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Dynamics of three coupled limit cycle oscillators with vastly different frequencies
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Summary. An autonomous system of three coupled nonlinear oscillators with widely separated frequencies is investigated using the

method of direct partition of motion (DPM). Approximate expressions for two of the limit cycle oscillations are presented in terms of

Jacobi elliptic functions whose amplitude and frequency depend on the coupling parameters. Critical values for the coupling parameters

were found, above which the oscillations of one of the limit cycles are quenched.

Introduction

The effects of high frequency excitation on nonlinear mechanical systems have been extensively studied and reviewed in

recent years [1, 4, 8, 9]. These effects include apparent changes in system properties such as the number of equilibrium

points, stability of equilibrium points, natural frequencies, stiffness, bifurcation paths [9], and existence of limit cycles

[2]. Such problems can be analyzed using standard perturbation methods such as the method of multiple timescales or

the method of averaging [9]. However, the method of direct partition of motion (DPM) developed by Blekhman [1]

serves to facilitate the study of such problems. Unlike the averaging method or the method of multiple timescales, DPM

offers no systematic way to obtain higher order terms in an asymptotic expansion of the solution, and instead is limited

to the leading order dynamics of the system. In return for this limitation, one gains efficiency in terms of the required

mathematical manipulations. Particularly, DPM is most useful when the main interest is in the leading order slow motion

of the system that is subject to the fast excitation. A common feature of all the aforementioned works is that the fast

excitation is due to an external source, that is, all the systems considered are nonautonomous. We assert that similar

non-trivial effects could occur even if the fast excitation is internal to the system, instead of coming from an external

source. An example of such a case would be a nonlinear oscillator coupled to a much faster oscillator. Systems of coupled

nonlinear oscillators with widely separated frequencies have been investigated in the literature [10, 5]. Often, the method

of averaging is used to study the dynamics, while here, we extend the standard DPM procedure to study an autonomous

system of three coupled nonlinear oscillators with widely separated frequencies. When uncoupled, each of the oscillators

possesses a limit cycle solution with a frequency ω1 = O (1), ω2 = O(1/ε) and ω3 = O(1/ε2) respectively, where

ε << 1. We find that the coupling between such oscillators causes a change in the amplitude and frequency of the limit

cycles of oscillators 1 and 2, and if the coupling between the oscillators is strong enough then the stable limit cycle of one

of these two oscillators disappears. The limit cycle of the fastest oscillator, to leading order, is unchanged by the coupling.

Dynamics of the three coupled limit cycle oscillators

We will consider three van der Pol type limit cycle oscillators x, y and z, which are governed by the following equations:
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Here, ω1, ω2 and ω3 are O(1) quantities. We are interested in values of ai and bi (i=1,2,3) for which each of the equations

above for x, y and z possesses a stable limit cycle solution that is an O(ε) perturbation off of a simple harmonic motion that

occurs on the time scales t1, t2 and t3 respectively. We will investigate the case of nearest neighbor nonlinear coupling.

This particular form of coupling is inspired by the work of Bourkha and Belhaq [2] in which the point of suspension of a

self-excited pendulum is subjected to a horizontal parametric forcing. Without loss of generality, from now on, we will

assume ω1 = 1.

The main idea of The Method of Direct Partition of Motion (DPM) is that the solution is partitioned into a slow motion

and a fast motion. Accordingly, we will look for a solution partitioned in the following manner:

x = X (t1) + εξ (t1, t2, t3) , y = Y (t2) + εη (t1, t2, t3) , z = Z (t3) + εζ (t1, t2, t3) (2)
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We will use DPM to investigate the dynamics of the leading order motions X, Y and Z. The key assumptions to be

enforced when applying DPM [1, 4, 8] are (a) ξ is periodic and has a zero average over the t2 and t3 time scales and

(b) η is periodic and has a zero average over the t3 timescale. Using these assumptions and following the standard DPM

procedure [1] we solve for approximate formal expressions for the leading order motions X, Y and Z. Z takes the form

of a harmonic oscillation of frequency ω3 with an amplitude that depends on a3 and b3. X and Y are each found to be

governed by a van der pol-duffing type equations. The limit cycles of X and Y are then solved for by finding a root

of a Melnikov integral[7], and these limit cycles when they exist, take the form of a Jacobi elliptic function [3]. The

amplitude and frequency of the Y oscillation is found to depend on a2, b2, a3, b3, g2 and γ2, while that of X depends on

the following parameters: ai and bi for i=1,2,3, as well as gi and γi for i=1,2.

Results

Since there are many parameters affecting the dynamics, we limit our investigation to the effect of varying the coupling

strengths γ1 and γ2 while holding the other parameters fixed.It is found that as γ2 is increased, the period of oscillation

of the y oscillator increases, and for γ2 equal to a critical value γ2cr
, the limit cycle suddenly disappears. That is, for

γ2 ≥ γ2cr
, the Melnikov integral associated with the Y equation has no real roots. Similarly, holding all other parameters

fixed, as γ1 is increased the period of the x oscillations increases and then the limit cycle of x suddenly disappears for γ1

equal to a critical value γ1cr
. That is, for γ1 ≥ γ1cr

, the Melnikov integral associated with the X equation has no real

roots. While the Y motion is independent of γ1 , the X motion depends on both γ2 and γ1, consequently, the value of γ1cr

varies as γ2 is varied. These formal approximate findings were checked against solutions from numerical integration and

the two solutions were found to agree well. For details see [6]
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