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a b s t r a c t

We investigate the stability of the in-phase mode in a system of two delay-coupled bubble
oscillators. The bubble oscillator model is based on a 1956 paper by Keller and Kolodner.
Delay coupling is due to the time it takes for a signal to travel from one bubble to another
through the liquid medium that surrounds them. Using techniques from the theory of dif-
ferential-delay equations as well as perturbation theory, we show that the equilibrium of
the in-phase mode can be made unstable if the delay is long enough and if the coupling
strength is large enough, resulting in a Hopf bifurcation. We then employ Lindstedt’s
method to compute the amplitude of the limit cycle as a function of the time delay. This
work is motivated by medical applications involving noninvasive localized drug delivery
via microbubbles.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Delay in dynamical systems is exhibited whenever the system’s behavior is dependent at least in part on its history. Many
technological and biological systems are known to exhibit such behavior; coupled laser systems, high-speed milling, popu-
lation dynamics and gene expression are some examples of delayed systems. This paper treats a new application of delay-
differential equations, that of a microbubble cloud under acoustic forcing. This work is motivated by medical applications,
where microbubbles are used in the noninvasive, localized delivery of drugs. In this process, microbubbles can either be filled
with or their surfaces coated with drugs which work best locally. The microbubbles are propagated to the target site and
collapsed by a strong ultrasound wave [1,3,9]. Full understanding of the behavior of systems of coupled microbubbles in-
volves taking into account the speed of sound in the liquid, which will lead to a delay in induced pressure waves between
the bubbles in a cloud.

The first analysis in bubble dynamics was made by Rayleigh [18]. While in his work he considered an incompressible fluid
with a constant background pressure, differential equation models of bubble dynamics in a compressible fluid with time-
dependent background pressure were studied by, e.g., Plesset [12], Gilmore [4], Plesset and Prosperetti [13], and by Joseph
Keller and his associates [6,7], as well as many contemporaries including, for instance, Lauterborn [8] and Szeri [19,20]. The
main object of these studies has been the so-called Rayleigh-Plesset Equation, which governs the radius of a spherical bubble
in a compressible fluid:
. All rights reserved.
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Fig. 1.
betwee
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ð _a� cÞ a€aþ 3
2

_a2 � D
� �

� _a3 þ a�1ða2DÞ_¼ 0 ð1Þ
Here, D ¼ q�1ðpðaÞ � p0Þ, where q is the density of the liquid, and p0 is the far-field liquid pressure. The pressure pðaÞ inside
the bubble is calculated using the adiabatic relation pðaÞ ¼ k 4p

3 a3
� ��c, where k is determined by the quantity and type of gas

in the bubble and c is the adiabatic exponent of the gas. Next, we nondimensionalize Eq. (1) by setting
a ¼ ~aka; t ¼ ~tkt ; and c ¼ ~cðq=p0Þ
�1=2 ð2Þ
where
ka ¼ ð3=ð4pÞÞ1=3ðk=p0Þ
1=ð3cÞ

; kt ¼ kaðq=p0Þ
1=2 ð3Þ
and obtain the dimensionless equation [6]:
ð _a� cÞ a€aþ 3
2

_a2 � a�3c þ 1
� �

� _a3 � ð3c� 2Þa�3c _a� 2 _a ¼ 0 ð4Þ
where we have dropped the tildes on t; a and c for convenience.
Eq. (4) has an equilibrium solution at
a ¼ ae ¼ 1 ð5Þ
To determine its stability, we set a ¼ ae þ x ¼ 1þ x and linearize about x ¼ 0, giving:
c€xþ 3c _xþ 3ccx ¼ 0 ð6Þ
Since c and c are positive-valued parameters, Eq. (6) corresponds to a damped linear oscillator, which tells us that the equi-
librium (5) is stable.

Eq. (4) applies only to a single bubble submerged in a fluid field. If there are multiple bubbles submerged, then the bub-
bles become coupled by the pressure waves induced in the liquid. Therefore, Eq. (4) no longer has the right-hand side equal
to zero, but in fact will be driven by some coupling function. This system is illustrated in Fig. 1.

