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Abstract—A radio frequency (RF) micromechanical shell-type
resonator with a resistive thermal actuator is shown to perform as
a highly linear, broadband mixer and a high-quality factor post-
translation (intermediate frequency) filter. The resistor is capable
of frequency translation of RF carrier signals as high as 1.5 GHz to
the intermediate frequency of 12.7 MHz. The thermal actuator al-
lows electrical isolation between the input and output of the mixer-
filter, dc bias independent mixing, and provides a 50-Ohm load to
match the output of front-end electronics. High linearity is demon-
strated in the mixer with a third-order input intercept point of
+30 dBm for interferers spaced at a 50-kHz offset from the car-
rier frequency. A variant of the Duffing oscillator model and finite
element modeling are used to analyze the origin of nonlinearities
in the micromechanical system. [1503]

Index Terms—Bandpass filter, Duffing oscillator, intermediate
frequency, microelectromechanical systems (MEMS), mixer, non-
linear oscillations, radio frequency (RF), thermal mechanical cou-
pling, third-order intermodulation distortion (IM3).

I. INTRODUCTION

CURRENT research in radio frequency microelectrome-
chanical systems (RF MEMS) is significantly motivated

by the idea of implementing various types of signal processing
in the mechanical domain as opposed to the purely electrical
domain [1]. Such a possibility is enabled by scaling laws that
shorten the time of mechanical response and bring the resonant
frequency of micron-size mechanical structures into the mega-
hertz or gigahertz range [2]. By converting a radio frequency
electrical signal into mechanical motion of microfabricated
structures and utilizing their resonant properties, one can imple-
ment a very narrow pass-band filter (quality factor, )
[3], frequency generator [4] or parametric amplifier [5].

It was recently demonstrated that scaling down MEMS
devices also shortens the temperature response time to nanosec-
onds, enabling another method for RF signal processing based
on thermal and mechanical representations of the signal.
Zalalutdinov et al. have shown that megahertz-range thermal

Manuscript received January 10, 2005; revised May 12, 2005. This work
was supported in part by the Cornell Center for Materials Research (CCMR),
a Materials Research Science and Engineering Center of the National Science
Foundation (DMR-0079992). This work was performed in part at the Cornell
Nano-Scale Science & Technology Facility (a member of the National Nanofab-
rication Users Network) which is supported by the National Science Foundation
under Grant ECS-9731293, its users, Cornell University and Industrial Affili-
ates. Subject Editor N. R. Aluru.

R. B. Reichenbach, M. Zalalutdinov, K. L. Aubin, R. Rand, J. M. Parpia, and
H. G. Craighead are with the Cornell Center for Materials Research, Cornell
University, Ithaca, NY 14853 USA (e-mail: rbr9@cornell.edu).

B. H. Houston is with Naval Research Laboratories, Washington, DC 20375
USA.

Digital Object Identifier 10.1109/JMEMS.2005.859080

Fig. 1. Bisection of the polysilcon shell- type micromechanical resonator.

oscillations, induced by a localized heat source, can be effi-
ciently converted into mechanical motion of a high frequency
shell-type MEMS resonator (see Fig. 1) [6]. Assuming ca-
pacitive pickup for the final transduction from the mechanical
motion to the electrical domain, the total path of the associated
signal conversion can be viewed as the following: electrical
signal-time variable heat-temperature oscillations-resonator
stress modulation-mechanical motion-electrical signal.

The thermal representation of the signal offers several in-
herent advantages. It reduces parasitic cross-talk between input
and output signal paths and requires only microwatts of an
input signal power to produce detectable mechanical motion.
Additionally, signal processing based on intrinsic nonlinearity
of the thermal response is possible. The fact that the range of
the mechanical motion is proportional to the local temperature
increase, , and hence to the square of the applied RF signal,
provides a possibility for a broadband mixer implementation.

