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a b s t r a c t

An investigation of the nonlinear dynamics of a heart model is presented. The model com-
partmentalizes the heart into one part that beats autonomously (the x oscillator), repre-
senting the pacemaker or SA node, and a second part that beats only if excited by a
signal originating outside itself (the y oscillator), representing typical cardiac tissue. Both
oscillators are modeled by piecewise linear differential equations representing relaxation
oscillators in which the fast time portion of the cycle is modeled by a jump. The model
assumes that the x oscillator drives the y oscillator with coupling constant a. As a
decreases, the regular behavior of y oscillator deteriorates, and is found to go through a ser-
ies of bifurcations. The irregular behavior is characterized as involving a large amplitude
cycle followed by a number n of small amplitude cycles. We compute critical bifurcation
values of the coupling constant, an, using both numerical methods as well as perturbations.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that heart arrhythmias are often characterized by an arterial pulse which consists of alternating strong
and weak beats called alternans. Electrical alternans of the heart, defined as beat to beat variability in electrocardiogram
(ECG) signal, have been associated with ventricular arrhythmias in many clinical settings [2]. In particular, a recent study
has showed that alternans affecting the T-wave is common among patients at increased risk for ventricular arrhythmias
[2], where the T-wave is the component of ECG associated with the repolarization phase of action potentials of the ventric-
ular cells [1]. Ventricular heart cells are of the excitable type that possess an equilibrium membrane potential and will nor-
mally only fire upon receiving a strong enough electric signal. This signal is generated by the autonomously firing cells of the
sinoatrial (SA) node, known as the pacemaker, and conducted to the ventricals through cardiac tissue.

The idea of this work is to model the heart as two oscillators, one for the SA node (call it x) and one for the rest of the heart
(call it y), which could represent excitable ventricular cells. The x oscillator is modeled as beating autonomously when
uncoupled from the y oscillator, while the y oscillator is modeled as not beating at all, but rather as staying fixed in an equi-
librium position, when uncoupled from the x oscillator. Our goal is to describe the bifurcation sequence which occurs as the
coupling constants vary.

The oscillators are modeled as relaxation oscillators with instantaneous jumps. This model of relaxation oscillators has
been used previously in a model of a forced oscillator [3], two coupled limit cycle oscillators [4] and three coupled limit cycle
oscillators [5].
. All rights reserved.
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2. The uncoupled oscillators

The oscillators are modeled as relaxation oscillators with instantaneous jumps. Specifically we say that when x decreases
to 1 it instantaneously jumps to �2, and when it increases to �1 it jumps to +2. Same goes for y.

The x oscillator is modeled by
_x ¼ � x
2

plus jumps from� 1 to þ 2 and from þ 1 to � 2 ð1Þ
The y oscillator is modeled by
_y ¼
� y

2 for y > 0
plus jumps from � 1 to þ 2 and from þ 1 to � 2

� y
2� 3

4 for y < 0

8><
>: ð2Þ
Note that the y oscillator has a stable equilibrium point at y ¼ �3=2.

3. Coupling

We seek to study the simplest possible model which captures the essential phenomenon of arrhythmia. For this model we
assume that the coupling is one-way: the x oscillator forces the y oscillator, but not vice-versa. Thus the x oscillator still sat-
isfies Eq. (1), whereas the y oscillator satisfies the equations:
_y ¼
� y

2þ ax for y > 0
plus jumps from � 1 to þ 2 and from þ 1 to � 2

� y
2� 3

4þ ax for y < 0

8><
>: ð3Þ
where a > 0 is a coupling parameter.

4. Behavior of the coupled system

For large enough a, the x oscillator entrains the y oscillator and y undergoes a series of ‘‘large oscillations”, defined as mo-
tions which involve jumps from both �1 to +2 and from +1 to �2.

For small enough a, the x oscillator has small effect on the y oscillator, which undergoes a series of ‘‘small oscillations”,
defined as motions which do not involve any jumps. These may be thought of as vibrations about the equilibrium position
y ¼ �3=2.

