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a b s t r a c t

We revisit the two degrees of freedom model of the thin elastica presented by Cusumano and Moon

(1995) [3]. We observe that for the corresponding experimental system (Cusumano and Moon, 1995

[3]), the ratio of the two natural frequencies of the system was � 44 which can be considered to be of

Oð1=eÞ, where e51. The presence of such a vast difference between the frequencies motivates the study

of the system using the method of direct partition of motion (DPM), in conjunction with a rescaling of

fast time in a manner that is inspired by the WKB method, similar to what was done in Sheheitli and

Rand (to appear) [8]. Using this procedure, we obtain an approximate expression for the solutions

corresponding to non-local modes of the type observed in the experiments (Cusumano and Moon, 1995

[2]). In addition, we show that these non-local modes will exist for energy values larger than a critical

energy value that is expressed in terms of the parameters. The formal approximate solution is validated

by comparison with numerical integration.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical systems subjected to high-frequency parametric exci-
tation are known to exhibit qualitative changes in their dynamical
properties such as natural frequencies, the number and stability of
equilibrium points, and bifurcation paths [1,4,9,10]. The method of
direct partition of motion (DPM) [1] was developed particularly for
the study of such non-autonomous problems. Recently, it was shown
that DPM can also be useful for the study of autonomous multi-
degree of freedom systems possessing vastly different frequencies
[7,8]. While the averaging method has been previously used to
analyze systems with vastly different frequencies [5,11], it is illu-
strated in [8] that DPM, when combined with a rescaling of fast time
as inspired by the WKB method [12], allows the study of solutions in
which the fast degree of freedom is strongly influenced by the slow
one. That is, in the cases where the averaging method is used, the
slow variable has an OðeÞ effect on the fast variable, whereas in [8]
the fast variable is to leading order expressed explicitly in terms of
the slow variable.

In this work, we revisit the problem of the thin elastica studied
by Cusumano and Moon [3], who presented a two degree of freedom
model, representing the first bending and first torsional modes of
the elastica. The model was shown to capture much of the behavior
observed in the experiments such as loss of planar stability and the
ll rights reserved.

i),
existence of non-local modes [3]. A variety of perturbation methods
were used to study the elastica model [6], however, that analysis
required that the coupling parameter to be of OðeÞ. This does not
apply to the experimental system [3] in which the coupling
parameter was � 1:74 which is rather of Oð1Þ. The experimental
system also had a ratio of frequencies � 44 which can be considered
to be of Oð1=eÞ, where e51. This latter observation implies that the
system is best viewed as one with vastly different frequencies and
that DPM can be useful for understanding its dynamics. Also, the
fact that the coupling is Oð1Þ allows the slow variable to appear in
the leading order dynamics of the fast variable, which appears as a
fast oscillator with a slowly varying frequency. This suggests the use
of a rescaling of fast time in a manner that is inspired by the WKB
method, as illustrated in [8].

In Section 2, we present the two degree of freedom model of the
thin elastica and illustrate the non-local modes that it exhibits. In
Section 3, we present the form of the assumed solution and the end
results of the DPM procedure which consist of an equation
governing the leading order dynamics of the slow variable (the
bending mode), as well as an expression of the fast variable (the
torsional mode) in terms of the slow variable. We also discuss the
special solutions corresponding to the non-local modes and pre-
sent an expression for the critical energy value above which these
solutions exist. Finally, in Section 4, we validate the approximate
solution by comparing it to that from numerical integration. The
procedure for obtaining the approximate solution is detailed in
Appendices A and B, while Appendix C explains how we obtain the
expression for the non-local modes and the critical energy value in
terms of the parameters.
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2. The two degree of freedom elastica model