The combination of a mixer and filter is the core of a het-
erodyne receiver and largely determines the performance of the
device. The presence of high-order nonlinearities in a mixer’s
response are almost unavoidable for a diode-type or Gilbert
cell and contribute to receiver desensitization, harmonic gen-
eration and intermodulation between strong signals that are lo-
cated outside of the frequency band of interest. In this last case,
third-order nonlinearities generate new components at

that may fall within the communication band, masking or
corrupting the desired component [7]. A MEMS-based imple-
mentation of a mixer-filter reported in [8] exploits the similar
nonlinearity of capacitive actuation to perform multiplication;
however it suffers from strong higher order terms, which lead to
significant intermodulation distortion .

In this study we demonstrate a 30 m diameter shell-type
mechanical resonator with a resistive thermal actuator that is
capable of downconverting gigahertz frequency signals to the
intermediate frequency of the resonator (12.7 MHz). We estab-
lish that the quadratic transduction dependence of our MEMS
thermal mixer, can be viewed as ideal, i.e., free from third-order
intermodulation effects. Since the thermal actuator is essentially
an ohmic resistor with negligible reactance, it can also be de-
signed to exactly match the output impedance of the front-end
RF electronics in a very wide frequency range.
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Fig. 2. (a) A 45 SEM of a 30-�m-diameter dome resonator with approximately 1 �m of vertical projection. Dome is fabricated out of 200 nm thick polysilicon
over a SiO coated Si wafer. Photolithography and a subsequent RIE etch is used to define the central hole. Hydrofluoric acid removes the underlying SiO through
the etch hole which results in a membrane clamped on the periphery and suspended over the substrate in the center. Compressive stress (300 MPa) in the polysilicon
film causes out-of-plane buckling in the polysilicon film. (b) Top view of the resonator with a 45 
 gold resistor defined next to the dome. The white circular ring,
which defines the resonator circumference, indicates the edge of the sacrificial oxide below the device layer.

To demonstrate the potential for using MEMS in high per-
formance transceiver applications, we measure the linearity of
the MEMS mixer-filter using a two-tone test. The test produces
a third-order input intercept point of dBm for in-
terferers spaced at a 50 kHz and 100 kHz offset from the car-
rier frequency, which is significantly better than the dB
specification (10 MHz offset) for 3G W-CDMA [9]. Finally,
we develop an analytical model that predicts the behavior of
third-order intermodulation in the mechanical resonator initi-
ated by closely spaced interferers, allowing us to predict designs
that will reduce the nonlinearity of the resonator.

II. THERMAL–MECHANICAL TRANSDUCTION

Transduction, the process of producing mechanical motion
from a time varying electrical signal, is one of the most signifi-
cant challenges for micromechanical signal processing devices.
Electrostatic actuation, currently the most popular transduction
method for MEMS [2], [4], [10] suffers important performance
shortcomings. Impedance mismatches between the capacitive
actuator and the 50 network either limits the frequency re-
sponse of the device [8] or causes signal loss. Small gaps be-
tween the two electrodes, required to produce significant driving
forces, present fabrication and yield challenges. Finally, high dc
biases, sometimes on the order of 100’s of volts [11], render
the method of actuation incompatible with low supply voltage
processes.

Thermal–mechanical actuation has been shown to alle-
viate many of the limitations of electrostatic transduction by
replacing the electrostatic driving force with a thermally gener-
ated force. Thermal–mechanical transduction relies on a heat
source such as a laser [12] or a resistor [3] to produce localized
thermal variations on the order of 1 K, which in turn generate
detectable mechanical displacement in a thin-film resonator.
In the case of the resistor, a thin-film metal microresistor is
lithographically defined on the periphery of a dome shaped
micromechanical resonator (see Fig. 2). Joule heat dissipated
in the microresistor in response to an applied electrical signal
changes the local stress field in the polysilicon film. Due to the
shallow curvature of the suspended membrane, the stress vari-
ations produce vertical displacement in the dome (see Fig. 3).