With the introduction of a second bubble, the system under study becomes more complex, with the compressibility of the
fluid giving rise to a time delay in the coupling function between the two bubbles:
ð _a� cÞ a€aþ 3
2

_a2 � a�3c þ 1
� �

� _a3 � ð3c� 2Þa�3c _a� 2 _a ¼ Pf ðbðt � TÞÞ

ð _b� cÞ b€bþ 3
2

_b2 � b�3c þ 1
� �

� _b3 � ð3c� 2Þb�3c _b� 2 _b ¼ Pf ðaðt � TÞÞ
ð7Þ
The preponderance of previous work has neglected the time-delay T, thereby reducing Eq. (7) to a standard nonlinear system
of differential equations without delay. In these studies, very sophisticated patterns of bubble behavior have been discov-
ered. For instance, assume that bubbles a and b have equilibrium bubble radii a0 and b0, respectively, and resonant frequen-
Two bubbles submerged in a liquid. Note that bubble b also influences bubble a with an induced acoustic wave. Delay T ¼ d=c where d is the distance
n bubbles and c is sound speed.
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cies xa and xb respectively. Without loss of generality, assume a0 < b0; a study of the resonant frequencies of Eq. (4) yields
that xb < xa. In this case, if an acoustic driver forces both of the bubbles with frequency xext , Harkin et al. [5], then
Fi
xext < xb ) bubbles oscillate out of phase ð8Þ

xb < xext < xa ) bubbles oscillate in phase ð9Þ

xa < xext ) bubbles oscillate out of phase ð10Þ
Other works have studied the equation that governs translational dynamics of bubbles in a fluid [19,20]. These have built
upon previous work, asserting that bubbles oscillating in phase tend to be attracted to one another. Experimental work
as accomplished by Yamakoshi et al. [22] has corroborated this finding. These works have not, however investigated the ef-
fect of delay on the coupled bubble system.

2. Two coupled bubble oscillators

In this work we consider the dynamics of a system of two coupled bubble oscillators, each of the form of Eq. (4), with
delay coupling. Manasseh et al. [10] have studied coupled bubble oscillators without delay. The source of the delay comes
from the time it takes for the signal to travel from one bubble to the other through the liquid medium which surrounds them.
Adding the coupling terms used in [10], the governing equations of the bubble system are:
ð _a� cÞ a€aþ 3
2

_a2 � a�3c þ 1
� �

� _a3 � ð3c� 2Þa�3c _a� 2 _a ¼ P _bðt � TÞ ð11Þ

ð _b� cÞ b€bþ 3
2

_b2 � b�3c þ 1
� �

� _b3 � ð3c� 2Þb�3c _b� 2 _b ¼ P _aðt � TÞ ð12Þ
where T is the delay and P is a coupling coefficient. Here we have omitted coupling terms of the form P1bðt � TÞ and
P1aðt � TÞ from Eq. (7), where P1 is a coupling coefficient [10].

The system (11) and (12) possesses an invariant manifold called the in-phase manifold given by a ¼ b; _a ¼ _b. A periodic
motion in the in-phase manifold is called an in-phase mode.The dynamics of the in-phase mode are governed by the equation
[17]:
ð _a� cÞ a€aþ 3
2

_a2 � a�3c þ 1
� �

� _a3 � ð3c� 2Þa�3c _a� 2 _a ¼ P _aðt � TÞ ð13Þ
This equation has the equilibrium a ¼ ae ¼ 1. To determine the stability of this equilibrium, we set a ¼ ae þ x ¼ 1þ x and
linearize about x ¼ 0, giving:
c€xþ 3c _xþ 3ccx ¼ �P _xðt � TÞ ð14Þ
g. 2. Numerical integration of the linearized Eq. (14) for the parameters of Eq. (15) with delay T ¼ 0:95. Note that the equilibrium is stable.
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Before proceeding with an analytical treatment of Eq. (14), we use the MATLAB function dde23 to numerically integrate (14).
We choose the following dimensionless parameters based on the papers by Keller et al.:
Fig
c ¼ 94; c ¼ 4
3
; P ¼ 10 ð15Þ
Results of the numerical integration for linearized Eq. (14) are shown in Figs. 2 and 3.
Inspection of Figs. 2 and 3 reveals that the equilibrium a ¼ 1 loses its stability as the delay T is increased through a critical

