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Abstract This work is concerned with nonlinear os-
cillators that have a fixed, amplitude-independent
frequency. This characteristic, known as isochronic-
ity/isochrony, is achieved by establishing the equiva-
lence between the Lagrangian of the simple harmonic
oscillator and the Lagrangian of conservative oscilla-
tors with a position-dependent coefficient of the ki-
netic energy, which can stem from their mass that
changes with the displacement or the geometry of mo-
tion. Conditions under which such systems have an
isochronous center in the origin are discussed. Gen-
eral expressions for the potential energy, equation of
motion as well as solutions for a phase trajectory and
time response are provided. A few illustrative exam-
ples accompanied with numerical verifications are also
presented.
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1 Introduction

This work is based on the well-known phenomenon
that when an undamped nonlinear conservative sys-
tem, such as Duffing’s equation

ẍ + x + x3 = 0 (1)

is driven by a periodic forcing function F cosωt , in
the presence of small damping εẋ,

ẍ + x + x3 = F cosωt − εẋ, (2)

the resulting periodic motion exhibits hysteresis and
associated jump phenomenon. The usual explanation
of this phenomenon [1, 2] involves comparing the
response of the unforced Eq. (1) with the response
of the forced Eq. (2) (see Fig. 1). The response of
the unforced Eq. (1) is viewed as a graph represent-
ing the relationship between frequency and ampli-
tude a, known as a backbone curve. The response of
the forced Eq. (2) may be viewed as a modification of
the backbone curve (Fig. 1). Also shown in Fig. 1 is
the hysteresis and jump phenomenon associated with
slowly varying (increasing or decreasing) the forcing
frequency ω.

Now it may happen that in an engineering appli-
cation, the system in question is exposed to repeated
changes in forcing frequency so that the system is ex-
posed to repeated jumps. Each of these jumps is not
periodic and repeated exposure to such a loading situ-
ation may be objectionable (see, for example, [3]).
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Fig. 1 A sketch of the characteristic amplitude-frequency re-
sponse curve of the damped, forced Duffing oscillator with hys-
teresis and jump phenomenon

It is in such a scenario that an engineering designer
could wish for a nonlinear system which does not
exhibit jump phenomenon. One scheme for attaining
such a goal would be if the associated backbone curve
was a vertical straight line. This is of course the sit-
uation for a linear oscillator, which leads to the fol-
lowing definition: Isochronicity/isochrony is the char-
acteristic of oscillatory systems which have a fixed,
amplitude-independent frequency/period [4]. The sim-
ple harmonic oscillator (SHO) with the Lagrangian

LSHO = Ẋ2

2
− X2

2
, (3)

and the equation of motion

Ẍ + X = 0 (4)

is the archetypal example of the system displaying this
characteristic. The SHO is said to have an isochronous
center as the period is constant in the neighborhood of
the center.

First results in the field of isochronous oscillators
are believed to date back to Galileo Galilei and Chris-
tian Huygens [5]. Although Galileo did not live to
complete his design, he had thought that a pendulum
is isochronous in the sense that the time it takes to
complete one full swing is the same regardless of the
size of the swing. Huygens, however, pushed this mat-
ter further, noting that this is true for pendulums that
swing only a few degrees. He pursued the question of
achieving perfect isochronicity and showed that it can
be realized in a simple pendulum that wraps around
the cycloid [6, 7] (see Example 5 (Sect. 4.2) below).