Fig. 3. FEM simulation of temperature variations and static displacement
induced by applying a thermal flux of 10 �W dissipated in a 3-�m-wide strip
on the polysilicon shell resonator. The periphery of the shell is constrained
to be room temperature. A temperature increase of 0.031 K and dc vertical
deflection (not pictured to scale) of 0.006 nm is produced in the membrane.
k = 150 W/mK, v = 0:22; E = 165 GPa, � = 2330 kg/m , and
� = 2:6 � 10 � 6 /K.

The change in vertical relief of the structure is detected by a
Fabry–Pérot interferometer [14] formed by the cavity between
the resonator plate and the substrate. With this method, the
output signal from the photodetector is a representation of
the resonator mechanical amplitude. The shallow curvature of
the device enables us to ensure that the linear portion of the
sinusoidal interferometric reflectance pattern (also the region
of deepest modulation) occurs at the unperturbed gap distance



1246 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 6, DECEMBER 2005

by scanning the detection laser ( nm) across the
resonator to optimize for the largest magnitude AC signal. The
peak-to-peak range of motion is less than 1% of the reflec-
tion pattern period; therefore the photodetector representation
of the mechanical motion can be approximated as linear.

The mechanical structure of the dome resonates when the
frequency of the ac current flowing through the microheater
matches a resonant frequency of the dome. The amplitude of the
thermally induced mechanical motion is then expanded by the
quality factor, , of the dome which varies between 3 000 and
10 000 depending on the mode of vibration. The location of the
metal heater can be varied to tune the of the membrane and
can be used to preferentially excite or damp a given mode of res-
onance. All experiments were performed in vacuum to reduce
losses associated with viscous damping, however operation in
air has been achieved with a of .

The primary method for heat dissipation in the membrane is
thermal diffusion between the resonator and the bulk polysil-
icon film [13]. The small thermal time constants of the thin film
resonator (less than 1 s for a 30 m diameter resonator) allow
the incident heat to be modulated and dissipated at a rate com-
parable to the time constant of mechanical motion at resonance.

At the fundamental frequency , the force from the resis-
tive actuator driving the mechanical resonator can be expressed
as

(1)

where is the amplitude of the driving signal at is
the dc bias on the driving signal, and is the local change
in temperature. Equation (1) is demonstrated experimentally in
Fig. 4 where the relative S-parameter (the magnitude of the
photodetector output signal, divided by from the network
analyzer) is plotted versus . For low ac amplitudes, Fig. 4
shows the expected dependence of the resonator amplitude on
the dc bias of the driving signal, illustrating how dc bias can be
used to control the gain of the MEMS system. is seen to be
constant for low ac amplitudes until the output no longer follows
the input and compression sets in due to nonlinearities. For high
dc biases, compression is seen at lower RF drive amplitudes
due to higher ac dc drive forces. Thus, a wider input dynamic
range can be obtained at lower dc biases, indicating the tradeoff
between dynamic range and insertion loss.

III. THERMAL MIXING

When two voltage signals are linearly superimposed upon the
microheater, the resistor inherently acts as a signal multiplier,
analogous to a RF mixer in a heterodyne receiver (Fig. 5b). The
driving signal, , to the resistor can be represented as the sum
of two sinusoids:

(2)

In response to the driving signal, the resistor dissipates power
according to , where is the impedance of the microre-
sistor. Since the metal strip is in direct thermal contact with the
microresonator film, the local temperature around the strip is

Fig. 4. S S-parameter (which includes the efficiency of the photodetector
and detection optics) of the thermal actuator + resonator sampled at the
maximum amplitude of the 12.7 MHz resonant mode. DC bias on the network
analyzer drive signal is (from lowest to highest) 75 mV, 100 mV, 150 mV, and
200 mV. Dashed line represents constant mechanical amplitude of 2.5 mV from
the photodetector.

directly proportional to the power dissipated by the resistor. We
may say that temperature and thus the driving force follow the
square of the voltage

(3)

Expanding (3) reveals, among others terms, sum and difference
driving frequency components at, .