value Tcr . Associated with this periodic motion is its frequency xcr . From Figs. 2 and 3 we obtain the following approximate
values for Tcr and xcr:
Tcr � 1; xcr � 2 ð16Þ
Eq. (14) is a linear differential-delay equation. To solve it, we set x ¼ exp kt (see [14]), giving
ck2 þ 3ckþ 3cc ¼ �Pk exp�kT ð17Þ
We seek the smallest value of delay T ¼ Tcr which causes instability. This will correspond to imaginary values of k. Thus we
substitute k ¼ ix in Eq. (17) giving two real equations for the real-valued parameters x and T:
Px sin xT ¼ cðx2 � 3cÞ ð18Þ

Px cos xT ¼ �3cx ð19Þ
Eq. (19) gives
xT ¼ arccos
�3c

P

� �
ð20Þ
whereupon Eq. (18) becomes
x2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 9c2

q
x

c
� 3c ¼ 0 ð21Þ
from which we obtain
xcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 9c2 þ 12c2 c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 9c2

q
2c

ð22Þ
which, when combined with (20), gives
Tcr ¼
2c arccos � 3 c

P

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 9c2 þ 12c2 c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 9c2

q ð23Þ
. 3. Numerical integration of the linearized Eq. (14) for the parameters of Eq. (15) with delay T ¼ 1:00. Note that the equilibrium is unstable.
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For the parameters of Eqs. (15), (22) and (23) give
Fig. 4.
exists, h
Tcr ¼ 0:9673; xcr ¼ 2:0493 ð24Þ
which agree with the simulations in Figs. 2 and 3, cf. Eq. (16).
Eq. (23) shows that a necessary condition for instability is that the coupling parameter P must satisfy the inequality:
P > 3c ð25Þ
Eq. (23) gives that as P ! 3c, Tcr ! pffiffiffiffi
3c
p ¼ 1:622 for c ¼ 4

3. Fig. 4 shows a plot of Tcr as a function of P for parameters c ¼ 94 and

c ¼ 4
3, from Eq. (23). Therefore, for instability of the origin we need both P > 3c and T > Tcr .

This type of linear DDE analysis of a system of two bubbles has been presented in previous works by other investigators
[11,2]. Note that these results are unrealistic in the sense that unbounded behavior is predicted in the unstable case. The
Tcr versus P for parameters c ¼ 94 and l ¼ 4
3, from Eq. (23). For T > Tcr and P > 3c the origin is unstable and a bounded periodic motion (a limit cycle)

aving been born in a Hopf bifurcation.

Fig. 5. Numerical integration of Eq. (13) for the parameters of Eq. (15) with delay T ¼ 0:90. Note that the equilibrium is stable.



Fig. 6. Numerical integration of Eq. (13) for the parameters of Eq. (15) with delay T ¼ 1:00. Note that the equilibrium has become unstable, but that a
bounded periodic motion exists indicating a Hopf bifurcation.
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original nonlinear Eq. (13) however predicts a bounded periodic motion for T > Tcr . See Figs. 5 and 6 where Eq. (13) has been
numerically integrated. The periodic motion has been born in a Hopf bifurcation [14].

In [17], Rand and Heckman have applied second order averaging [15,16] to the nonlinear bubble Eq. (13). The analysis
assumed small delay. The same assumption of small delay was made by Wirkus and Rand [21], where first order averaging
was used to study the dynamics of two van der Pol oscillators with delay coupling. In the present work we go beyond [17],
and use large delay, perturbing off of Tcr . As we show next, we are able to analytically predict the amplitude of the limit cycle
in Fig. 7, for example.
3. Perturbations

As the time delay T is increased through Tcr , a pair of roots of the characteristic Eq. (17) for the linearized system (14) will
cross the imaginary axis with zero real part. As the fixed point at the origin loses hyperbolicity, it will undergo a Hopf bifur-
Fig. 7. Perturbation results (solid line) compared against numerical integration (dashed line) of Eq. (13) for the parameters of Eq. (15) with delay T ¼ 0:98.
The numerical integration results were run for a long time to ensure the limit cycle’s amplitude had reached steady state.
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cation — and as a result, a limit cycle will be born. This limit cycle will start with zero amplitude and will grow as T is further
increased. The relationship between the amplitude of the limit cycle and the value of T may be obtained through use of sin-
gular perturbation theory.