We may abbreviate these limiting cases by the notation:
L; L; L; L; . . . large enough a
S; S; S; S; . . . small enough a
where L stands for one cycle of large oscillations and S stand for one cycle of small oscillations.
Numerical integration shows that as a decreases we see a sequence of bifurcations which may be abbreviated as follows:
a > a0 L; L; L; L; L; . . .

a0 > a > a1 L; S; L; S; L; S; . . .

a1 > a > a2 L; S; S; L; S; S; L; S; S; . . .

a2 > a > a3 L; S; S; S; L; S; S; S; L; S; S; S . . .

� � �
an�1 > a > an L; S; . . . ; S; L; S; . . . ; S; L; S; . . . ; S; . . .

ðwhere S; . . . ; S stands for a string of n S’sÞ
a1 > a > 0 S; S; S; S; S; S; . . .
we will denote such sequences by Ls, for example, 13 corresponds to 1 large oscillation followed by 3 small oscillations [6].
We desire values for the bifurcation points an, n ¼ 0;1;2;3; . . . We start by finding the value of a1, see Fig. 1. Note that the

motion of the x oscillator is not affected by the motion of the y oscillator, nor by the value of the parameter a. Assuming a
jump from x ¼ �1 to x ¼ þ2 has just occurred at t ¼ 0�, we have the initial condition xð0Þ ¼ 2. Then one cycle of the x motion
turns out to be given by
xðtÞ ¼ 2e�t=2; 0 < t < 2 ln 2
�4e�t=2; 2 ln 2 < t < 4 ln 2

(
ð4Þ
The period of the x motion is 4 ln 2. At time t1 ¼ 2 ln 2 the x motion jumps from +1 to �2. At time t2 ¼ 4 ln 2 the x motion
jumps from �1 to +2.



Fig. 1. Computation of a1. Plot corresponds to a ¼ 0:5. The right half of this Figure is an enlargement of the left half.
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Starting at t ¼ 0 with x given by Eq. (4), y is governed by the following:
_y ¼ � y
2
� 3

4
þ 2ae�t=2 ) y ¼ �3

2
þ e�t=2 y0 þ

3
2
þ 2at

� �
ð5Þ
From (5) we find an expression for y1 at t1 ¼ 2 ln 2 which is the time when x jumps from þ1 to �2:
y1 ¼
y0

2
þ 2a ln 2� 3

4
ð6Þ
During the interval t1 < t < t2 ¼ 4 ln 2; y is governed by the following:
_y ¼ � y
2
� 3

4
� 4ae�t=2 ) y ¼ �3

2
þ e�t=2 2y1 þ 3� 4at þ 8a log 2ð Þ ð7Þ
and y2, the value of y at t2 ¼ 4 ln 2, the time when x jumps from �1 to þ2, is given by:
y2 ¼
y1

2
� 2a ln 2� 3

4
ð8Þ
Combining (6) and (8), we obtain
y2 ¼ f ðy0Þ; where f ðy0Þ ¼
y0

4
� a ln 2� 9

8
ð9Þ
For periodic small oscillations, we have y2 ¼ y0, in which case Eq. (9) gives
y0 ¼ f ðy0Þ ) y0 ¼ �
3
2
� 4

3
a log 2 ð10Þ
Now at the point of transition from small oscillations to a large spike, y2 ¼ y0 ¼ �2. The corresponding value of a is a1:
a1 ¼
3

8 ln 2ð Þ � 0:541 ð11Þ
Note that this value of a with y0 ¼ �2 corresponds to y1 ¼ �1 from Eq. (6).
Next we compute the value of an. Consider the 1n periodic motion shown in Figs. 2 and 3. It begins with n small oscillation

cycles followed by one large oscillation cycle.
The small cycles are characterized by yk, being values of y at the x jump times tk ¼ 2k ln 2, that is yk ¼ yð2k ln 2Þ. Each of

these is governed by equations similar to (6), (8) so that we obtain, using the notation of Eq. (9)



Fig. 2. Computation of an . Plot corresponds to a ¼ 0:548. The right half of this Figure is an enlargement of the left half.

