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Limit Cycle Oscillations in CW Laser-Driven NEMS
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Jeevak Parpia, and Harold Craighead, Member, IEEE

Abstract—Limit cycle, or self-oscillations, can occur in a variety
of NEMS devices illuminated within an interference field. As the
device moves within the field, the quantity of light absorbed and
hence the resulting thermal stresses changes, resulting in a feed-
back loop that can lead to limit cycle oscillations. Examples of de-
vices that exhibit such behavior are discussed as are experimental
results demonstrating the onset of limit cycle oscillations as contin-
uous wave (CW) laser power is increased. A model describing the
motion and heating of the devices is derived and analyzed. Condi-
tions for the onset of limit cycle oscillations are computed as are
conditions for these oscillations to be either hysteretic or nonhys-
teretic. An example simulation of a particular device is discussed
and compared with experimental results. [1190]

Index Terms—Finite element method (FEM), laser drive, limit
cycle oscillation, self-oscillation, thermal stress.

I. INTRODUCTION

RESONANT micro- and nanostructures have been pro-
posed for a number of applications including sensing,

signal processing, and as reference oscillators [1]–[4]. In
sensing applications such as mass detection or strain measure-
ment, the quantity of interest is transduced by frequency change
of the oscillator. In a communication system information may
be carried by either the frequency or phase. In all these appli-
cations drive of the oscillator, signal transduction, attainment
of high-quality factor, and stability are challenges to be met
before product can be built.

Self-resonant systems have potential to meet the above chal-
lenges. Drive occurs by self-oscillation, the quality factor can be
improved through the use of parametric amplification, stability
can be improved through the use of feedback and the same op-
tical system used for drive can be used for signal transduction.

A self-resonant system is one that in the absence of external,
modulated forcing will vibrate at a steady amplitude, i.e., under-
goes limit cycle oscillations. The canonical example is the van
der Pol oscillator [5] in which an electrical circuit, containing a
vacuum tube that at low current acts as a negative resistor but at
high current acts as a positive resistor, spontaneously oscillates.

Thermally driven limit cycle oscillations can occur in me-
chanical systems at all size scales. For example [6], when solar
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radiation is incident at an angle upon a space structure, the ab-
sorbed radiation will either increase or decrease as the structure
bends toward or away from the incoming radiation. This sets
up a feedback loop that can lead either to static bending or to
bending vibrations (limit cycle oscillations.)

In micro systems, thermally driven oscillations can occur
when a beam or similar structure moves within an interference
pattern. Langdon and Dowe [7] demonstrated and analyzed
a self-resonant system consisting of an aluminized polyester
beam illuminated by a He-Ne laser that passes through a 50%
mirror placed just ahead of the polyester beam. The optical
arrangement forms a Fabry–Pérot interferometer and as the
beam vibrates, changing the interferometer gap, the light ab-
sorbed by the beam changes, creating a feedback loop between
the motion of the beam and the absorbed light. When the
laser intensity is low the beam bends statically. As the laser
intensity increases, the beam begins to vibrate, i.e. to undergo
limit cycle oscillations. Similar results and phenomena were
reported by Stokes et al. [8] who demonstrated self-excitation
of metal-coated, silicon dioxide beams.

Churenkov [9] analyzed a clamped-clamped beam driven
both by externally modulated laser light and by interferomet-
rically modulated light. Conditions for limit cycle oscillations
and optimal placement of the light source are analyzed. He
notes that parametric excitation due to modulated thermal
stresses could be used both in externally modulated and in
self-resonant systems. In parametric excitation, modulation of
the spring stiffness at the right phase and frequency pumps
energy into the oscillator, leading to amplification of motion
or to unstable oscillations [5]. Churenkov points out that the
optimal equilibrium interferometer gap for this mechanism
is shifted by compared to the case for excitation due to
thermal bending moment and that “self-oscillation cannot be
excited spontaneously even if the self-excitation condition is
fulfilled.”

