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ABSTRACT

This paper involves the sudden appearance and growth
of a periodic motion called a limit cycle in an autonomous
system of two nonlinear first order ordinary differential
equations. The bifurcation occurs as a parameter is tuned
80 that an equilibrium point goes from a stable focus to an
unstable focus. The resulting limit cycle will generically
occur either i) when the equilibrium is stable (in which
case the limit cycle is unstable), or ii) when the
equilibrium is unstable (in which case the limit cycle is
stable). The Hopf bifurcation formula determines which of
these two cases occurs in a given system, and depends in a
complicated way on the second and third derivatives of the
right-hand sides of the differential equations.

While the Hopf formula itself is well-known to many
users, the usual derivations are complicated and less
accessible. 1In this paper the Hopf formula is derived in a
straightforward fashion using Lindstedt's well-known
perturbation method in conjunction with MACSYMA.

INTRODUCTION

This paper involves the dynamics of a system of two
ordinary differential equations:

{1) x'
(2) y'

a(u) x + b(u) y + £(x,ysu)
c{u) x + d(u) y + g(x,ysu)

vhere f and g are strictly nonlinear in x and y (i.e.,
their Taylor expansions about x=y=0 have no constant or
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linear terms), and where u is a parameter. Associated with
(1),(2) is the corresponding linearized system:

(3) x'
(4) y'

a(u) x + b(u) y
c(u) x + d(u) y

We assume that for u=0 the system (3),(4) has purely
imaginary eigenvalues, i.e. there is a center at the
origin. Moreover, we assume that for u small and negative
(positive), the eigenvalues of (3),(4) have negative
(positive) real parts, i.e. there is a stable (unstable)
focus at the origin.

\ty)K

a< 0 u> 0
Fig. 1. Phase portraits for the linearized system.

In such a case, the nonlinear system (1),(2)
generically (i.e. typically, but not always) undergoes the
birth of a limit cycle, a process called a Hopf bifurcation
(1,2,3). (The birth of a limit cycle can be guaranteed
under éertain additional conditions, namely (i) that the
derivative of the real part of the eigenvalues with respect
to u be non-zero at u=0, and (ii) that the origin of
(1),(2) be asymptotically stable or unstable at u=0.)

There are two generic possibilities, as follows. The
limit cycle may occur for u > 0, in which case it is stable
(the "supercritical" case), or the limit cycle may occur
for u < 0, in which case it is unstable (the "subcritical®
case):
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Fig. 2. Phase portraits for the supercritical case.
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Fig. 3. Bifurcation diagram for the supercritical case.
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Fig. 4. Phase portraits for the subcritical case.
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Fig. 5. Bifurcation diagram for the subcritical case.
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The Hopf bifurcation formula determines which of these
two generic cases occurs. The pburpose of this paper is to
offer a straightforward derivation of this formula using
Lindstedt's perturbation method (see (4)) and MACSYMA.

Example: The following equation is a variant of Van
der Pol's equation (ref. (4)):

2
(5) X''"+x-2ux'+x x'=0,

When written as a first order system, this becomes:

(6) X' =y

2
X+ 2uy-xy

n

(7) y'

The eigenvalues of the associated linear system are:

2 1/2
(8) u + 1 (1l -u)

Note that eq.(8) satisfies the foregoing assumptions,
and hence we may expect a Hopf bifurcation. 1In fact
numerical integration reveals there to be a supercritical
Hopf bifurcation:

2 2

-2 -2

u = -1/10 u = 1/10

Fig. 6. Phase portraits obtained by numerical integration
of eq.(5).
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CANONICAL FORM
We will begin the computation by assuming that the
system (1),(2) is already in the following canonical forms

(9) x'
(10) y'

ux - w(u) y + £(x,yru)
w(u) x + uy + g(x,ysu)

where again f and g are strictly nonlinear in x and y.