More recent investigations of isochronicity have
been directed toward nonlinear oscillators, which are
in general known to have a frequency that depends on
their amplitude. Thus, some Liénard-type equations

ẍ + u(x)ẋ + v(x) = 0 (5)

are found to exhibit the isochronicity characteristic.
Sabatini [8] gave necessary and sufficient mathemat-
ical conditions for isochronicity of the differential
equation (5) in terms of the coefficient functions u(x)

and v(x): Let u(x), v(x) be analytic, v(x) odd, u(0) =
v(0) = 0, v′(0) > 0. Then the origin O is a center if
and only if u(x) is odd, and O is an isochronous cen-
ter if and only if

(∫ x

0
su(s) ds

)2

− x3(v(x) − v′(0)x
) ≡ 0. (6)

He illustrated the existence of this behavior in the sys-
tem (5) with

u(x) = (2n + 3)x2n+1, v(x) = x + x4n+3, (7)

where n is a nonnegative integer. Iacono and Russo
showed that this system can be explicitly solved [9].
Necessary and sufficient mathematical conditions for
the isochronicity of the differential equation (5) have
also been provided by Christopher and Devlin [10]:
the system (5) with u(x) and v(x) being analytic, has
an isochronous center at the origin if and only if

v(x) = ww′
(

1 + 1

w4

(∫ x

0
w(s)u(s) ds

)2)
, (8)

where w(x) solves the functional equation in F(x) =∫ x

0 u(s) ds:

F
(
x − 2w(x)

) = F(x), w(0) = 0, w′(0) = 1.

Chandrasekar et al. [11] investigated in detail the so-
called modified Emden equation, which is a Liénard-
type nonlinear oscillator (5) with

u(x) = kx, v(x) = λ1x + k2

9
x3, (9)

and determined the conditions under which it can
yield isochronous oscillations. Chandrasekar et al.
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[12] found a class of coupled Liénard-type equations
that exhibit the isochronicity property.

It should be noted that Liénard-type equations (5)
have a term linear in the generalized velocity. Sabatini
[13] studied the equation analogous to (5), but with ẋ

replaced by ẋ2

ẍ + p(x)ẋ2 + q(x) = 0, (10)

deriving a sufficient condition for its solution to be os-
cillatory, i.e., for the origin to be a center:

xq(x) > 0. (11)

Based on his previous results [8], Sabatini also proved
in [13] that when p(x) and q(x) are odd and analytic,
and Eq. (11) is satisfied for small values of x �= 0,
the origin is an isochronous center if and only if the
following expression is equal to zero in the whole do-
main:

x
[
q(x)Φ ′(x) − Φ(x)q ′(x) − Φ(x)q(x)p(x)

] ≡ 0,

(12)

where

Φ(x) =
∫ x

0
exp

(
P(s)

)
ds, P (x) =

∫ x

0
p(s) ds.

(13)

Sabatini further gave a characterization of isochronous
centers: when p(x) and q(x) are polynomials and
the condition (11) is satisfied, the origin represents a
global isochronous center if and only if both p(x) and
q(x) have an odd degree and p(x) has a positive lead-
ing coefficient [13].

The existing theory related to the oscillators mod-
eled by Eq. (10) neither links the equation of motion
with mechanical models, nor provide general solution
for their isochronous motion. The study proposed in
this paper resolves this shortage by presenting a fam-
ily of conservative oscillators whose equation of mo-
tion has the form (10), which is interpreted here in a
new way as the consequence of the position-dependent
mass or geometrical (kinematic) constraints. In addi-
tion, the solution for a phase trajectory and time re-
sponse of isochronous motion is also provided. Several
examples are given to illustrate the findings.

2 Oscillators with position-dependent mass

Let us consider conservative oscillators whose La-
grangian has the form

L = 1

2
m(x)ẋ2 − V (x), (14)

where m(x) is a mass that changes with the dis-
placement x and V (x) is the potential energy that
is required to be positive definite and to yield the
amplitude-independent frequency.