Hane et al. [10], [11] demonstrated limit cycle oscillations
in an aluminum coated, cantilevered glass beam. They demon-
strated that the vibration amplitude varied from 0 to 300 nm with
a period of as the equilibrium air gap was varied. Zook et al.
[12] built a device using an integral photodiode to convert op-
tical power into an electrostatic force to produce self-oscillation
in a clamped-clamped silicon microbeam. A proposed applica-
tion of the device is strain sensing.

Electrostatically driven parametric resonance in MEMS sys-
tems has been studied by Turner et al. [13], [14], Ruger and
Grütter [15] and Carr et al. [16]. Parametric resonance in an
electrostatically driven nanowire was observed by Yu et al. [17].
Ruger and Grütter point out that parametric drive can be used not
only to amplify motion but to reduce thermomechanical noise as
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well, greatly increasing sensitivity of sensors built using para-
metric drive.

Zalalutdinov et al. recently produced CW laser driven limit
cycle oscillations in NEMS resonators in the shapes of disks
[18], domes [19], paddles [20] and wires [21]. Parametric am-
plification [22], entrainment [23], and operation in air [20] have
been demonstrated. These systems were modeled by a one de-
gree of freedom oscillator coupled to a lumped mass thermal
system. Up to this time, these models have not been fully an-
alyzed. Thus, in the following sections experimental observa-
tions of limit cycle oscillations in three different devices will be
presented followed by derivation and analysis of the model and
comparison to experimental results from one type of device.

II. EXPERIMENTAL OBSERVATIONS

A. Devices

The devices and fabrication methods used in this study
are similar to those used in previous studies [18], [19], [24].
With the exception of the dome oscillator, the devices were
made using commercially available silicon-on-insulator (SOI)
wafers. Lithography was done using direct write electron beam
methods. A chrome etch mask was evaporated onto the surface
of the SOI wafer after pattering with lithography. A reactive
ion etch (RIE) step removes the top silicon layer after which,
the chrome was removed using oxygen plasma. The structures
were then released by timing a wet oxide etch in hydrofluoric
acid to undercut the oxide from the device.

The devices used were disk, clamped-clamped beam, and
dome shaped having resonant frequencies up to 20 MHz (see
insets of Figs. 1–3). The 21- diameter, 250-nm thick disk
was made of single-crystal silicon (SCS) supported in the
center by an oxide pillar. The wet oxide etch step produced a
conically shaped pillar whose lateral dimensions depend on
etch time. The oxide thickness is 1 .

Release of residual stresses during fabrication caused the
disks to be arched upwards between 20 and 100 nm at the
periphery.

We also fabricated beam oscillators for the purpose of
achieving higher frequencies. The device layer in this case was
205 nm thick and the chrome etch mask (50 nm) was left intact.

To create devices with a greater out-of-plane deflection,
dome oscillators were fabricated using a different process.
First, 1.5 of thermal oxide was grown on a [100] silicon
wafer. Next, a polycrystalline Si layer was grown using liquid
plasma chemical vapor deposition (LPCVD)
and annealed at 1150 for 60 min to develop compressive
stress ( 300 MPa) in the film. Using photolithography, a hole
was patterned and etched through the poly layer using RIE with
a resist mask. The device was then released using a wet oxide
etch to undercut the patterned hole. As the device layer was
freed from the oxide, the compressive stress caused it to buckle,
resulting in a 1 high, 30 diameter dome.

By driving these devices at low amplitude using either a
piezoactuator or a modulated laser, a variety of modes can
be seen. We have measured modes having zero, one, and two
nodal diameters in the disk oscillators as well as higher order
modes in the dome oscillators.

Fig. 1. Dome oscillator (measured frequency = 17:8 MHz, Q = 10000)
and Hopf bifurcation (onset of self-sustained, or limit cycle, oscillations).
Inset is an optical DIC image of the dome. Out-of-plane buckling causes the
interference rings seen.

Fig. 2. Hopf bifurcation in doubly clamped beam oscillator
(measured frequency = 21 MHz). Inset is an SEM image of an array of
such resonators. The measured device was the longest beam.