The derivation of the model studied in this work was pre-
sented in detail in [3]. We present the following summary of [3]
for the convenience of the reader. The analysis starts with the
equations for an inextensible, unshearable, prismatic, linearly
elastic rod with the additional constraint that one of the curvature
components is zero. For simplicity, the theory was then reduced
to the lowest order in the displacements which are assumed to be
much smaller than unity. This implies that although two of the
Euler angles are first order in the displacements, the torsional
rotation need not be small. Also, in the experiments described in
[2], the torsional motions of the elastica appeared to be close to
the first torsional mode. Based on these assumptions, the dis-
placements in the plane of the cross-section of the rod were
transformed into polar coordinates consisting of a generalized
displacement and the torsional angle. Finally, the assumed-modes
method was employed to reduce the system of partial differential
equations governing the generalized displacement and the tor-
sional angle into a system of ordinary differential equations
governing the time evolution of the amplitudes of the generalized
displacement (representing the first generalized bending mode)
and the first torsional mode. Ignoring dissipation and external
forcing, the latter two degree of freedom system modeling the
elastica can be expressed as [3]

€yþy�g _x2y¼ 0

ðmþgy2Þ €xþmO2xþ2gy _y _x ¼ 0 ð1Þ

where y and x represent the first bending and torsional mode,
respectively. m is a dimensionless parameter related to the
moment of inertia, g is a coupling parameter and O is the ratio
of the dimensionless natural frequencies of the two modes. In [3],
it was shown numerically that this conservative system possesses
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Fig. 2. Plot of y vs. time for the initial conditions with
two symmetric families of non-linear modes with a frequency–
amplitude characteristic similar to that observed in the experi-
ments. The aim of the work here is to gain insight on the
emergence of these non-local modes in the conservative problem
and to obtain approximate analytic expressions for these modes.

The conserved energy of the system can be expressed as

h¼ 1
2 ðmþgy2Þ _x2

þ1
2
_y2
þ1

2ðmO
2x2þy2Þ ð2Þ

To illustrate the bifurcation that occurs as energy is increased,
giving rise to the non-local modes, we will numerically integrate
the system in Eqs. (1) with parameter values that match those
reported in the experimental setup [3]:

g¼ 1:74, m¼ 0:0113, O¼ 44

We will choose a value of the energy h and take initial conditions
of the form

yð0Þ ¼ b, xð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2h�b2

Þ

mO2

s

_yð0Þ ¼ 0, _xð0Þ ¼ 0

8>><
>>:

Fig. 1 shows the torsional mode variable, x, which is typically a
fast oscillation with a slowly modulated amplitude. Fig. 2a shows
the oscillation of the bending mode variable, y, typical of low
enough energies. As the energy is slightly increased, we can see y

undergoing a non-local oscillation having a non-zero mean value,
as in Fig. 2b. With a careful choice of initial amplitudes, y appears
to be almost fixed about a non-zero value as shown in Fig. 3. The
latter oscillation corresponds to a non-local mode that arises as
the energy increases past a critical value. Still, for a large enough
initial amplitude, oscillations about the origin are possible, as
illustrated in Fig. 4. The bifurcation that gives rise to the non-local
modes corresponds to a pitchfork bifurcation in a Poincare map of
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: (a) h¼ 0:006, b¼ 0:025, (b) h¼ 0:007, b¼ 0:025.
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Fig. 4. Plot of y vs. time for the initial conditions with h¼ 0:007, b¼ 0:03.
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Fig. 3. Plot of y vs. time for the initial conditions with: (a) h¼ 0:007, b¼ 0:0184, (b) zoom in on the solution.
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the system, as illustrated in Fig. 5. As energy increases past a
critical value, the fixed point of the map, corresponding to the
torsional mode with y¼0, loses stability and two new centers are
born corresponding to two non-local modes. Closed orbits about
each of these centers correspond to solutions of the type illu-
strated in Fig. 2b, while the large orbits engulfing both centers
correspond to oscillations about the origin as in Fig. 4.

The aim of the paper is to explain the dependence of the
solution on initial conditions and the parameters of the system.
We will also obtain an expression for the critical energy value at
which the bifurcation occurs and an approximate expression for
the non-local modes it gives rise to.
3. The approximate solution