Lagrange’s equation corresponding to the
Lagrangian (14) is

ẍ + m′

2m
ẋ2 + V ′

m
= 0, (15)

where m′ = dm/dx.
Now, putting the requirement of the equivalence be-

tween the Lagrangian of the oscillator under consid-
eration (14) and the Lagrangian of the SHO with the
isochronous center at the origin (3), we conclude that
the following should be satisfied:

Ẋ = √
m(x)ẋ, (16)

V (x) = X2

2
. (17)

Equation (16) gives

X =
∫ x

0

√
m(s) ds, (18)

and Eq. (17) defines the potential energy, so that the
equation of motion (15) becomes

ẍ + m′

2m
ẋ2 + 1√

m

[∫ x

0

√
m(s) ds

]
= 0. (19)

Given the fact that classical mechanical systems are
such that m > 0, the denominators in Eq. (19) are not
zero and the radicand is always positive. Equation (19)
can be related to Eq. (10) by identifying

p(x) = m′

2m
, q(x) = 1√

m

[∫ x

0

√
m(s) ds

]
= X√

m
,

(20)

where the latter term plays the role of the restoring
force Fr(x) ≡ q(x).
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Comparing (20) and (13), we obtain that P =
ln

√
m and that Φ(x) = ∫ x

0

√
m(s) ds = X from

Eq. (18). Then the condition derived by Sabatini
in (12) is satisfied, since the expression in square
brackets in Eq. (12) becomes:

X√
m

√
m − X

√
m

√
m − X m′

2
√

m

m
− X

X√
m

m′

2m
≡ 0.

(21)

In addition, the form of m(x) should be such that p(x)

and q(x) are odd and analytic. To determine the form
of m(x), we analyze p(x) in Eq. (20): the ratio of
m′(x) and m(x) needs to be odd. Given the proper-
ties of mass in classical mechanical systems, one con-
cludes that m(x) should be even.

Noting that m′/(2m) = (
√

m)′/
√

m, Eq. (19) can
be expressed as

ẍ + M ′

M
ẋ2 + 1

M

[∫ x

0
M(s)ds

]
= 0, (22)

where M(x) = √
m(x). So, by choosing M(x) as an

even analytic function, and performing its differentia-
tion and integration with respect to x, one can find the
differential equation (22) with an isochronous center.
Thus, Eq. (22) and its other version (19) yield a family
of conservative isochronous oscillators.

Since the solution for motion of the SHO (4) has a
general form A cos(t + α), Eq. (18) also defines how
x changes with time

X =
∫ x

0

√
m(s) ds = A cos(t + α), (23)

where A and α can be found from the initial con-
ditions x(0) and ẋ(0). So, not only does this ap-
proach yield mechanical and mathematical models of
isochronous oscillators, but it also enables one to find
their isochronous motion (note that this solution can
be implicit). In addition, in case when the isochronous
motion exists and when the corresponding initial en-
ergy level is h, the energy-conservation law can be
used

1

2
m(x)ẋ2 +V (x) = 1

2
m(x)ẋ2 + [∫ x

0

√
m(s) ds]2

2
= h,

(24)

to define this motion in the phase plane, i.e., to obtain
the phase trajectory

ẋ2 = 2h − [∫ x

0

√
m(s) ds]2

m(x)
. (25)

3 Examples

A few following examples illustrate potential use and
benefits of the theoretical findings presented above.

3.1 Example 1: oscillators with a known
mass-displacement law

The first example is related to the problem in which
the form of the mass-displacement law is known, and
the corresponding potential energy and the equation of
motion that result in isochronous oscillations are ob-
tained. Let the mass change in accordance with

m(x)= exp
(
x2k

)
, (26)

where k is a positive integer. This position-dependent
mass will result in an odd-powered monomial term in
front of ẋ2 in Eq. (19).

To find the restoring force, the expression (18) is
solved in terms of the lower incomplete gamma func-
tion γ [14]

X =
∫ x

0
exp

(
s2k

2

)
ds = (−1)− 1

2k 2
1

2k

2k
γ

(
1

2k
,−x2k

2

)
.

(27)

The associated potential energy (17) is

V (x) = [ (−1)
− 1

2k 2
1

2k

2k
γ ( 1

2k
,− x2k

2 )]2

2
. (28)

Equation (19) now transforms to a closed-form differ-
ential equation:

ẍ + kx2k−1ẋ2 + (−1)− 1
2k 2

1
2k

2k

× γ

(
1

2k
,−x2k

2

)
exp

(
−x2k

2

)
= 0.