Fig. 3. Hopf bifurcation in two different disk-type oscillators. [f = 3:8MHz,
Q = 7500 (top), f = 3:2 MHz various Q values (bottom)]. Inset is a
SEM image of the disk. The bottom section shows how the threshold for
self-oscillation depends on the quality factor. The arrow shows the point at
which the data in Fig. 4 was taken.
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B. Setup and Procedures

An interferometric method was used to detect the motion of
the devices and has been described in earlier work [25]. A con-
tinuous wave (CW) He-Ne laser beam is focused to about a 2
spot on the device. The layers of device, vacuum, and substrate
set up a Fabry–Pérot type interferometer whose reflected signal
depends on the thickness of the layers. As the device moves, the
gap between device and substrate changes and thus modulates
the reflected light. This modulated signal is measured using an
ac-coupled photodetector and spectrum analyzer. All measure-
ments were done under vacuum .

The data in Figs. 1–3 were taken by measuring the amplitude
of the spectral response at the frequency of oscillation of the de-
vices as a function of incident CW laser power using a spectrum
analyzer. Changing the dc bias across an electrooptical modu-
lator (EOM) controlled the CW intensity of the laser. Quality
factor measurements were taken by driving the structures using
a second laser (417 nm) whose intensity was modulated using
the RF output from a spectrum analyzer and measuring the half-
width of the resonant peak [19]. The CW laser powers were low
compared to the power required to induce limit cycle oscilla-
tions. In one case, the quality factor of a disk-type oscillator
was changed from 10 000 to 40 000 through in situ laser an-
nealing [26] to measure the threshold power as a function of
quality factor. Measurements of the self-oscillation thresholds
were taken using laser powers that were below those required to
anneal the structure.

C. Results

To produce limit cycle oscillations, we need only to increase
the intensity of the CW measurement laser. At a certain power
threshold that depends on the device properties and the place-
ment of the beam, the device jumps into motion in a Hopf-type
bifurcation. We estimate that the peak-to-peak amplitude of mo-
tion can be as high as half the wavelength of the laser light
(315 nm).

Figs. 1–3 show the onset of limit cycle oscillations for the
different types of structures (domes, beams, and disks) men-
tioned above. Note that with the detection system used, the am-
plitude overshoot seen in Figs. 1 and 3 may be due to temper-
ature dependent reflectivity. Note also that as shown in Fig. 4
the signal contains significant 2f and 3f components and hence
what is measured is not the true amplitude. To estimate the true
amplitude consider the signal from the photodetector while the
device is in self-oscillation, as shown in Fig. 4. The departure
from a sinusoidal waveform is due to the periodic depen-
dence of the reflected signal on displacement [27]. We can ob-
tain a rough estimate of the peak-to-peak amplitude of the limit
cycle oscillations by fitting to the measured signal a curve pro-
duced by mapping sinusoidal motion onto the calculated dis-
placement-reflectance dependence. In Fig. 4, the amplitude of
motion is found to be 160 nm. Amplitudes have been found to
be as high as 300 nm.

Various degrees of hysteresis in the amplitude versus laser
power plots of Figs. 1–3 are observed. For the case of the disk
oscillator, one device showed hysteresis while another did not.
The two differed in size and in the oxide etch time during fabri-

Fig. 4. Signal from photodetector from point indicated by arrow in Fig. 3.
The fit curve is the calculated signal obtained using sinusoidal motion with an
amplitude of 80 nm moving through an interference pattern set up by a 248 nm
device and 1000 nm gap.

cation. These differences can cause the devices to have different
out-of-plane deflections. This will be shown in the theory sec-
tion of this paper to have an effect on whether or not hysteresis is
expected. The laser power threshold for the onset of limit cycle
oscillations was measured for different quality factors in Fig. 3.
The dependence of the laser power threshold, on is ap-
proximately which differs from the de-
pendence expected for linear damping, see (19) below. It may be
that the act of laser annealing the device removes surface con-
taminants, decreasing surface losses and changing the shape of
the disk. This could change the absorption of laser light by the
device and hence change the calculated limit cycle threshold.

III. THEORETICAL MODEL

Although the above described systems are structures and
hence will have spatially varying fields, for modeling purposes
they will be simplified as a one degree of freedom oscillator
coupled to a lumped thermal mass. No external forcing is
applied to the system.