(4)

If the frequencies of the applied signals are chosen such that
matches the fundamental frequency of the dome

then appreciable mechanical motion can be observed. This en-
ables the combinatory component to be detected through the
amplitude of the mechanical vibrations while other frequency
terms in the expansion, which satisfy and

, are filtered out. In this way, the microheater
acts as a frequency converter while the resonator performs inter-
mediate frequency (IF) filtering. Equation (4) illustrates that the
driving force provided by the resistive mixer is dc bias indepen-
dent and thus can produce an IF response in the resonator with
no dc voltage on the RF or local oscillator (LO) drive signal.

Fig. 5(a) shows the experimental schematic used to study the
micromechanical mixer-filter. Two CW signals from laboratory
signal generators are applied to a highly linear power combiner.
In the mixer setup, is the RF carrier frequency in the GHz
range, and is the LO frequency, , specifically chosen such
that . The subsequent superposition is applied to
the microresistor, which heterodynes through the aforemen-
tioned process. The now translated RF energy thermally excites
a 12.7 MHz resonant mode in the dome resonator and can be
detected through the high- mechanical passband.
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Fig. 5. (a) Diagram of the micromechanical mixer-filter setup where two tones at f and f are applied to the resistor to generate a mechanical response in the
resonator at the combinatorial frequency f � f . (b) Schematic of a heterodyne receiver. Circled area indicates the circuit analogy of the MEMS mixer-filter
presented in (a).

IV. RF INPUT IMPEDANCE

An ideal RF mixer has a broadband input frequency response,
exhibiting a zero reflection coefficient to any input signal. The
frequency dependent input impedance for an electrostatically
actuated parallel plate resonator can be derived from the equiv-
alent electrical circuit for the resonator [15]. The expression is
minimized at the resonant frequency of the mechanical oscil-
lator; however, the input impedance can be very large for off-res-
onance driving signals. This presents a problem from two stand-
points. First, due to the large out-of-band reflection coefficients,
the input frequency range is strictly limited to that of the res-
onator frequency, eliminating the possibility of down-conver-
sion from a high carrier frequency. Secondly, in order to inter-
face with a RF 50 network, an impedance matching network
is needed to transform the high resonator input impedance to
that of the input network. This addition causes unwanted power
consumption in the low Q passive components and again limits
the range of the frequency response of the actuator.

The resistive thermal actuator has the advantage that the
dimensions of the resistor can be tailored such that its purely
resistive impedance matches that of the input network (50 );
a maximum signal transfer match will then occur for any
frequency of interest. As a result, input carrier frequencies
may encompass a large range, not limited to the bandpass
range of an input tuned network or resonator response. The
microresistor used in this study (Fig. 2) is configured to
be 70 m 3 m 0.3 m, which presents a 45 input

Fig. 6. S reflection coefficient of the 45 
 resistive actuator.

impedance. Fig. 6 gives the reflection coefficient of the
thermal actuator. Over a 3 GHz range a nearly constant
amplitude of dB is maintained, which translates into
equal driving magnitudes over the span. For this device we
demonstrated an input mixing range up to 1.5 GHz [3]. In our
test setup the upper range was limited by parasitic capacitance
and inductance associated with the vacuum test chamber and
chipset.
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Fig. 7. Nonlinear amplitude response (a) and nyquist plot (b) of a 30-�m resistively driven dome resonator.