For the system studied experimentally in [3], O� 44, so we
will assume that

O¼
1

e
, e51

Also, we rescale x so that

x¼ w
ffiffiffi
e
g

r
where w¼Oð1Þ

Then, the system in Eqs. (1) becomes

€yþy�e _w2y¼ 0

ð1þky2Þ €wþ 1

e2
wþ2ky _y _w ¼ 0 ð3Þ

where we have divided the x equation by m and defined a new
parameter k¼ g=m. The corresponding energy expression is

h¼
1

2

1

k þy2

� �
e _w2
þ

1

2
_y2
þ

1

2

1

ekw
2þy2

� �
ð4Þ
Applying the strategy first illustrated in [8], we will look for a
solution of the form suggested by DPM and WKB:

w¼ wðx,TÞ, y¼ y0ðxÞþey1ðx,TÞ

where x¼ t and
dT

dt
¼
oðxÞ
e , oðxÞ ¼o0ðxÞþeo1ðxÞþ � � � ð5Þ

At the end of the DPM procedure detailed in Appendix B, we
obtain the following equation governing the leading order slow
dynamics:

d2y0

dt2
þy0�y0

C2

2e ð1þky2
0Þ
�3=2
¼ 0 ð6Þ

We assume initial conditions of the form as

yð0Þ ¼ b

xð0Þ ¼ wð0Þ
ffiffiffie
g

r
¼ a

ffiffiffie
g

r8><
>: -

y0ð0Þ � b

wð0Þ ¼ a

(

then the constant appearing in Eq. (6) can be related to the initial
amplitudes by the following relation:

C2
¼ ga2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þkb2

q
In Appendix A, we show that the fast variable w can be expressed
in terms of the slow variable y0 as

w� C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
o0ðxÞ

p
cos T

with o0 ¼ ð1þky2
0Þ
�1=2

ð7Þ

Also, the fast component of y is found to be

y1 � y0o0
C2

8
cos 2T

Knowing the initial amplitudes a and b, we solve for the correspond-
ing value of C, then we plot the phase portrait and pick out the orbit
corresponding to y0ð0Þ ¼ b, _y0ð0Þ ¼ 0. This latter orbit will corre-
spond approximately to the leading order slow oscillation of the
bending variable y, so this allows us to tell what type of solution the
full system will have. The arrows in Fig. 6a–c point to the orbits
corresponding to the solutions in Figs. 2a, b and 4, respectively. Fig. 7
shows the phase plane for the y0 equation with the value of C

corresponding to the initial conditions that led to the non-local mode
shown in Fig. 3. We can see that one of the centers is (y0¼0.0184,
_y0 ¼ 0), then the orbit corresponding to y0ð0Þ ¼ b¼ 0:0184, _y0ð0Þ ¼ 0
is the fixed point itself. In Appendix C, we show that for each energy
value satisfying the following condition:

h4hcr ¼
1

k
ð8Þ

there exists an initial amplitude bn that will lead to a value of C such
that the y0 equation has a fixed point with y0 ¼ bn; such initial
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conditions will lead to the non-local modes. As explained in
Appendix C, bn is found to be

bn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
h�

1

k

� �s
ð9Þ

In other words, for a fixed energy level, the following initial
conditions:

yð0Þ ¼ bn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
h�

1

k

� �s
, xð0Þ ¼ an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekð2h�bn2

Þ

q
_yð0Þ ¼ 0, _xð0Þ ¼ 0

8>><
>>: ð10Þ

will lead to non-local modes in which

y0 � bn and w� an cos
on

e
t

� �

So that y� bn
þe an2bn

8
cos 2

on

e
t

� �
and x�

ffiffiffi
e
g

r
an cos

on

e
t

� �
ð11Þ
where on ¼ ð1þkbn2
Þ
�1=2

ð12Þ

The expression for the non-local mode solution shows that the
bending variable will have a frequency that is twice that of the
torsional one, which is consistent with what was observed in [3].
4. Validation

Taking the same parameter values as in Section 2, we choose a
value of h¼0.05 and compare the approximate solution obtained
from numerical integration of the y0 equation to that of the full
system. Figs. 8 and 9 show plots of y vs. time and x vs. time,
respectively, for three different initial conditions. The approximate
solution is represented by a dashed line, while the numerical solution
of the full system is represented by a solid line. It is hard to
distinguish the two solutions as they almost completely overlap, this
illustrates that the two solutions agree well. In Appendix D, we
present more comparison plots of solutions for different energy
values as well as for a larger g value. The error in the approximate
solution becomes more visible for larger values of energy far from the
bifurcation value. In [3], the frequency amplitude characteristics of
the non-linear modes were obtained numerically and presented as a
plot of frequency vs. amplitude of the torsional variable, as well as
frequency vs. energy. Here, we have obtained approximate analytic
expressions for the frequency and amplitude of y for the non-local
mode solutions, as a function of the energy value and the parameters.
Fig. 10 shows the frequency amplitude characteristic curves that we
obtain using Eqs. (10)–(12). The two plots match very well with those
presented in [3].
5. Conclusion