Let be the deflection of the structure at the location of laser
illumination, and let , where is the wavelength of the
laser light. As the structure deforms, the absorption of light will
vary periodically with the gap. The absorption can be approxi-
mated by . The values of and depend
on the thickness of the structure, the gap and on the optical prop-
erties of the material [27], [28]. The position of the minimum of
the absorption with respect to the structure’s equilibrium posi-
tion is represented by .

The structure is assumed to heat up due to absorbed laser light
and to cool according to Newton’s law of cooling, i.e. the rate
of heat loss is proportional to the temperature above ambient.
Nondimensionalizing time by the small amplitude frequency,

of the mechanical oscillations, the energy balance for the
lumped thermal mass is given by

(1)

where is the temperature above ambient, is density, is
specific heat, is the effective volume of heated material,
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TABLE I
ROOM TEMPERATURE PROPERTIES OF Si h100i

is the effective surface area over which cooling occurs, is the
cooling coefficient and

(2)

where is the incident laser power. The above can be written
as

(3)

where and . Expressing
the laser power in , and in , has units of ,
and is dimensionless. In the above, represents the max-
imum temperature in the structure, which occurs at the point of
illumination by the laser.

The mechanical system is modeled as a nonlinear,
mass-spring-dashpot, coupled to the thermal problem through a
thermal forcing and temperature dependent spring stiffness. The
temperature dependence of the stiffness has two sources. The
elastic properties soften with temperature, see Table I. In-plane
thermal stresses may either soften or stiffen the structure.
For example, in a doubly clamped beam the relative stiffness
change is given by , where is
the spring stiffness, is the coefficient of thermal expansion,
is the length of the beam and is the beam thickness [29]. In
the disk oscillator, as the temperature increases, radial tensile
and hoop compressive stresses are developed that increase the
stiffness of vibration modes involving predominantly radial
bending and decrease the stiffness of modes involving pre-
dominantly hoop bending [22], [30]. The stiffness change is
represented by . may be positive or negative. At
high frequencies, the temperature modulation away from the
point of laser heating diminishes, and thus is a decreasing
function of frequency of heating modulation.

Optothermal forcing can arise from several physical sources,
[3], [32]–[34]. If there is a through the thickness temperature
gradient or if the structure is composed of two layers of different
materials, then there will be a thermal bending moment. Fatah
[33] discusses deflection of initially arched beams due to uni-
form thermal expansion (i.e. no through the thickness thermal
gradient.) The electronic strain produced in semiconductors due
to photogenerated carriers [35], [36] can be used as a driving
mechanism in microbeams [37], [38]. The electronic strain can
be many times larger and faster acting than thermal strain, po-
tentially lowering the optical power required for self-oscillation.

The relative importance of the optothermal forcing mecha-
nisms depend on the device dimensions, coatings and material.
As an example, finite element calculations were performed for

a 40- outer diameter, 6.7- inner diameter disk made from
0.24 thick, undoped Si, illuminated by a CW
laser over a 5- diameter circle. Due to the release of residual
stresses the disk arches upwards by 40 nm. Since the material
is undoped, there will be no electronic strain. Estimating re-
flectance of 0.35 and absorption of 0.25 [28] the photon force
is , where is the
speed of light, resulting in a deflection .
The same illumination produces and deflection

due to expansion of the initially curved
disk. Note that if the disk were flat, the only motion would come
from the small through-the-thickness temperature gradient. In
this case . To understand why the thermal
bending is so small in this case, note that the characteristic time
for heat conduction scales as , where is the
thermal diffusivity. In units of and , for
Si. The time for the through the thickness temperature to equili-
brate is approximately 0.0006 . The period of mechanical os-
cillation for the disk is approximately 1 , orders of magnitude
longer than the time needed for through the thickness thermal
equilibrium.

For the thermal strain driven mechanisms, the static deflection
due to the optothermal force can be approximated as , where

may be positive or negative and is a decreasing function
of heating modulation frequency. In a disk oscillator, supported
by a central pillar, if the disk is arched upwards it will deflect
down when heated, i.e., . If the disk is arched downward
it will deflect up when heated, i.e., . Note that and
have units of .