Some elementary linear algebra shows that an arbitrary
linear system (3),(4) with complex eigenvalues can be
transformed to the linearization of (9),(10) by setting:

(11) xo0ld = b xnew
(12) yold = (d - a)/2 xnew - W ynew
2 1/2
where w = (-(d-a) /4 - b ¢) , and where it turns out

that u = (a+d)/2.

Example: Continuing the previous example given by
egs.(6),(7), we set

(13) x0ld = xnew
(14) yold

u Xnew - w ynew

2 1/2
wvhere w = (1 - u ) . This gives:

(15) xnew' = u Xnew - w ynew

2
W xnew + u ynew + (u/w) xnew - xnew ynew

(16) ynew!

vhich is of the form (9),(10).



298

LINDSTEDT'S METHOD

Lindstedt's perturbation method (4) is a well known
procedure for obtaining approximate solutions to
differential equations which involve a small parameter. We
will introduce a small perturbation parameter e into
egs.(9),(10) by scaling variables as follows:

2
(17) x=eX, y=eY¥Y, u=e M

Next we expand the function w(u) in a power series
valid for small u:

(18) w=w(u) =wl0+wlu-+ ..,

2
=wo+e wlM+ 0(4)

where w0 and wl are given constants, and where O(n) means
terms of order of e raised to the nth power throughout.

We also expand the functions f and g in power series
in x and y:

fxx 2 fxxx 3
== Xt cee F e X+ ...
2 6

(19) £(x,y,3u)

]

fxx 2 2 fxxx 3 3
= ———e X+ ...+ m e X+ ... + 0(4)
2 6

and a similar expression for g(x,ysu). Note that the
partial derivatives fij are evaluated at x=y=0, but in
general will depend on u (see e.g. eq.(16)). However,
since u = 0(2), we may take the fij to also be evaluated at
u = 0 and still maintain accuracy to 0(4) in eq.(19).

As usual in Lindstedt's method (4), we stretch time t
to accomodate the possibility of a dependence of frequency
on amplitude in this nonlinear system. We replace t as
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independent variable by z, where

2
(20) z=(wO+Ke +0(3)) ¢t

where K is a constant whose value is to be determined.
Finally we expand the scaled dependent variables X and
Y in power series in e:

2
(21) X(z) X0(z) + e X1(z) + e X2(z) + 0(3)

2
Y0(z) + e Y1(z) + e Y2(z) + 0(3)

(22) Y(z)

We substitute eqgs.(17)-(22) into (9),(10), collect
terms and equate to zero the coefficient of e raised to the
power n, for n=1,2,3,... . This yields a sequence of
linear eqgs. on Xn(z), ¥n(z) which may be solved
recursively.

The zero order terms satisfy

(23) X0(z)'
(24) YO(z)'

- YO(z)
X0(=z)

which has the solution

(25) X0(z)
(26) YO(z)

A sin z + B cos 2

B sin z - A cos z

Since the original problem is autonomous, we may without
loss of generality select the initial condition y=0 when
t=0, or in the new variables, Y=0 when 2=0, which, from
(22), gives

(27) Y0(0) = Y1(0) = Y2(0) = ... =0

Eqs.(26),(27) require that A=0 so that
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(28) X0(z) = B cos z, YO(z) = B sin z

Here the amplitude B, like K in eq.(20), is a constant to
be determined.

The MACSYMA session which follows may be outlined
thus: We substitute eq.(28) into the differential
equations on X1 and Yl and solve for X1(2z), Yi(z).
Lindstedt's method generally requires the removal of all
resonant (secular, unbounded) terms at each stage of the
process, but it turns out that there are no resonant terms
in the X1, Y1 equations. Next these results are
substituted into the X2, Y2 equations and resonant terms
are removed giving two equations for the undetermined
coefficients B and K. Solving for the amplitude B and
requiring B to be real will yield the Hopf bifurcation
formula. .