(29)

Based on Eq. (23), the isochronous oscillations are
found to be defined by

(−1)− 1
2k 2

1
2k

2k
γ

(
1

2k
,−x2k

2

)
= A cos(t + α). (30)
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Fig. 2 Example 1 for k = 2: (a) mass variation (26); (b) po-
tential energy (28); (c) time response obtained numerically
from Eq. (29) for x(0) = 0.1;0.5;1, ẋ(0) = 0 (red dots),
and the analytical solution Eq. (30) with A = 0.100001;

0.503152;1.1156579646, α = 0 (solid black line); (d) phase
trajectories obtained numerically from Eq. (29) (red dots) and
based on Eq. (25) for h = 0.622346347 (solid black line)

Further, using the series representation for the lower
incomplete gamma function [14, 15]

γ

(
1

2k
,−x2k

2

)
= exp

(
x2k

2

)(
−x2k

2

) 1
2k

× Γ

(
1

2k

) ∞∑
n=0

(− x2k

2 )n

Γ ( 1
2k

+ n + 1)
,

(31)

the restoring force can be expressed in a polynomial
form, so that the equation yielding isochronous oscil-
lations (29) becomes

ẍ + kx2k−1ẋ2 + Γ ( 1
2k

)

2k

∞∑
n=0

(−1)nx2k·n+1

2n Γ ( 1
2k

+ n + 1)
= 0.

(32)

Now, it is easy to compare Eq. (32) with Eq. (10) and
to recognize that p(x) and q(x) are polynomials with

odd degree and that p(x) has a positive leading coeffi-
cient because k > 0. Therefore, the isochronous center
is global.

To illustrate these results, the mass variation (26)
is plotted in Fig. 2a for k = 2. The associated poten-
tial energy (28) is shown in Fig. 2b, from which it is
seen that the potential energy is single-welled. The so-
lution for time response obtained numerically by inte-
grating directly Eq. (29) for x(0) = 1 and ẋ(0) = 0 is
plotted in Fig. 2c in red dots. The analytical solution
corresponding to these initial conditions is given by
Eq. (30) with A = 1.1156579646, α = 0 and is plot-
ted as a solid black line. These two types of solutions
coincide. In addition, phase trajectories obtained nu-
merically from Eq. (29) and based on Eq. (25) for
h = 0.622346347 are plotted in Fig. 2d and demon-
strate perfect matching. Figure 2c also contains the
solutions shown for two additional pairs of the ini-
tial conditions x(0) = 0.1;0.5 and ẋ(0) = 0. As it can
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be seen, all the resulting time histories have the same,
constant period.

It is interesting to note that when k = 1, the lower
incomplete gamma function turns into the imaginary
error function [16], i.e.,

X =
∫ x

0
exp

(
s2

2

)
ds = −i√

2
γ

(
1

2
,−x2

2

)

=
√

π

2
erfi

(
x√
2

)
, (33)

with the potential energy

V (x) = π

4
erfi2

(
x√
2

)
, (34)

and the equation of motion

ẍ + xẋ2 +
√

π

2
exp

(
−x2

2

)
erfi

(
x√
2

)
= 0. (35)

Given Eq. (31), the expression for the restoring force
can be written down as

Fr = Γ ( 1
2 )

2

∞∑
n=0

(−1)nx2n+1

2n Γ ( 1
2 + n + 1)

=
∞∑

n=0

(−1)nx2n+1

(2n + 1)!! , (36)

and the corresponding equation of motion becomes

ẍ + xẋ2 +
∞∑

n=0

(−1)nx2n+1

(2n + 1)!! = 0. (37)

The results (34)–(37) agree with the results obtained
in [17] by using a perturbation method.

3.2 Example 2: oscillators with a fixed restoring
force

Equations (19) and (22) can be used to find the mass-
displacement characteristic of an isochronous oscilla-
tor with a fixed nonlinearity, i.e., with the known form
of the restoring force. To illustrate this, let us assume
that the restoring force has the following form:

Fr(x) ≡ q(x) = x + x2k+1, (38)

where k is a positive integer.