V. NONLINEARITIES

By adopting a “black box” approach, the nonlinearity of an
electrical device (or network element) can be expressed in terms
of a polynomial dependence

(5)

where and are input and output signals, respectively.
RF devices that exhibit a substantial cubic term, , are prone
to a phenomenon known as third-order intermodulation .
When two strong out-of-band interferers are applied to the input
of such a device at frequencies and

, the cubic power component, , will produce a term,
, overlapping with . Substituting

into (5), we find, among other terms, a
third-order term

(6)

The presence of can greatly deteriorate the performance
of the device by folding strong out-of-band interferers into the
band, which is a primary concern in the design of RF mixers,
filters, and amplifiers.

We will show that our thermal mixer can be viewed, in terms
of (5), as ideal since its output signal-a temperature, further con-
verted into a force-is an exactly quadratic function of the ap-
plied voltage. In other words, for realistic input power ranges,
the nonlinearities of the metal-film resistor are negligible. The
mechanical filter (the dome resonator) however, can exhibit non-
linear behavior as demonstrated in Fig. 4.

The response of the mechanical resonator to a strong sinu-
soidal excitation can be calculated using the Duffing equation
[16]

(7)

which takes into account a nonlinear term in the resonator
spring constant and where is the displacement around the equi-
librium position of the membrane. The presence of distorts the

resonance curve of the dome at large driving amplitudes (see
Fig. 7) and thus can produce a significant term in (5). Since
our mixer and filter are inseparable, we must characterize the
nonlinearity of the entire device, i.e., mixer-filter combination.

Typically, the magnitude of is quantified by solving (7) to
determine the relationship between the amplitude of oscillation
and the deviation from the resonant frequency in the linear
regime. However, in the case of MEMS, we do not have an
accurate method for determining the absolute amplitude of
the mechanical vibrations. To estimate the displacement of
the resonator, the modulation of the reflectivity of the built-in
Fabry–Pérot interferometer, as a function of the gap, can be
calibrated to the mechanical motion by using large displace-
ment MEMS structures [17]. For displacements larger than

, the reflectance signal will depart from its sinusoidal
shape and take on a frequency-doubling characteristic due to
movement through interferometric fringes. This allows a fit of
the photodetector signal to obtain the value of the mechanical
motion. We can use the calibrated laser power (2.25 mW) to
measure the modulation of the reflectivity at the apex of the
shell resonator and estimate a mechanical amplitude of 1 nm
produced by a dBm resistive driving signal.

An alternate method to quantify the severity of nonlineari-
ties, which does not require information about mechanical am-
plitude, is to analyze effects, such as , produced by the pres-
ence of a third-order term. To quantify , a special parameter,
the third order intercept point ( ), is widely used. is es-
sentially an input power, , that interferers at frequencies

and would have to impose in order to produce an output
signal at a carrier frequency, , that would be as large as the re-
sult of applying the same power input directly at a carrier
frequency. In Section IV we will show that caused by the
resonator can be predicted by solving a modified version of (7).

in micromechanical structures has been previously mea-
sured for electrostatic force based resonators. Navid et al. [18]
find an at kHz of dBm for a MHz
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Fig. 8. IM experimental setup for the micromechanical mixer-filter. Two tones, offset from the carrier frequency by �f and 2�f , along with a local oscillator
signal, are superimposed on the resistor. A third-order intermodulation product at the resonant frequency of the dome, f = 12:7 MHz is subsequently produced
in the mechanical vibrations.

clamped-clamped beam micromechanical resonator imple-
mented as a frequency filter. They find that the electrostatic
actuator is the primary source of intermodulation distortion
due to the inverse relationship between the parallel plate ca-
pacitance and the gap spacing and is limited by the tradeoff
between linearity and series motion resistance. To reduce the
motional resistance of the capacitive actuator without impacting
the linearity of the device, the electrode gaps could be filled
with a high- dielectric material [19] but this would affect the
mechanical quality factor. Kaajakari et al. [20] also examine
capacitively induced nonlinearities and similarly conclude that,
due to distortion in the motional current in an electrostatic
MEMS actuator, even linear vibrations can result in harmonic
distortion.