The method used here is known as Lindstedt’s Method [14], a technique employed to approximate solutions in weakly
nonlinear systems by eliminating secular terms. To begin, we perturb Eq. (13) slightly from its equilibrium position by intro-
ducing a variable x, which tracks the deviation from equilibrium (recall Eq. (5)):
aðtÞ ¼ 1þ �xðtÞ ð26Þ
Inserting Eq. (26) into the in-phase mode Eq. (13) yields
ð� _x� cÞ �€xð�xþ 1Þ þ 3
2
ð� _xÞ2 � ð�xþ 1Þ�4 þ 1

� �
� ð� _xÞ3 � 2� _xðð�xþ 1Þ�4 þ 1Þ ¼ �P _xd ð27Þ
where we have taken c ¼ 4=3. Note that for clarity we have redefined xd ¼ xðt � TÞ. Next, since � is a small parameter, we
take the Taylor Series of Eq. (27) to obtain an expression for €x in powers of �:
€x ¼ �4xc þ 4 _xþ P _xd

c
þ ð28x2 � 3 _x2Þc2 þ ð24 _xþ 2P _xdÞxc � 8 _x2 � 2P _xd _x

2c2 �

� ð68x3 � 3 _x2xÞc3 þ ðð64 _xþ 2P _xdÞx2 þ 2 _x3Þc2 � ð24 _x2 þ 2P _xd _xÞxc þ 8 _x3 þ 2P _xd _x2

2c3 �2 ð28Þ
Note that in Eq. (28), the Oð�Þ and Oð�2Þ terms are all quadratic and cubic in x, respectively. This relationship will be used
later in the process of Lindstedt. We now introduce another asymptotic series that redefines time and builds a frequency-
amplitude relationship into the limit cycle:
s ¼ Xt X ¼ xcr þ �2k2 þ . . . ð29Þ
Now is the pivotal point at which we perturb off of the critical delay. This is done to eventually retrieve an asymptotic
approximation for the amplitude of the limit cycle past the Hopf bifurcation. In order to accomplish this, we set
T ¼ Tcr þ �2l ð30Þ
in Eq. (28), bearing in mind Eq. (29). This step is pivotal since we are not perturbing the system for small delay, but rather for
small deviations from Tcr , as calculated from the linear analysis Eq. (23). Perturbing as such while changing the variable with
respect to which we are differentiating will for instance transform terms such as
P _xðt � TÞ ¼ PXx0ðs�XTÞ ¼ Pðxcr þ �2k2Þ x0 s�xcrTcr � �2 xcrlþ k2Tcrð Þ þ � � �
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Taylor expand abouts�xcr Tcr

¼ Pxcrx0d;cr þ P�2 k2x0d;cr �xcrðxcrlþ k2TcrÞx00d;cr

� �
þ � � �
where ð�Þ0 denotes differentiation with respect to s and xd;cr ¼ xðs�xcrTcrÞ, due to the change of variables (29). Other terms
in Eq. (28) have similar expansions resulting from the perturbation method.

As a final step in the perturbation method, the solution xðsÞ is expanded in a series:
xðsÞ ¼ x0ðsÞ þ �x1ðsÞ þ �2x2ðsÞ ð31Þ
Therefore
xðs�xcrTcrÞ ¼ x0ðs�xcrTcrÞ þ �x1ðs�xcrTcrÞ þ �2x2ðs�xcrTcrÞ ð32Þ
Using Eqs. (31) and (32), together with the perturbations in Eqs. (30) and (29), the Taylor series expansion in Eq. (28) may be
equated for the distinct orders of �. This yields three equations (Oð1Þ;Oð�Þ, and Oð�2Þ):
Lðx0Þ ¼ 0 ð33Þ