Identifying from Eq. (22) that

1

M

[∫ x

0
M(s)ds

]
= x + x2k+1, (39)

and solving this for M(x), one can obtain

M(x) = (
1 + x2k

)− 2k+1
2k . (40)

Equation (22) gives:

ẍ − (2k + 1)
x2k−1

1 + x2k
ẋ2 + x + x2k+1 = 0. (41)

When k = 1, the restoring force (38) is of the Duff-
ing hardening type. The mass should change in accor-
dance with

m(x) = 1

(1 + x2)3
, (42)

and the potential energy should be

V (x) = x2

2(1 + x2)
. (43)

Then, the equation of motion is

ẍ − 3x

1 + x2
ẋ2 + x + x3 = 0, (44)

with the isochronous oscillations being defined by

x√
1 + x2

= A cos(t + α). (45)

Figures 3a and 3b show respectively the mass-displace-
ment expression (42) and the potential energy (43).
Note that for larger |x|, mass decreases considerably
and becomes very small. A numerically obtained time
response from Eq. (44) is plotted in Fig. 3c in red dots
for x(0) = 1 and ẋ(0) = 0, while the analytical solu-
tion given by Eq. (45) with A=1/

√
2, α = 0 is depicted

by a solid black line. Phase trajectories obtained nu-
merically from Eq. (44) and based on Eq. (25) for
h = 1/4 and plotted in Fig. 3d. Both Figs. 3c and
3d validate the analytical results derived. Figure 3c
also includes the analytical and numerical solutions
shown for two additional pairs of the initial conditions
x(0) = 0.1;0.5 and ẋ(0) = 0. All these time histories
have the same, constant period. This confirms that the
period/frequency are amplitude-independent.
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Fig. 3 Example 2: (a) the mass-displacement expression (42);
(b) potential energy (43); (c) numerically obtained time re-
sponse from Eq. (44) for x(0) = 0.1;0.5;1 and ẋ(0) = 0 (red
dots), and the analytical solution given by Eq. (45) with A =

0.0995037;0.447214;1/
√

2, α = 0 (black solid line); (d) phase
trajectories obtained numerically from Eq. (44) and based on
Eq. (25) for h = 1/4

3.3 Example 3: oscillators with prescribed motion

The results presented in Sect. 2 can also be used to de-
termine if there is an isochronous oscillator having the
motion of the given form and, if there is, to find its
mechanical and mathematical model. Such situation
arises, for example, if the prescribed motion is given
by

x = sinh
(
cos(t)

)
. (46)

Based on Eq. (23), one follows

X = arc sinh(x). (47)

The mass-displacement law is obtained first by dif-
ferentiating the right-hand side of Eq. (47) and then
squaring what has been obtained

m(x) = 1

1 + x2
, (48)

while the potential energy should be

V (x) = (arc sinh(x))2

2
. (49)

The corresponding equation of motion is

ẍ − x

1 + x2
ẋ2 +

√
1 + x2arc sinh(x) = 0. (50)

The time response obtained numerically by integrating
directly Eq. (50) for x(0) = sinh 1 = 1.1752011936
and ẋ(0) = 0 is shown in Fig. 4a in red dots, while the
analytical solution (46) is plotted as a solid black line.
A perfect match is seen. Figure 4b shows how the mass
(48) changes with time, illustrating that it corresponds
to periodically varying, i.e., pulsating mass with a pe-
riod twice smaller than the one of the response.

4 On some other oscillators with
position-dependent coefficient of the kinetic
energy

Besides conservative oscillators with the position-
dependent mass analyzed in Sect. 2, there is another
family of conservative oscillators that can be consid-
ered in the same context as above. Their Lagrangian
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Fig. 4 Example 3: (a) time response obtained numerically from Eq. (50) for x(0) = 1.1752011936 and ẋ(0) = 0 (red dots), and the
analytical solution (46) (solid black line); (b) time-varying mass plotted based on Eq. (48)

has the form

L = 1

2
T̃ (x)ẋ2 − V (x), (51)

where T̃ (x) is the coefficient of the kinetic energy
T (x, ẋ) = 1

2 T̃ (x)ẋ2. Note that here we do not asso-
ciate T̃ (x) with the mass of the system under consid-
eration, but assume that it exists due to the geometry
of motion.