The method of direct partition of motion was used to study the
dynamics of the thin elastica model presented in [3]. This was
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based on the observation that the frequency ratio for the experi-
mental setup was of Oð1=eÞ and so the system is best viewed as
one with vastly different frequencies. It was also observed that
the coupling parameter value corresponding to the experimental
setup was Oð1Þ such that the slow variable affects the leading
order dynamics of the fast variable; this required the treatment
of the fast variable as an oscillator with a slowly varying
frequency and thus using a rescaling of fast time inspired by the
WKB method. The procedure leads to an approximate expression
for the non-local modes, as well as the critical energy value at
which they arise, in terms of the parameters of the system. The
results are checked by comparison to numerical integration and
found to agree well. Finally, we note that the proposed procedure
has proven useful for the study of conservative systems. The
attempt to extend it to the study of the dynamics in the presence
of damping or forcing is left for future work.
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Appendix A. The WKB solution for the fast degree of freedom

The assumed solution has the following form:

w¼ wðx,TÞ, y¼ y0ðxÞþey1ðx,TÞ

where x¼ t and
dT

dt
¼
oðxÞ
e , oðxÞ ¼o0ðxÞþeo1ðxÞþ � � � ð13Þ

Here, we are stretching the new fast timescale to accommodate
for the cubic order term, 2ky _y _w, that is present in the equation of
the fast oscillator.

We plug the expression for the solution into Eqs. (3); multi-
plying the w equation by e2, we get

o2
0ð1þky2

0Þ
@2w
@T2
þwþe 2ko2

0 y0
@y1

@T

@w
@T
þy0y1

@2w
@T2

� �
þ2ko0y0

dy0

dx
@w
@T

�

þð1þky2
0Þ 2o0

@2w
@x@T

þ
do0

dx
@w
@T
þ2o0o1

@2w
@T2

� ��
¼ 0 ð14Þ

As in the WKB method [12], we ought to choose o0, so that the w
equation takes the form

@2w
@T2
þwþOðeÞ ¼ 0

This results in the following expression for o0:

o0 ¼ ð1þky2
0Þ
�1=2

ð15Þ

The equation governing w then becomes

@2w
@T2
þwþe 2ko2

0 y0
@y1

@T

@w
@T
þy0y1

@2w
@T2

� �
þ2ko0y0

dy0

dx
@w
@T

�

þ
2

o0

@2w
@x@T

þ
1

o2
0

do0

dx
@w
@T
þ2

o1

o0

@2w
@T2

#
¼ 0 ð16Þ

This w equation can now be solved approximately using regular
perturbations. We expand w into an asymptotic series

w¼ w0ðx,TÞþew1ðx,TÞþ � � �

Substituting this into Eq. (16), and collecting terms of the same
order, we obtain

Oð1Þ :
@2w0

@T2
þw0 ¼ 0 ð17Þ

OðeÞ : @
2w1

@T2
þw1 ¼�2ko2

0 y0
@y1

@T

@w0

@T
þy0y1

@2w0

@T2

� �
�2ko0y0

dy0

dx
@w0

@T

�
2

o0

@2w0

@x@T
�

1

o2
0

do0

dx
@w0

@T
�2

o1

o0

@2w0

@T2
ð18Þ

Solving Eq. (17) for w0, we get

w0 ¼ XðxÞ cos T ð19Þ

From Appendix B, we have the following expression for y1:

y1 ¼
1

8
y0X2 cos 2T

We substitute this, along with Eq. (19), into Eq. (18) which becomes

@2w1

@T2
þw1 ¼�2ko2

0

1

4
y2

0X3 sin 2T sin T�
1

8
y2

0X3 cos 2Tcos T

� �

þ2ko0y0
dy0

dx
X sin Tþ

2

o0

dX

dx
sin T

þ
1

o2
0

do0

dx
X sin Tþ2

o1

o0
X cos T

We make use of the following trigonometric identities:

sin 2Tsin T ¼
1

2
cos T�

1

2
cos 3T, cos 2T cos T ¼

1

2
cos Tþ

1

2
cos 3T
Then, eliminating secular terms from the w1 equation results in an
expression for o1 as well as an equation governing X

o1ðxÞ ¼
k

16
y2

0X2o3
0 ð20Þ

2

o0

dX

dx
þ

X

o2
0

do0

dx
þ2ko0y0

dy0

dx
X ¼ 0 ð21Þ

We rearrange Eq. (21) into

2

X

dX

dx
þ

1

o0

do0

dx
þ2ko2

0y0
dy0

dx
¼ 0 ð22Þ

Recall from Eq. (15) that o0 is chosen to be

o0 ¼ ð1þky2
0Þ
�1=2

Then, integrating Eq. (22) with respect to x, gives

2 ln Xþ ln o0þ lnð1þky2
0Þ ¼ k

) 2 ln Xþ ln o0þ ln ðo�2
0 Þ ¼ k

) ln
X2

o0

 !
¼ k

) XðxÞ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
o0ðxÞ

p
ð23Þ

where C is an arbitrary constant that depends on initial conditions.
Hence, to leading order, w takes the following form:

w� C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
o0ðxÞ

p
cos T ð24Þ

Appendix B. The DPM solution for the slow degree of freedom

The assumed solution has the form:

w¼ wðx,TÞ, y¼ y0ðxÞþey1ðx,TÞ

where x¼ t and
dT

dx
¼
oðxÞ
e , oðxÞ ¼o0ðxÞþeo1ðxÞþ � � �

After substituting this into Eq. (3), the equation governing the
slow degree of freedom becomes

1

e
o2

0

@2y1

@T2
�y0o2

0

@w
@T

� �2
" #

þ
d2y0

dx2
þy0�2y0o0

@w
@x
@w
@T
þo1

@w
@T

� �2
" #

�o2
0y1

@w
@T

� �2

þ2o0
@2y1

@x@T
þ

do0

dx
@y1

@T
þ2o0o1

@2y1

@T2
¼ 0 ð25Þ

From Appendix A, we have that w� w0 ¼ XðtÞ cos T. Substituting
this into Eq. (25) and expanding the various trigonometric terms,
we get

1

e
o2

0

@2y1

@T2
�y0o2

0X2 1

2
�

1

2
cos 2T

� �� �

þ
d2y0

dx2
þy0�2y0o0 �

dX

dx
1

2
sin 2Tþo1X2 1

2
�

1

2
cos 2T

� �� �

�o2
0y1X2 1

2
�

1

2
cos 2T

� �
�2o0

dX

dx
sin T

þ
do0

dx
@y1

@T
þ2o0o1

@2y1

@T2
¼ 0 ð26Þ

Now, we are ready to carry out the standard steps of the method
of direct partition of motion. First, we average Eq. (26) over the
fast timescale T, with the assumption that the fast component
of motion, y1, and its derivatives are periodic on this fast time-
scale with a zero average. DPM also assumes that any purely
slow function, that does not vary on the fast T timescale, is
invariant under averaging over fast time. The resulting averaged
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equation is

1

e �
1

2
y0o2

0X2

� �
þ

d2y0

dx2
þy0�y0o0o1X2

þ
1

2
o2

0X2/y1 cos 2TST ¼ 0

where /�ST ¼
1

2p

Z 2p

0
ð�Þ dT ð27Þ

The second standard step of DPM is to subtract Eq. (27) from Eq.
(26), then the resulting equation takes the form

1

e o2
0

@2y1

@T2
þ

1

2
y0o2

0X2 cos 2T

� �
þOð1Þ ¼ 0

Hence, to leading order, the equation governing y1 becomes

@2y1

@T2
þ

1

2
y0X2 cos 2T ¼ 0

Integrating twice with respect to T, we obtain the following
expression for y1:

y1 �
1

8
y0X2 cos 2T ð28Þ

Note that we have set the constants of integration to zero in order
to satisfy the DPM assumption that the fast component, y1, is
periodic on the T timescale with a zero average.
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Fig. 11. y vs. time for (a) h¼0.4, b¼0.1,
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Now, the integral appearing in Eq. (27) can be evaluated as