Lðx1Þ ¼
1

2c2 �2ðPx2
crx
0
0 � cPxcrx0Þx00d;cr � ð3c2 þ 8Þx2

crx
02
0 þ 24cxcrx0x00 þ 28c2x2

0

� �
ð34Þ

Lðx2Þ ¼
1

2c2 ð2c2lPx2
cr þ 2c2k2PTcrxcrÞx000d;cr þ ð2c2Pxcrx0 � 2cPx2

crx
0
0Þx01d;cr þ ð2c2Pxcrx00d;cr þ 24c2xcrx00

þ 56c3x0Þx1 þ ð3c3 þ 24cÞx2
crx0x020 � 68c3x3

0 þ ð�2cPx2
crx
0
0d;cr þ ð�6c3 � 16cÞx2

crx
0
0 þ 24c2xcrx0Þx01

þ ð�2c2 � 8Þx3
crx
0
0

3 þ ð�2Px3
crx
02
0 þ 2cPx2

crx0x00 � 2c2Pxcrx2
0 � 2c2k2PÞx00d;cr � 4c3k2xcrx000

þ �64c2xcrx2
0 � 8c2k2x00

� �
ð35Þ
where
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LðxiÞ ¼ x2
crx
00
i þ

4xcr

c
x0i þ 4xi þ

Pxcr

c
xid;cr
Eq. (33) has the solution
x0ðsÞ ¼ A sin s ð36Þ
Inserting Eq. (36) in Eq. (34) and using x0d;cr ¼ A sinðs�xcrTcrÞ gives
Lðx1Þ ¼ �
A2P sinðxcrTcrÞx2

cr þ ð�A2c cosðxcrTcrÞP � 12A2cÞxcr

2c2 sin 2s

� ð2A2 cosðxcrTcrÞP þ 3A2c2 þ 8A2Þx2
cr þ 2A2cP sinðxcrTcrÞxcr þ 28A2c2

4c2 cos 2s

� ð2A2 cosðxcrTcrÞP þ 3A2c2 þ 8A2Þx2
cr � 2A2cP sinðxcrTcrÞxcr � 28A2c2

4c2 ð37Þ
Note that Eq. (37) has no secular terms since, as mentioned above, in Eq. (28) the Oð�Þ terms are all quadratic. Next we look
for a solution to Eq. (37) as:
x1ðsÞ ¼ B sin 2sþ C cos 2sþ D ð38Þ
where the coefficients B;C and D are listed in Appendix A. Substituting Eqs. (36), (38), (43), (41) and (42) in Eq. (35) gives
Lðx2Þ ¼
1

4c3 ½sinðxcrTcrÞð4Ac2lPx2
cr þ 4ACcPx2

cr þ A3cPx2
cr þ 4Ac2k2PTcrxcr þ 2BAc2PxcrÞ þ cosðxcrTcrÞ

� ð�3A3Px3
cr � 4BAcPx2

cr þ 4Ac2DPxcr þ 2ACc2Pxcr � A3c2Pxcr � 4Ac2k2PÞ þ sinð2xcrTcrÞð2BAc2Pxcr

� 2ACcPx2
crÞ þ cosð2xcrTcrÞð�2BAcPx2

cr � 2ACc2PxcrÞ � 12BAc3x2
cr � 32BAcx2

cr þ 48Ac2Dxcr

� 24ACc2xcr � 32A3c2xcr � 16Ac2k2 þ 56BAc3 � 3A3c2x3
cr � 12A3x3

cr� cossþ 1
8c3 ½cosðxcrTcrÞ

� ð�8Ac2lPx2
cr þ 8ACcPx2

cr þ 2A3cPx2
cr � 8Ac2k2PTcrxcr þ 4BAc2PxcrÞ þ sinðxcrTcrÞð�2A3Px3

cr

þ 8BAcPx2
cr þ 8Ac2ccPxcr � 4ACc2Pxcr � 6A3c2Pxcr � 8Ac2k2PÞ þ cosð2xcrTcrÞð4ACcPx2