Fig. 3. Computation of an . Plot corresponds to a ¼ 0:680. The right half of this Figure is an enlargement of the left half.
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y2 ¼ f ðy0Þ ð12Þ
y4 ¼ f ðy2Þ ¼ f ðf ðy0ÞÞ ð13Þ
� � �

y2n ¼ f ðnÞðy0Þ ð14Þ
In order to compute a value for f ðnÞðy0Þ we write f ðy0Þ in the simplified form (cf. Eq. (9)):
f ðy0Þ ¼ ky0 � k; where k ¼ 1
4
; k ¼ a ln 2þ 9

8
ð15Þ
Then we find



Table 1
Values

n

1
2
3
4
5
6
7
8
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f ðf ðy0ÞÞ ¼ kf ðy0Þ � k ¼ kðky0 � kÞ � k ¼ k2y0 � kðkþ 1Þ ð16Þ
f ð3Þðy0Þ ¼ k3y0 � kðk2 þ kþ 1Þ ð17Þ
� � �

f ðnÞðy0Þ ¼ kny0 � kðkn�1 þ kn�2 þ � � � þ kþ 1Þ ð18Þ

¼ kny0 � k
ðkn � 1Þ

k� 1
ð19Þ
From Eqs. (19), (14), (15) we obtain
y0 ¼ b1y2n þ b2 þ b3a ln 2 ð20Þ
where
b1 ¼ 4n; b2 ¼
3
2

4n � 1
� �

; b3 ¼
4
3

4n � 1
� �

ð21Þ
Following this sequence of n small oscillation cycles there is a single large oscillation cycle which consists of:

(a) growth of y from y2n to �1 at time 4n ln 2þ ta, followed by a jump to y ¼ þ2. Then,
(b) decay from y ¼ 2 to yb at time ð4nþ 2Þ ln 2. Then,
(c) decay from yb to y ¼ 1 at time 4n ln 2þ tc , followed by a jump to y ¼ �2. Then,
(d) growth to yd at time ð4nþ 4Þ ln 2. Here yd ¼ y0 for a periodic motion.

The four quantities ta; yb; tc and yd satisfy the following equations:
y2n ¼
eta=2

2
� 2ata �

3
2

ð22Þ

yb ¼ eta=2 � ata þ 2a ln 2 ð23Þ

yb ¼
etc=2

2
þ 2atc � 4a ln 2 ð24Þ

yd ¼ �
etc=2

8
þ atc � 4a ln 2� 3

2
ð25Þ
Now Eqs. (14), (22)–(25), plus the periodicity condition yd ¼ y0, represent six equations in the six unknowns y0; y2n; ta; yb; tc

and yd. We handle these as follows. First we eliminate the exponential terms in Eqs. (22)–(25), respectively, to obtain:
ta ¼
1

3a
yb � 2y2n � 2a ln 2½ � � 1

a
ð26Þ

tc ¼
1

6a
yb þ 4yd þ 20a ln 2½ � þ 1

a
ð27Þ
Now if (26) and (27) are substituted into (22) and (24) using yd ¼ y0 and (20), we obtain two equations in the two un-
knowns y2n and yb. The resulting two equations can be treated numerically using Newton–Raphson methods for given a.
By varying a we obtain the bifurcation values an, see Table 1.

In addition, and as a check, we present a perturbation solution. We set:
an ¼ a1 þ � ¼
3

8 ln 2
þ � ð28Þ

y2n ¼ �2þ l� ð29Þ
of an obtained by Newton–Raphson methods and by perturbations.