The Lagrange’s equation corresponding to the La-
grangian (51) is

ẍ + T̃ ′

2T̃
ẋ2 + V ′

T̃
= 0. (52)

The form of this equation can directly be related to
Eq. (10) and Sabatini’s results [13], as well as to the
considerations given in Sect. 2. Thus, the cases with T̃

and V being even functions in x are seen as leading to
the equation of motion with an isochronous solution.
The following examples are to illustrate two cases with
such properties and to demonstrate some further ben-
efits.

4.1 Example 4: a mechanism with two sliders and a
spring

Let us consider the mechanism shown in Fig. 5: the
sliders A and B of equal mass m are connected by
a light rigid bar of length L and move with negligi-
ble friction in the slots shown, both of which are in a
horizontal plane; the slider A is also connected with a
spring. The kinetic energy of this system is given by

T (x, ẋ) = 1

2
T̃ (x)ẋ2, T̃ (x) = mL2

L2 − x2
. (53)

Fig. 5 The mechanism considered in Example 4

Assuming that the spring is linear and has a stiff-
ness k, and introducing the nondimensional variables
x̄ = x/L, t̄ = √

k/mt , the corresponding equation of
motion is

d2x̄

dt̄2
+ x̄

1 − x̄2

(
dx̄

dt̄

)2

+ x̄ − x̄3 = 0. (54)

This equation can be related to Eq. (44) considered in
Example 2, but here we deal with the softening Duff-
ing nonlinearity. For x̄ �= 1, Eq. (54) satisfies the con-
ditions for the existence of isochronous oscillations.
However, the restoring force and the coefficient in
front of the square of the generalized velocity do not
match the form (22) with the solution (23). Here, we
can pose a question of the form of the potential energy
and the restoring force for which the equation of mo-
tion will correspond to Eq. (22). Thus, by calculating
M(x̄) from M ′/M = x̄/(1 − x̄2), Eq. (22) leads to

d2x̄

dt̄2
+ x̄

1 − x̄2

(
dx̄

dt̄

)2

+
√

1 − x̄2 arcsin x̄ = 0. (55)
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Fig. 6 Example 4: (a) time response obtained numerically from
Eq. (58) for x̄(0) = 0.1 and dx̄

dt̄
(0) = 0 (red dots) and from Eq.

(54) (green stars); analytical solution (56) with A = arcsin(0.1),
α = 0 (solid black line)

Equation (23) yields its isochronous solution

arcsin x̄ = A cos(t̄ + α). (56)

It should be noted that the restoring force in Eq. (55)
can be approximated as follows:

√
1 − x̄2 arcsin x̄ ≈ x̄ − x̄3

3
, (57)

so that Eq. (55) becomes

d2x̄

dt̄2
+ x̄

1 − x̄2

(
dx̄

dt̄

)2

+ x̄ − x̄3

3
= 0. (58)

Comparing Eq. (58) with Eq. (54) one concludes that
in case of small oscillations, the isochronous solution
of the former can be taken as a good approximate so-
lution of the latter. To confirm this, Eqs. (54) and (58)
are solved numerically for x̄(0) = 0.1 and dx̄

dt̄
(0) = 0

and plotted in Fig. 6. In addition, the solution of Eqs.
(56) with A = arcsin(0.1), α = 0 is also shown. It is
seen that these solutions agree well.