Putting the above together, the balance of linear momentum
for the oscillator may be written in nondimensional time as

(4)

where is the quality factor and the cubic stiffness nonlin-
earity parameter. Equations (3) and (4) form a coupled system
of differential equations describing the vibrations of the NEMS
oscillators under CW laser illumination. Note that the term
could also be considered as a force and placed on the RHS of
(4). The results shown in the following sections would be iden-
tical to within a very small difference.

To model an actual device, the parameters , , , , ,
, and must be estimated. The quality factor can be found

by mechanically forcing the device and measuring its resonance
width. The other parameters can be determined by theory or by
computational simulation as outlined in the following sections.

A. Thermal Parameters

For a device that is essentially one-dimensional (1-D) such
as the beam type oscillator, the thermal parameters may be esti-
mated analytically. For a device such as a disk oscillator heated
over only a small region, analytical computation of the temper-
ature field is very complex. In such a case, the parameters
and can be determined using two- (2-D) or three-dimensional
(3-D) finite element method (FEM) simulation. First a static,
unit heat flux is applied over the portion of the model illumi-
nated by the laser and the steady state temperature field is com-
puted. The thermal equation then reduces to , and
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hence , where is the temperature at the location
of laser illumination. Next, a sinusoidal unit heat flux is applied
to the model. In this case the temperature equation reduces to

, where is nondimensionalized time,
and is the frequency of heat flux modulation relative to the
natural frequency of vibration of the structure. The steady state
solution to the above is ,

. Hence, , the amplitude of the tempera-
ture field from the FEM solution, is . The
parameters and can then be found from the solution to the
equations for and .

B. Stiffness Change and Cubic Nonlinearity

To determine , a sinusoidal unit heat flux is applied to a
geometrically nonlinear FEM model at or near the resonant fre-
quency of the structure and the temperature and the stress field
are computed. After applying enough cycles to reach steady
state the simulation is stopped at every 1/8 period and an eigen-
mode analysis is performed to extract the resonant frequency of
the relevant mode. Since stiffness, , .
By determining the amplitude of the frequency change,
over one cycle, .

The cubic term in the stiffness may be determined by applying
a pressure load to the FEM model, performing a nonlinear FEM
simulation and fitting the deflection as a function of force. If the
amplitude can be measured precisely the cubic term may also be
determined by fitting the measured frequency-amplitude curve
to the frequency-amplitude relationship for a Duffing oscillator,
see [5].

C. Optothermal Forcing

The optothermal forcing term is modeled in (4) as . The
forcing due to curvature and temperature gradient can be esti-
mated from FEM simulation. Note that if and are constant in
(4), then . Since the NEMS oscillator is a structure, the
deflection depends on the temperature field, which differs for
static and modulated heating. Thus one needs to find the me-
chanically static response to a dynamic temperature field. To
do this in an FEM simulation, the density can be reduced by a
factor (for example) of and the specific heat increased by the
same factor. This keeps the thermal frequency the same while
increasing the mechanical frequency by 10. As before, the pro-
cedure now is to apply a modulated unit laser power to the FEM
model at or near the original resonant frequency of the structure.
The resulting nonresonant deflection and temperature amplitude
are then used to compute .

IV. ANALYSIS OF MODEL

A. Threshold for Hopf Bifurcation

In this section, we present an approximate analytical solution
of (3), (4) which is based on a few simplifying assumptions. We

begin by assuming that in (3) is sufficiently small that we
can replace by the first two terms of its Taylor
series:

(5)

Next, we assume that the parameters , , , and are
small, and we scale them with a single small parameter . We
rescale time to and expand . These steps
result in the following form of the equations:

(6)

(7)

where primes represent differentiation with respect to ,
and where we have defined the quantities ,

, .
Note that when these become

(8)

(9)

Writing the solution of (8) as

(10)

we obtain a steady-state solution to (9) in the form:

(11)

where the are known. Substituting (10) and (11) into (6),
neglecting terms of , trigonometrically reducing all trig
terms in , and setting the coefficients of and to zero
(for no secular terms) allows us to solve for the coefficients
and in (10). Switching to polar coordinates

(12)

we are able to obtain an equation on the limit cycle amplitude
, and an expression for the frequency in terms of . The

former of these may be written as follows:

(13)

where the coefficients are given by the expressions
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Note that each term of the coefficients , and depends
on exactly one of the parameters , , , which have been
scaled to be . Thus we may drop the scaling and treat , ,

in (13) as having their original physical values independent
of .