Fig. 8 demonstrates the experimental setup for measuring
in our MEMS mixer-filter. Three signals ( , and )

from external signal sources are linearly superimposed with a
power combiner ( dB). The local oscillator in
the mixer implementation is a 60 MHz, 0 dB signal. The carrier
frequency, , in the setup is , which, for a 12.7 MHz
mode in the dome resonator, is chosen to be 72.7 MHz. The test
signals ( and ) are located at and , re-
spectively. The signal is then applied to the microheater and
products are produced at .

Intermodulation was measured at offsets between
20 kHz and 500 kHz. Beyond 500 kHz, mechanical attenuation
outside the passband of the resonator reduces the magnitude
of the interferers and produces very little intermodulation.
Fig. 9 plots the output response of the fundamental driving
signal, as well as the third-order effects of the two-tone test

in relation to the input power. Output power, which is defined
by the measurement system, is given in units of dB where the
reference level is arbitrary. As expected, the strength is
greater for in-band interferers than for out-of-band interferers
due to the bandpass nature of the mechanical response. A of
20 kHz produced an of dBm while a of 200 kHz
produced a dBm .

In order to determine the origin of the nonlinearity, the dome
resonators were thermally driven into the nonlinear regime
using a 415 nm wavelength modulated diode laser as well
as through the electrical resistor. Fig. 10 shows the output
response of the dome resonator as a function of the input drive
power for the same 12.7 MHz dome resonator mode. A network
analyzer directly measures the driving power to the resistor;
however, the dissipated power of the laser drive is determined
by the gain in the diode laser controller and thus the response
can be arbitrarily translated along the horizontal axis in Fig. 10.
In general, the laser drive generates larger resonator amplitudes
for a given dissipated power because the beam is focused
directly on the dome and the position of the laser focus spot is
optimized to obtain the largest signal. The resistor is located
off the resonator, which minimizes damping due to the metallic
film on the resonator but reduces the coupling of the thermal
drive. At an output power of dB, the mechanical amplitude
produced by both the resistor drive and the laser drive starts
to compress, indicating that the onset of nonlinearity is due to
large mechanical displacement in the resonator, while higher
order nonlinearities in the resistive drive are negligible.

Data from Fig. 4 also suggest that nonlinearities are deter-
mined by the resonator by showing that, for a constant , the
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Fig. 9. IM experimental data from the MEMS mixer-filter showing
the output response (with an arbitrary reference level) of the resonator at
f = 12:7 MHz in response to a fundamental tone (a) and two off resonance
tones spaced from the carrier frequency (72.7 MHz) by �f = 20 kHz and
50 kHz (b).

Fig. 10. Curves showing the onset of nonlinearity for a f = 12:7 MHz
resonator in response to a drive signal at f (resistor dc bias = 200 mV).
The 1 dB compression point occurs at a�57 dB output amplitude for both laser
thermal drive and resistive thermal drive.

system response may be in either the linear or nonlinear regime,
depending on the dc bias. A given that produces a linear re-
sponse in the resistor + resonator may result in a driving force,

, which generates a nonlinear output signal indicating
mechanically determined nonlinearities. In addition, for each
dc bias curve in Fig. 4, the 1 dB compression point occurs at
the same output amplitude of approximately 2.5 mV from the
photodetector as well as at the same driving force of

mW.
For vertical mechanical amplitude of 10 nm at the dome apex

(corresponding to 0 dBm resistive drive in Fig. 10) we calculate
an in-plane strain of 0.003% in the membrane. This deformation
in the resonator is well within the linear elastic regime of the
polysilicon film [21] and is unlikely to contribute to nonlinear
behavior. Instead, nonlinearities are most likely geometrically

Fig. 11. Magnitude of the resonator amplitude measured at the fundamental
frequency, f = 12:7 MHz, in response to two interferers, where a) the
magnitude of F is 0 dBm and the magnitude of F is indicated by the x-axis,
and (b) the magnitude of F is 0 dBm and the magnitude of F is indicated by
the x-axis.

produced through displacement-induced changes in the spring
constant of the resonator.