Before beginning, a word about removal of resonant
terms in the system:

(29) x(z)"'
(30) y(z)'

-~ y(z) + a sin z + b cos z
x(z) + ¢ sin z + d cos z

i

A particular solution to (29),(30) is

(31) 2 x(z)
(32) 2 y(z)

(a-d) z sin z + (b+c) 2z cos z + (b-¢) sin z

(b+c) z sin z + (d-a) z cos z + (a+d) sin 2z
and therefore for no resonant terms we require
(33) a~-d=0 and b+c=0

MACSYMA SESSION

Schemes for handling Lindstedt's method in 'MACSYMA
have been extensively treated in (5). (For an introduction
to MACSYMA, see (5) or (6).)

We begin by defining the differential equations
(9),(10) using stretched time 2z, €q.(20). Note the use of
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variables LCX and LCY to represent lower case X and y
respectively:

(C1) STRETCH: WO+K*E**2;

2

(D01) WO + E K

(C2) 'DIFF(LCX,Z)*STRETCH=U*LCX~W*LCY+F;

(02) chz (WO + 52 K) = - LCY W + LCX U + F
(C3) 'DIFF(LCY,Z)*STRETCH=W*LCX+U*LCY+G;

(D3) Ley (wo + 52 K) = LCX W + LCY U + G

z

Next we define the functions f and g (cf. eq.(19)):

(CU) FFXX[2%LOX*¥*2+FXY*LCX*LCY+FYY[2*[CY**2
+FXXX] 6% LCX**3+FXXY [ 2% LCX**2¥* LCY+FXYY[2%LCX*LCY**2
+FYYY[G*LCY**3;
3 2 2 2
Fryy LCY FXYY LCX LCY FYy LCY FXXy LCX LCY

+ FXY LCX LCY #+ ———emeeee # mmmm—m e

(C5) G:GXX/2%LCX¥*¥2+GXY*LCX*LCY+GYY/[2*LCY**2
+GXXX] 6*LCX*¥3+GXXY [ 2% LCX*¥*2% LCY+GXYY [ 2% LOX*LCY**2
+GYYY/E*LCY*%3;

3 2 2 2
GYYY LCY GXYY LCX LCY GYY LCY GXXY LCX LCY
(D5) —wmmee—mm L R F e F e
6 2 2 2
3 2
GXXX LCX GXX LCX
+ GXY LCX LCY + ~——mmeem t mem—————
6 2

We complete the specification of the perturbation scheme by
scaling u and w, and then expanding the scaled variables X
and Y (see eqgs.(21),(22)):

(C6) UsE**2%M;

(D6) E M
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(c7) W:WO+W1%U;
(07) Ez M W1 + WO
(c8) LCX:E*(XO(Z)*E*XI(Z)+E**2*X2(Z));
(p8) E (52 X2(Z) + £ X1(2) + x0(2))
(c9) LOY:EX(YO(Z)+EXYI(Z)+Ex%2%y2(Z));
(D9) E (52 Ya(z) + £ vi(z) + vo(z))
Now all the previous expansions are substituted into the
differential equations labeled D2 and D3:
(c10) [D2,03],DIFF§

Here and elsewhere we use the $ terminator to supress the
display of the resulting expression. Next we Taylor expand
and collect terms:

(C11) TAYLOR(EV(%),E,0,3)$

(C12) FOR I THRU 3 DO EQ[I-1]:COEFF(%,E, 1)$

As a check we display the zeroth order equations (cf.

egs.(23),(24)):

(C13) EQ[0]/WO;
(D13)/R/ [xo(z) = - vorz), vo(z) = xo(z)]
V4 z

As usual in Lindstedt's method, the first order equations
are nonhomogenous versions of the zeroth order:

(Cl4) EQ1];
) 2
(D14)/R] [WO X1(Z) = - (2 YI(Z) WO - FXX X0 (Z)
b4
2
- 2 FXY YOo(Z) X0(Z) - Fyy vo (z))/2,
2
Y1(Z) WO = (2 X1(Z) WO + GXX XO (Z) + 2 Gxy vo(z) xo(z)
z

2
+ GYY Yo (Z))/2]
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We define the zeroth order solution, eq.(28), and
substitute into the first order equations:

(C15) [X0(Z)=B*C0S(Z),YO(Z)=B*SIN(Z)];
(D15) [x0(z) = B cos(z), yYo(Z) = B SIN(Z)]

(ci6) EQ1]1,%,DIFF$

We clean up the trig terms with TRIGREDUCE before
attempting to solve the first order equations:

(C17) EXPAND( TRIGREDUCE(EXPAND(%)));
2 2
B FXY SIN(2 Z) B FYY cos(2 z)
(D17) [WO X1(Z) = smemmommmmeaee e o e
z

2 2 2
B FXxx cos(2 Z) B FYY B FXxX
t o e - WO YI(Z) + ==e-e- + e ,
y N 4

2 2
8 GXY SIN(2 Z) B GYY cos(2 Z)
WO Y1(Z) = =—mmmemem—cmcce = mmmmmmmm—— e

2 2 2
B GXXx cos(z2 z) 8 @YYy B8 GXX

The first order equations are solved using DESOLVE. The
MACSYMA function ATVALUE is used to specify the initial
condition eq.(27):

(C18) LOAD([DESOLN,MACSYMA, SHARE ])$
(C19) ATVALUE(Y1(Z),Z=0,0)$

(C20) DESOLVE(D17,[X1(Z),¥1(2)]);
2 2 2
(8 GXY - B FYY + B FXX) SIN(2 Z)
(020) [X1(Z) = mmmmm e e e
6 WO

2 2 2
(B GYY - B GXX + 4 B FXY) cos(e z)
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2 2 2
(28 GXY - 2B Fyy -8 FXX) SIN(Z)

6 WO
2 2 2
(6 XI(0) WO + 2 B GYY + B GXX + 2 B FXy) cos(z)
R
6 WO
2 2
B GYY + B GXX
4 wo
2 2 2
(8 GYY - B GXX + B FXY) SIN(2 Z)
Y1(Z) = = il L
6 WO
2 2 2
(4B GXY - B FYY + B FXX) COS(2 Z)
12 wo
2 2
(6 X1(0) WO + 2 B GYY + B GXX + 2 B FXY) SIN(Z)
e
6 WO
2 2 2 2 2
(2B GXY - 2B FYY - B Fxx) cos(z) B FYY + B FXxX
P e e F e
6 WO 4 wo

Next the zeroth and first order solutions are substituted
into the second order equations, and TRIGREDUCE is again
used to tidy up:

(cer) Ef2],015,%, DIFF$
(C22) EXPAND( TRIGREDUCE(EXPAND(%)))$

Finally we isolate the coefficients of sin z and cos z in
order to remove the resonant terms in the second order
equations:

(C23) COEFF(D22,SIN(Z));
3 3
7 B FXY GYy B FYyy GXY
(D23) [- BK = - BM Wl = —commmem__ Attty
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3 3 3 2 3
B FXX GXY 5 B FXY GXX 58 FYY 5B FXX FYY
P mmmm————— - - mm———om——— - + e ——— t emmec———————
12 WO 24 Wo 24 WO 24 WO
3 2 3 2 3 3
B FXY B FXX B FYYY B FXXY
t em———— F ,m—me—— t —em———— t mm————— »
12 WO 12 WO 8 8
3 3 3 3
B GXY GYY 5 B FYY GYY 7 B FXX GYY B GXX GXY
0 = = —————————— + mm—————————— + mmmm——e e = em——m—————
8 WO 24 w0 24 WO 8 WO
3. 3 3 3
B FXY GXY B FYY GXX B FXX GXX B GYYY
t mmmm—————— - ——eee————— t mmm—————— + B M+ ~—eeem
12 WO 12 wo 12 wo 8
3
B GXXY
F mmm————
8