cr � 4BAc2PxcrÞ

þ sinð2xcrTcrÞð�4BAcPx2
cr � 4ACc2PxcrÞ þ 24ACc3x2

cr þ 3A3c3x2
cr þ 64ACcx2

cr þ 24A3cx2
cr þ 16Ac3k2xcr

� 48BAc2xcr þ 224Ac3cc � 112ACc3 � 204A3c3� sin sþ NRT ð39Þ
where NRT stands for non-resonant terms. Next we remove resonant terms by setting the coefficients of sin s and coss to
zero. This yields expressions for the frequency shift k2 and the amplitude A. These expressions are too long to list here
(for example, the expression for k2 has 154 terms when written in terms of l; c; P; Tcr and xcr). For the parameters of Eqs.
(15) and (24) we find:
k2 ¼ �0:639l; A ¼ 1:029
ffiffiffiffi
l
p ð40Þ
where l is the detuning given by Eq. (30).
A comparison of the perturbation method results and the numerical results are provided in Fig. 7.

4. Conclusion

In this paper we have begun to explore the dynamics of two delay-coupled bubble oscillators, Eqs. (11) and (12), and in
particular we have studied the dynamics of the in-phase mode, Eq. (13). In a classic paper, Keller and Kolodner [6] showed
that the uncoupled bubble oscillator (Eq. (13) with P ¼ 0) is conservative in the incompressible limit, and is damped if c is
allowed to take on a finite value. Our study of the in-phase mode adds a delay feedback term to the system studied in [6]. We
showed that the equilibrium can be made unstable if the delay is long enough and if the coupling coefficient P is large en-
ough. This change in stability is accompanied by a Hopf bifurcation in which a stable periodic motion (a limit cycle) is born.

In particular, we investigated the stability of equilibrium in the in-phase mode through the use of the linear variational
Eq. (14). Analysis of the characteristic Eq. (17) yielded closed form expressions for Tcr and xcr , Eqs. (22), (23). For values of
delay T which are slightly larger than Tcr , we used Lindstedt’s method to second order in � to obtain values for the frequency
and amplitude of the limit cycle.

Future work will include a study of more general dynamics of the coupled system (11), (12).
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Appendix A

The coefficients B;C and D in Eq. (38) are found to be as follows:
B ¼½sinðxcrTcrÞð8A2cPx4
cr � 2A2cP2x2

cr � 24A2cPx2
crÞ þ cosð2xcrTcrÞð�3A2c2Px3

cr � 8A2Px3
cr � 28A2c2PxcrÞ

þ cosðxcrTcrÞð�8A2c2Px3
cr � 16A2Px3

cr þ 8A2c2PxcrÞ þ 24A2cP sinð2xcrTcrÞx2
cr � 2A2cP2x3

cr � 120A2c2x3
cr

� 64A2x3
cr � 128A2c2xcr�=½64c3x2

crðx2
cr � 2Þ þ 4cP2x2

cr þ 64c cosð2xcrTcrÞPx2
cr þ 32c2P sinð2xcrTcrÞxcrð1�x2

crÞ
þ 64cðc2 þ 4x2

crÞ� ð41Þ

C ¼ ½cosðxcrTcrÞð8A2cPx4
cr � 24A2cPx2

crÞ þ sinðxcrTcrÞð�2A2P2x3
cr þ 8A2c2Px3

cr þ 16A2Px3
cr � 8A2c2PxcrÞ

þ sinð2xcrTcrÞð�3A2c2Px3
cr � 8A2Px3

cr � 28A2c2PxcrÞ � 24A2c cosð2xcrTcrÞPx2
cr þ 100A2c3x2

cr � 224A2cx2
cr

� 112A2c3 þ 12A2c3x4
cr þ 32A2cx4

cr � 2A2cP2x2
cr�=½64c3x2

crðx2
cr � 2Þ þ 4cP2x2

cr þ 64c cosð2xcrTcrÞPx2
cr

þ 32c2P sinð2xcrTcrÞxcrð1�x2
crÞ þ 64cðc2 þx2

crÞ� ð42Þ

D ¼ �A2

16c2 ð2 cosðxcrTÞPx2
cr � 2cP sinðxcrTÞxcr � 28c2 þ 3c2x2

cr þ 8x2
crÞ ð43Þ
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