VI. ANALYTICAL MODEL FOR INTERMODULATION

Because the nonlinearities in transduction are due to the me-
chanical resonator, we seek to understand how the dynamics of
the resonator can produce the product. We start by mod-
eling the micromechanical filter under out-of-band interferer ex-
citation with a variant of the weakly nonlinear Duffing equation

(8)

The right hand side of (8) is the forcing function provided by the
resistive drive after frequency translation has been performed in
the resistor, scales damping and nonlinearity as small pertur-
bations to the linear oscillator, and for a softening spring.

Perturbation theory is then applied to (8) in order to gain in-
sight into how the driving terms interact with the nonlinear
restoring force to produce a response at frequency . First, we
expand the solution to (6) in the form of a power series in

(9)

Substituting (9) into (8) and grouping terms according to powers
of , while neglecting terms of order and higher, we obtain

(10)

(11)

The solution to (10) is

(12)
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where and are constants to be determined. Substituting (12)
into (11) results in a myriad of resonant and nonresonant terms.
To eliminate secular terms, we set the coefficients of the res-
onant terms, and , to be zero. Eliminating
through use of the identity , we obtain a
relation between , the magnitude of the resonator response at

and the various parameters. This expression may be simpli-
fied by first solving for and then neglecting all but the lowest
order terms in (since is assumed to be small compared
to ). Solving for , the expression becomes

(13)

From the approximate solution (13) we see that through third-
order nonlinearities present in the mechanical resonator, two
appropriately spaced interfering signals will produce an inter-
fering tone on resonance that will grow at a cubic rate, ,
when compared to a tone at the fundamental frequency. Equa-
tion (13) also implies that intermodulation will substantially de-
crease as the interfering tones are offset from , which is ex-
perimentally demonstrated in Fig. 9. Finally, is a decreasing
function of the fundamental frequency, indicating that as we
move to higher resonator frequencies, the magnitude of the in-
termodulation will decrease.

To further substantiate (13), we specifically examine the re-
lationship between and as well as between and .
Fig. 11 shows two sets of experimental data from the setup
measuring the magnitude of the third-order intermodulation at

. In the first set (Fig. 11(a)) the power of the first interferer,
, is held constant, while sweeping the power

of the second interferer, . As expected from
(13), Fig. 11 indicates that . The second
experiment [see Fig. 11(b)] sweeps the power of the first inter-
ferer and maintains a constant amplitude second interferer.
Again, following (13), .

VII. CONCLUSION

A micromechanical resonator, thermally actuated by an in-
tegrated resistor, is presented for use in RF signal processing
circuits. The resistor intrinsically acts as a frequency transla-
tion device while the coupled resonator performs postmixing
filtering. The input impedance of the actuator can be tuned to
match the input network and thus allow wide-band performance.
Because overheating in the resistor is less than 1 K, higher order
effects in the actuator are shown to be negligible to the point
where system nonlinearities are mechanically determined by
the resonator. This fact allows very high intermodulation inter-
cept points to be obtained in the micromechanical mixer-filter,
even for close band interferers, which is important for reducing
off channel interference in RF communications. An analytical
model is presented to demonstrate how products are pro-
duced in the dynamics of a weakly nonlinear micromechanical
resonator. The model predicts that, as the natural frequency of
the mechanical resonator is increased to higher RF frequencies,

will be further reduced.
Future work will focus on replacing the He-Ne laser used for

interferometric detection with an integrated CMOS amplifier
that will measure capacitive displacement currents generated

by the resonator. This alteration will allow complete integration
into CMOS circuitry and pave the way to a fully integrated RF
transceiver (radio-on-chip) with MEMS implementations of all
the frequency-determining components.
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