(C24) COEFF(D22,C08(Z));
3 3
B FYY GYY 7 B FXX GYY B FXY GXY

(D24) [0 = = —mmmmmmmmm = mm—mmmmmem—m = —mm——m——e=
12 wo 24 WO 12 wo
3 3 3 3
B FYY GXX 5 B FXX GXX B FXY FYy B FXX FXY
b e - ——— - - - b emem—————— t ememm———————
12 wo 24 WO 8 Wo 8 wo
3 3
B FXYY B FXXX
+ B M+ ——mmmmm + mm———— ,
8 8
3 2 3 3 3 2
B GYY 5 B GXX GYY B FXY GYY B8 GXY
BK=0BMHWH = commmmm = mm—mmmmmmee— = mmmmm—mm—— = ————e-
12 wo 24 wo 12 wo 12 wo
3 3 3 2 3

5 8 FYY GXY 7 B FXX GXY 5 B GXX B FXY GXX
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Comparison of expressions D23 and D24 with eqgs.(29),(30)
shows that D23 is of the form [a,c] while D24 represents
[b,d]. The conditions (33) for removal of resonant terms
involve two equations for B and K. However since we are
only interested in B for the Hopf formula, we form only one
of the conditions (33), namely b+c = 0:

(c25) PART( D24, 1)+PART(DZ3, 2)$

(C26) SOLVE(%,B);
(D26) [B = « 4 SQRT(- M WO/(GYYY WO + GXXY WO + FXYY WO

+ FXXX WO - GXY GYY + FYY GYYy - GXX GXY - FXX GXX

+ FXY FYY + FXX FXY)),

B = 4 SQRT(- M WO/(GYYY WO + GXXY WO + FXYY WO + FXXX WO
~ GXY GYY + FYY GYY - GXX GXY — FXX GXX + FXY FvyYy

+ FXX FXr)),

B = 0]

SOLVE returns three values for B. We choose the positive

value:

(027) PART(%,Z),
(D27) B = 4 SQRT(- M WO/(GYYY WO + GXXY WO + FXYY wo

+ FXXX WO ~ GXY GYY + FYY GYY - GXX GXY - FXX GXX
+ FXY FYY + FXX FXY))

The result of the preceding calculation may be
expressed thus: For small e, the amplitude of the limit
cycle is approximately given by

1/2
(34) Amplitude = e B=4 ( - uw0 / § )

where the quantity S is defined by the formula
(35) S = w0 ( gyyy + gxxy + fxyy +fxxx )

= 9XY gYY + fYY gYYy - gxx gxy
- Ixx gxx + fxy fyy + fxx fxy
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in which all the partial derivatives are evaluated when
x=y=u=0.

In order for the limit cycle to exist, the amplitude
(34) must be real. Thus if S > 0, the limit cycle occurs
when u € 0 (the subcritical case), while if s < 0, the
1imit cycle occurs when u > 0 (the supercritical case). If
S = 0, no conclusion may be drawn (the nongeneric case).

Example: For the Van der Pol example of
egs.(15),(16), we find

(36) £=0, g=(uww) x3 - xzy
2 1/2
where w = (1 - u ) . The only nonvanishing derivative
at x=y=u=0 is
(37) gxxy = -2
We also see that (cf. eq.(18))
(38) wo =1
Egs.(35),(37),(38) give
(39) 5=-2<0

Thus the Hopf theory predicts that we have a
supercritical bifurcation in which a stable limit cycle
emerges for u > 0. The approXimate expression (34) for the
1imit cycle's amplitude becomes

1/2
(40) Amplitude = (8 u)

valid for small u. For u = 1/10, eq.(40) predicts an
amplitude of about 0.89, which approximately agrees with
the result of numerical integration shown in Fig. 6.
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CONCLUSION

This work involves the use of computer algebra to
derive a formula for which other derivations have been
given (1,2). All such derivations include a vexatious
quantity of algebra, making the use of conputer algebra
more attractive.

This kind of application of computer algebra is
distinctly different from traditional computations in which
one seeks the answer to a particular problem. Rather, here
we see the computer algebra system as functioning as a
theorem-prover. We expect to see the increasing appearance
of computer algebra proofs and derivations replacing
traditional tedious hand calculations in courses in
mathematics and engineering.
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