Equation (13) can be solved for :

(14)

where

(15)

(16)

(17)

(18)

A Hopf bifurcation in which a limit cycle is born out of
will occur at a value of which may be obtained by substituting

into (13)–(18)

(19)

To illustrate the results, a standard set of parameter values
based on a preliminary analysis of a disk oscillator will be used
[23]. These parameters are: , ,

, , , , ,
, and With these values, (19) gives

.

B. Super- and Subcritical Hopf Bifurcations

If we use the foregoing parameter values but allow to vary,
(14) gives

(20)

For this gives a subcritical Hopf, whereas for
this gives a supercritical Hopf, see Fig. 5.

The sub- or supercritical nature of the Hopf will depend on
the sign of the curvature (or second derivative) of the curve (14)
at

(21)

where

(22)

Note that the sign of is the sign of , which
therefore determines the nature of the Hopf. For standard pa-
rameters, (22) becomes

(23)

Fig. 5. Subcritical Hopf (upper) versus supercritical Hopf (lower). Amplitude
of limit cycle determined from perturbation theory and by numerical
integration of equations (3), (4). Difference between results is due to Taylor
series approximation of sin 2�(z � z ) term. S = stable, U = unstable.
Subcritical Hopf involves 0, 1, or 2 limit cycles, whereas the supercritical
Hopf involves only 0 or 1 limit cycles. In the case of two limit cycles, one is
unstable. The stable manifold of the unstable limit cycle separates motions
which are attracted to the stable limit cycle from those which are attracted to the
equilibrium position. In the case of a subcritical Hopf, the dynamics exhibits
hysteresis (represented by vertical lines with arrows showing the direction
of jumps), while in the case of a supercritical Hopf no hysteresis occurs. In
the case of subcritical Hopf, as Churenkov [9] hints, in the region of 2 limit
cycles self-oscillation cannot grow from equilibrium. A sufficiently large initial
value of jzj = (R) must be given to jump from the basin of attraction of the
equilibrium point into the basin of attraction of the stable limit cycle.

which has the positive root . Thus the Hopf is
supercritical for and subcritical for

.
In general, the cut between sub- and supercritical Hopfs oc-

curs at . For general parameters, we may solve (22) for
, giving the following condition for a supercritical Hopf:

(24)

Thus, in general, the nature of the Hopf will depend on , , ,
and . However, this equation shows that if

, the RHS of (24) will be negative, and the Hopf will al-
ways be supercritical.

Note that (5), the Taylor series approximation of the interfer-
ence field gives the correct value of but not of the limit
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cycle amplitude, see Fig. 5, since the approximation is inaccu-
rate for large values of .

C. Number of Limit Cycles

The system of (3), (4) can exhibit 0, 1 or 2 limit cycles, de-
pending on the value of the parameters. We have already seen
this in Fig. 5. In this section we investigate how the number of
limit cycles depends on the value of the parameters and .

For the standard parameters, (13) becomes

(25)
For the standard values of and , solving (25) for the single
real positive root for , yields , the approximate
amplitude of the limit cycle.

For a real solution to (25), the discriminant 0, which
requires

(26)

In addition to being real, the roots . The cut comes when
, which happens when

(27)

The curve (26) and the line (27) divide the parameter
plane into regions which contain 0, 1, or 2 limit cycles for fixed
values of the other parameters, see Fig. 6.