Newton–Raphson Perturbations

0.577 0.575382
0.5499 0.549603
0.5432 0.543158
0.5416 0.541547
0.54115 0.541144
0.54105 0.541044
0.54103 0.541018
0.54102 0.541012
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with the additional knowledge that yb ¼ 2 at the point of transition from one 1n state to another. The result is two equations
in the two unknowns � and l. We then approximate each of these two equations by a first order Taylor series about � ¼ 0,
and solve for � and l. This results in the following approximate expression for the values of an at the bifurcation points:
an ¼
3

8 log 2
þ

27 22=3 � 1
� �

8 log 2 822=3 log 2þ 12
� �

4n þ 422=3 log 2� 3
� �þ � � � ð30Þ
For large n this may be approximated by the simpler expression:
an ¼
3

8 log 2
þ

27 22=3 � 1
� �

8 log 2 822=3 log 2þ 12
� �

4n
� �þ � � � ð31Þ
which may be written in the numerical form:
an ¼ 0:541010640þ 0:137489383
4n þ � � � ð32Þ
As shown in Table 1, this approximation gives excellent agreement with the previously obtained numerical results.
To obtain an approximation for a0, we base a calculation on Fig. 4, which corresponds to a ¼ a0.
In region I, we have the ODE
_y ¼ � y
2
� 3

4
þ 2a0e�t=2 ð33Þ
with the side conditions
y ¼ y0; t ¼ 0 and y ¼ �1; t ¼ 2 ln 2 ð34Þ
which gives
y0 ¼ �
1
2
� 4a0 ln 2 ð35Þ
In region II, we have the ODE
_y ¼ � y
2
� 4a0e�t=2 ð36Þ
Fig. 4. Computation of a0. Plot corresponds to a ¼ 0:710.
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with the side conditions
y ¼ 2; t ¼ 2 ln 2 and y ¼ 1; t ¼ tc ð37Þ
which gives
a0 ¼
4� etc=2

4tc � 8 ln 2
ð38Þ
In region III, we have the ODE
_y ¼ � y
2
� 3

4
� 4a0e�t=2 ð39Þ
with the side conditions
y ¼ �2; t ¼ tc and y ¼ y0; t ¼ 4 ln 2 ð40Þ
which gives
y0 ¼ �
3
2
� 4a0 ln 2þ a0tc �

etc=2

8
ð41Þ
Eqs. (35) and (41) together give
a0 ¼
8þ etc=2

8tc
ð42Þ
Eqs. (42) and (38) give:
etc=2 ¼ 16 ln 2
3tc � 2 ln 2

ð43Þ
Substituting (43) into (42) permits one to solve for tc:
tc ¼
3þ 2a0 ln 2

3a0
ð44Þ
Finally, substituting (44) into (42) gives the following equation on a0:
1
2a0
� ln a0 ¼ ln 2þ ln

16
3
� 1

3
ln 2 ð45Þ
Application of Newton–Raphson to Eq. (45) gives a0 � 0:69778.

5. Conclusion

This work has investigated the nonlinear dynamics of a heart model that compartmentalizes the pacemaker or SA node,
and a second part that beats only if excited by a signal originating outside itself (the y oscillator), representing typical cardiac
tissue. The model assumes that the x oscillator drivesheart into one part that beats autonomously (the x oscillator), repre-
senting the y oscillator with coupling constant a. As a decreases, the regular behavior of y oscillator deteriorates, and is found
to go through a series of bifurcations. The irregular behavior can be characterized as involving a large amplitude cycle fol-
lowed by a number n of small amplitude cycles, a behavior designated 1n after [6]. We obtained the critical bifurcation values
of the coupling constant, an, using both numerical methods as well as perturbations.

The model’s behavior is interesting for what it does not contain, namely periodic motions of the form Ln. For example,
these motions (which do not occur in the present model) would involve a sequence of L large amplitude cycles followed
by n small amplitude cycles. By contrast, in the present model we see only periodic motions of the form 1n.

The importance of this work lies in the simplicity of the model. Thus although we have omitted nearly every anatomical
and physiological feature of the heart, we nevertheless see the kind of arrhythmicities which occur in mammalian hearts,
and which represent illness in humans. Thus we may conclude that one source of arrhythmatic alternans, which through
bifurcation lead to deadly ventricular fibrillation, lies in the relative ineffectiveness of the pacemaker cells, represented
by a decrease in coupling constant a in the model.

Extensions of this work could include additional y oscillators representing the spatial distribution of cardiac cells. It is
expected that such a model would exhibit spatial dependence of the various periodic motions. In real hearts such motions
have been identified with spiral waves and ectopic heartbeat.
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