + O

(
ε3) (40)

To analyze Eqs. (39), (40), we set u = δx − δy and
v = δx +δy in order to transform the problem into “in-
phase” and “out-of-phase” coordinates. We then add
and subtract Eqs. (39), (40) to and from one another
respectively to obtain

cü + 4u̇ + 4uc − P u̇d

= 1

c

(
(ḟ − cf )P u̇d

+ (−ḟdP + (−3c2 − 8
)
ḟ + 12cf

)
u̇

+ (
cḟdP + 12cḟ + 28c2f

)
u
)
ε

+ (((
2ḟ 2 − 2cf ḟ + 2c2f 2)P u̇d

+ (
(−4ḟ + 2cf )ḟdP

+ (−6c2 − 24
)
ḟ 2 + (

6c3 + 48c
)
f ḟ − 64c2f 2)u̇

+ ((
2cḟ − 4c2f

)
ḟdP + (

3c3 + 24c
)
ḟ 2

− 128c2f ḟ − 204c3f 2)u)
ε2)/(2c2) + O

(
ε3)

(41)

cv̈ + 4v̇ + 4vc + P v̇d

= −1

c

(
(ḟ − cf )P v̇d

+ (
ḟdP + (

3c2 + 8
)
ḟ − 12cf

)
v̇

+ (−cḟdP − 12cḟ − 28c2f
)
v
)
ε

− (((
2ḟ 2 − 2cf ḟ + 2c2f 2)P v̇d

+ (
(4ḟ − 2cf )ḟdP + (

6c2 + 24
)
ḟ 2

+ (−6c3 − 48c
)
f ḟ + 64c2f 2)v̇

+ ((−2cḟ + 4c2f
)
ḟdP + (−3c3 − 24c

)
ḟ 2

+ 128c2f ḟ + 204c3f 2)v)
ε2)/(2c2) + O

(
ε3)

(42)

Inspection shows that Eq. (42) is the variational
equation of Eq. (37). Because of this, it is seen that
v determines the stability of the motion x = y = f (t)

in the in-phase manifold, while u determines the sta-
bility of the in-phase manifold. Since Eq. (42) is a
linear delay-differential equation, its solution space is
spanned by an infinite number of linearly independent
solutions. One of these solutions is v = df

dt
, as may be

seen by differentiating Eq. (37) and comparing with
Eq. (42). The solution is periodic since f (t) is peri-
odic. All other solutions of Eq. (42) are expected to be
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asymptotically stable for small ε, since as proven in
the previous section, f (t) is a limit cycle born in a su-
percritical Hopf bifurcation. Therefore, the stability of
the in-phase mode x = y = f (t) is determined solely
by Eq. (41).

It is notable that a basic difference between Eqs.
(41) and (42) is that when ε = 0, Eq. (42) exhibits a
periodic solution (due to the Hopf bifurcation), while
Eq. (41) does not. Thus, at ε = 0, Eq. (42) is struc-
turally unstable, whereas Eq. (41) is structurally sta-
ble. Therefore, for small values of ε, the stability of
Eq. (41) is the same as it is for ε = 0. The stability of
Eq. (41) (and of the in-phase mode x = y = f (t)) is
then determined by the behavior of the ε = 0 version
of Eq. (41):

cü + 4u̇ + 4cu − P u̇(t − Tcr) = 0 (43)

To solve Eq. (43), set u = exp(λt) and obtain the
characteristic equation

cλ2 + 4λ + 4cλ − P exp(−λTcr) = 0 (44)

Writing λ = a+ ib and equating imaginary and real
parts yields:

0 =P exp(−aTcr) sin(bTcr) + 4b + 2abc (45)

0 =P exp(−aTcr) cos(bTcr) − 4a + c
(
b2 − a2 − 4

)
(46)

For stability, all roots to Eqs. (45), (46) must have
a < 0. For instability, there must be at least one root
for which a > 0.

Figure 8 shows plots of the implicit functions in
Eqs. (45), (46), where intersections of the curves des-
ignate solutions to the system of simultaneous equa-
tions. Inspection shows that there are no roots for
which a > 0, showing that the in-phase mode is sta-
ble. These plots are only shown for the first few values
of delay for which their is a supercritical Hopf bifur-
cation.

This conclusion is supported by numerical integra-
tion using the MATLAB toolbox dde23, for which we
show a characteristic time integration in Fig. 9. The
time integration features an arbitrary choice of initial
conditions off the in-phase manifold, and it is wit-
nessed that the solution approaches the in-phase mode.

5 Conclusion

This work has investigated the stability of periodic
motions that arise from a differential-delay equation
associated with the coupled dynamics of two oscillat-
ing bubbles. The delayed dynamics arise as a result
of the finite speed of sound in the surrounding fluid,
leading to a nonnegligible propagation time for waves
created by one bubble to reach the other.

Fig. 8 Plot of the curves in
Eqs. (45), (46) for
(i.) Tcr = 0.96734,
(ii.) Tcr = 4.03324,
(iii.) Tcr = 7.09919, and
(iv.) Tcr = 10.165.
Solid lines are plots of Eq.
(45), dashed lines are plots
of Eq. (46)
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Fig. 9 Time series integration for arbitrary initial conditions
(here, (x0, ẋ0, y0, ẏ0) = (1.1,0,0.8,0)) for the bubble equation
just past a supercritical Hopf bifurcation with T = 4.2

The main focus of study for the problem is the
invariant manifold on which the bubble dynamics
are identical, which is termed the “in-phase mani-
fold.” The study investigated the dynamics of the in-
phase manifold, particularly around the equilibrium
radius of the bubble. It is shown that this equilib-
rium point undergoes a Hopf bifurcation in response
to a change in delay T giving rise to limit cycles.
There are two sequences of Hopf bifurcations that
occur at distinct intervals, with one shown to be al-
ways supercritical while the other subcritical. The su-
percritical Hopf bifurcations are further characterized
by use of the two-variable expansion method, which
provides a formal prediction for amplitude and fre-
quency of oscillations based on the delay parame-
ter.

With the stability picture of the in-phase mode on
the in-phase manifold established, the stability of the
manifold itself is then established. Through the use
of linear variational equations for the periodic motion
born in the Hopf bifurcation, it is shown that for ar-
bitrary initial conditions near the in-phase mode, all
motions will approach the in-phase manifold. There-
fore, the analysis of the in-phase mode is complete; it
is determined that, when it exists, the in-phase mode
is stable.
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