D. Simulation of Single Crystal Si Disk Oscillators

To demonstrate the application of the theory and procedures
to an actual device, limit cycle oscillations in a 40- outer
diameter, 6.7- inner diameter, 240-nm thick disk on a
1000- thick substrate were simulated. The disk was
not completely flat; it was arched upwards with a deflection
of approximately 40 nm at its edge. The interference absorp-
tion curve can be approximated by , ,

. Using the FEM and the properties given in Table I,
the thermal parameters are estimated to be

. The mechanical parameters are estimated to be
, , ,

. Using (19) for
and for . Numerical integration of the
model equations shows a supercritical bifurcation. Experiments
show a supercritical bifurcation with for

and for .
A similar analysis was performed for a disk with 21 outer

diameter, 0.8 inner diameter, 250 nm thick, initially arched
up by 30 nm on the periphery. The resulting parameters for this
model are , , ,

, , and . Using
(19), for . The numerical sim-
ulations show a subcritical bifurcation, in agreement with the
experimental results in Fig. 3 (top). However the value of
is larger than that obtained experimentally (2800 for

.)

Fig. 6. Number of limit cycles displayed in the C �D parameter plane, for
standard parameters at P = 600 �W. Each region contains a schematic of the
limit cycles projected onto the z� _z and z�T phase planes. In region 0, there
are no limit cycles and the origin is stable. In region 1, there is one stable limit
cycle and the origin is unstable. In region 2, there are two limit cycles (the larger
is stable and the smaller is unstable) and the origin is stable. The � corresponds
to the location of the standard parameters. The solid curved line is (26), and the
straight line is (27). Numerical integration of (4), (3) with the approximation
(5) agrees well with the solid curved line, (26). Numerical integration of (4),
(3) without the approximation (5) gives the dashed curved line. Equation (27)
agrees with numerical integration results in both cases.

A similar analysis has not been performed for the polysilicon
dome or for the single crystal beams. However, the procedure
would be the same.

V. SUMMARY AND CONCLUSIONS

Opto-thermally driven limit cycle oscillations can occur in
NEMS and MEMS devices that are illuminated within an inter-
ference fringe field where the amount of light absorbed is a func-
tion of the deflection of the NEMS device. The forces that drive
the oscillation can be due to thermal bending, thermal expansion
of nonplanar devices, thermal strain driven stiffness modulation,
photon pressure and opto-electronic strain. These phenomena
can be modeled using a system of two coupled, nonlinear dif-
ferential (3) and (4), containing seven parameters that describe
the system. Analysis of the model equations provides an expres-
sion (19) for , the CW laser power needed for limit cycle
oscillations to occur. The analysis also gives conditions for sub-
and supercritical Hopf bifurcations, corresponding physically to
cases where the limit cycle oscillations would or would not show
hysteresis as the CW laser power is increased and decreased.

The relationship between the parameters (parametric
pumping term), (deflection due to heating term), and
(offset to interference absorption curve) is outlined in Fig. 7.
Depending on the signs of and these terms will be ef-
fective either in driving limit cycle oscillations or suppressing
them depending on the location of the interference absorption
minima and maxima with respect to the equilibrium position of
the oscillator.



AUBIN et al.: LIMIT CYCLE OSCILLATIONS IN CW LASER DRIVEN NEMS 1025

Fig. 7. Schematic absorption versus oscillator deflection (2). Dots denote
equilibrium positions (z � 0) for different z values. For D > 0
self-oscillation can occur when z > 0, i.e., the slope of the absorption curve
is negative at the oscillator’s equilibrium position. For D < 0 self-oscillation
can occur when z < 0, i.e., slope is positive at the equilibrium position.
Parametric pumping term (CT ) is most effective for C > 0 when z � 0. If
C < 0, then CT term is most effective for z � 0:25.

Predictions of the model equations agree well with experi-
ments, although due to the uncertainty in the many model pa-
rameters it is difficult to predict exactly. The value of

and the nature of the bifurcation depends at least lin-
early on all of the parameters, see (19). These parameters in turn
depend on the elastic modulus, optical properties, and thermal
properties of the material. For example, if the elastic modulus
were doubled, the frequency would of course increase by ,
but would not change as this parameter describes the relative
stiffness modulation and hence does not depend on . However,
the thermal parameter will depend linearly on the thermal
conductivity, , which can depend on device thickness and grain
structure.
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