4.2 Example 5: Huygens’ isochronous pendulum

It was Huygens [6, 7] who showed that if a pendulum
of length L and mass m wraps around a cycloid [18]

x = L

4
(θ − sin θ),

y = −L

4
(cos θ − 1),

Fig. 7 Huygens’ isochronous pendulum in motion

it performs isochronous oscillations. The correspond-
ing parametric equations of motion of the bob are [18]

X = L

4
(θ + sin θ), (59)

Y = −L

4
(3 + cos θ). (60)

Both of these cycloids are shown in Fig. 7 for L = 4
and for −π ≤ θ ≤ π .

The corresponding kinetic energy

T = 1

2
m

(
Ẋ2 + Ẏ 2), (61)

is

T = 1

2
m

(
L

2
cos

θ

2

)2

θ̇2. (62)

It is seen that the kinetic energy (62) of Huygens’ pen-
dulum has a position-dependent coefficient.

Its potential energy

V = mgY (63)

has the form

V = −mg
L

4
(3 + cos θ). (64)

On the other hand, a simple pendulum (SP) of the
same length and the same mass has a constant period
if it performs small oscillations. Its kinetic energy is of
the form

TSP = 1

2
m(Lϕ̇)2, (65)
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and the potential energy is

VSP = −mgL

(
1 − ϕ2

2

)
. (66)

The equality between two expressions for the kinetic
energy (62) and (65) yields

ϕ̇ = 1

2
θ̇ cos

θ

2
. (67)

This is satisfied for

ϕ = sin
θ

2
. (68)

By using (68), the expression for the potential energy
V (64) becomes

V = −mgL

(
1− 1

2
sin2 θ

2

)
= −mgL

(
1− ϕ2

2

)
, (69)

i.e., it transforms to the potential energy of the simple
pendulum (66), which confirms that Huygens’ pendu-
lum belongs to a wide class of isochronous oscilla-
tors discussed in Sect. 2 that can be transformed into
simple harmonic oscillators by establishing the equiv-
alence between their Lagrangians or the kinetic and
potential energies.

Let us now define the problem in a deductive way:
find the form of X and Y for which the system de-
scribed by (61) and (63) performs isochronous oscilla-
tions. To that end, we make (63) equal to (66), which
leads to

Y = L

(
ϕ2

2
− 1

)
. (70)

Knowing that the solution for motion of the simple
pendulum has the form

ϕ = A sin

(√
g

L
t + ϕ

)
= A sinψ, (71)

we have

Y = L

(
(A sinψ)2

2
− 1

)
. (72)

We also make (61) equal to (65), deriving

Ẋ2 = L2ϕ̇2 − Ẏ 2 = L2ϕ̇2(1 − ϕ2), (73)

or

X = L

∫ ϕ

0

√
1 − ϕ2 dϕ. (74)

Integrating (74), one obtains

X = L

2

(
ϕ

√
1 − ϕ2 + arcsinϕ

)
. (75)

This is a conditional expression for which −1 ≤ A ≤
1. Taking, A = 1, one follows

X = L

2

(
sinψ

√
1 − (sinψ)2 + arcsin(sinψ)

)
, (76)

so that the solutions for X and Y become equal to Eqs.
(59) and (60) with 2ψ = θ . Thus, this transformation
approach presented in this paper obviously gives the
same results as derived in [18].

5 Conclusions

This study has been concerned with conservative non-
linear oscillators that have isochronous orbits around
the origin. Their mechanical and mathematical mod-
els have been proposed as having the Lagrangian of
the analogous form to the simple harmonic oscilla-
tor, but with the kinetic energy whose coefficient is
position-dependent. Such coefficient can stem from
the position-dependent mass or it can be the conse-
quence of geometric/kinematic constraints. The class
of oscillators with the position-dependent mass has
been considered in detail. It has been found that such
systems have an isochronous center in the origin if the
mass is an even function in the displacement and the
potential energy is related to it in a specific way. The
corresponding equation of motion has been derived,
as well as its exact isochronous solutions for motion
and for a phase trajectory. It has also been demon-
strated how certain systems can be adjusted to exhibit
isochronous oscillations the form of which has been
derived in this study, and how one can find approxi-
mations for isochronous oscillations.
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