/y1 cos 2TST �
1

8
y0X2 cos22T

� �
T

¼
1

16
y0X2

Substituting this into Eq. (27), we obtain the following approx-
imate equation governing y0:

d2y0

dx2
þy0�y0

1

2e
o2

0X2
þo0o1X2

�
1

32
o2

0X4

� �
¼ 0 ð29Þ

From Appendix A, we recall that

o1ðxÞ ¼
k

16
y2

0X2o3
0 and XðxÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
o0ðxÞ

p

where o0 ¼ ð1þky2
0Þ
�1=2

Substituting these expressions into Eq. (29), the y0 equation becomes

d2y0

dx2
þy0�y0

C2

2e
ð1þky2

0Þ
�3=2
þ
kC4

16
y2

0ð1þky2
0Þ
�3

 

�
C4

32
ð1þky2

0Þ
�2

!
¼ 0 ð30Þ

where C is an arbitrary constant that depends on the initial condi-
tions. Comparing the magnitude of the denominators of the non-
linear terms in the above equation, we expect the first non-linear
term to be the dominant one. Hence, for simplification of the required
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algebraic manipulation, we will ignore the last two terms in the
equation. Consequently, y0 is, to leading order, governed by the
following reduced equation:

d2y0

dx2
þy0�y0

C2

2e
ð1þky2

0Þ
�3=2
¼ 0 ð31Þ

To find an expression for C, we consider initial conditions with zero
velocities and initial amplitudes a and b as follows:

yð0Þ ¼ b

xð0Þ ¼ wð0Þ
ffiffiffie
g

r
¼ a

ffiffi
e
g

q
8><
>: -

y0ð0Þ ¼ b

w0ð0Þ ¼ a

(

recalling that

w0 ¼ C
ffiffiffiffiffiffiffi
o0
p

cos T where o0 ¼ ð1þky2
0Þ
�1=2

then

w0ð0Þ ¼ Cð1þkðy0ð0ÞÞ
2
Þ
�1=4
) a¼ Cð1þkb2

Þ
�1=4

) C2
¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þkb2

q
ð32Þ

Appendix C. The slow dynamics bifurcation

We restate here the equation governing the leading order
dynamics of the slow degree of freedom

d2y0

dx2
þy0�y0
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2e ð1þky2
0Þ
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¼ 0
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We rewrite this equation as a system of two first order differential
equations

_y0 ¼f, _f ¼�y0þy0
C2

2e ð1þky2
0Þ
�3=2

ð33Þ

The system in Eq. (33) could possess nontrivial equilibrium points
corresponding to f¼ 0, y0 ¼ E, such that E satisfies the following
relation:

1�
C2

2e ð1þkE2
Þ
�3=2
¼ 0

) 2eð1þkE2
Þ
3=2
¼ C2

plugging in the expression for C from Eq. (32), we obtain the
following relation between E, the value of y0 for the nontrivial
equilibrium point, and the initial amplitudes a and b

) 2eð1þkE2
Þ
3=2
¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þkb2

q

the initial condition that corresponds to the bifurcating non-local
modes, i.e. fixed points in the Poincare map, will be y0ð0Þ ¼ bn

such that E¼ bn, then bn has to satisfy the following relation:

2eð1þkbn2
Þ
3=2
¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þkbn2

q

) 2eð1þkbn2
Þ ¼ a2 ð34Þ
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For such initial conditions with zero velocities, the energy, as
given by Eq. (4), reduces to

h¼
1

2

1

ek
a2þbn2

� �

) a2 ¼ ð2h�bn2
Þek

plugging this expression for a into Eq. (34), we get

) 2eð1þkbn2
Þ ¼ ð2h�bn2

Þek

) bn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
h�

1

k

� �s
ð35Þ

Such special initial conditions will exist when the energy satisfies
the following condition:

h4hcr ¼
1

k ð36Þ

Appendix D. Validation plots for different parameter and
energy values

We show more comparison plots for different initial condi-
tions (Figs. 11–14). The parameter values are the same as
specified in Section 2, except in Figs. 13 and 14 in which g is set
to 5 instead of 1.74.
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