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2:2:1 Resonance in the Quasiperiodic Mathieu Equation
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Abstract. In this work, we investigate regions of stability in the vicinity of 2:2:1 resonance in the quasiperiodic
Mathieu equation

d2x

dt2
+ (δ + ε cos t + εµ cos(1 + ε�)t)x = 0,

using two successive perturbation methods. The parameters ε and µ are assumed to be small. The parameter ε

serves for deriving the corresponding slow flow differential system and µ serves to implement a second perturb-
ation analysis on the slow flow system near its proper resonance. This strategy allows us to obtain analytical
expressions for the transition curves in the resonant quasiperiodic Mathieu equation. We compare the analytical
results with those of direct numerical integration. This work has application to parametrically excited systems in
which there are two periodic drivers, each with frequency close to twice the frequency of the unforced system.
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1. Introduction

In this paper, we investigate the transition curves of the quasiperiodic (QP) Mathieu equation
in the vicinity of the 2:2:1 resonance. In this case the QP Mathieu equation takes the form

d2x

dt2
+ (δ + ε cos t + εµ cos(1 + ε�)t)x = 0. (1)

Here, ε and µ are small perturbation parameters, while � is a frequency detuning parameter.
In a series of papers, Rand and co-workers [1, 2] studied Equation (1) in the case that

the driver frequency 1 + ε� is replaced by a parameter ω. They approximated the regions
of stability in the δ-ω plane for fixed ε by using four different methods: direct numerical
integration, Lyapunov exponents, regular perturbations, and harmonic balance. The results
obtained by these various techniques were compared and an excellent agreement was obtained.
The nonlinear QP Mathieu equation has also been considered [3–5]. Zounes and Rand [3]
investigated the interaction of subharmonic resonance bands in a cubic nonlinear QP Mathieu
equation using Chirikov’s overlap criterion [6] and the analytical machinery presented in [7].
The transition from local chaos to global chaos was investigated. Belhaq and co-workers [4, 5]
approximated analytically QP solutions and studied stability of a damped cubic nonlinear
QP Mathieu equation, using a double perturbation method. The problem of approximating
QP solutions of the original system was then transformed to the study of stationary regimes
of the (second) induced autonomous system. Explicit analytical solutions were obtained and
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Figure 1. Stability chart of the QP Mathieu equation (1) obtained using numerical integration by Zounes [9] for
parameters ε = 0.1 and µ = 1. Here δ = 1/4+δ1ε. Points in the blackened regions correspond to stable (bounded)
motions. Points in the white regions correspond to unstable (unbounded) motions.

good agreement with numerical integrations was shown. For another application of this double
perturbation procedure, see [8].

In his Ph.D. thesis, Zounes [9] presented a numerical study of Equation (1) with 1 + ε�

replaced by ω. His results included a stability chart which is shown in Figure 1, replotted in the
δ1-� parameter plane for ε = 0.1 and µ = 1, where δ = 1/4 + δ1ε. Our goal is to understand
this figure through the use of analytical methods. To this end, we apply the double perturbation
procedure [4, 5] to determine transition curves in the δ1-� parameter plane. The procedure
consists of applying two successive perturbation methods by introducing two small parameter
perturbations ε and µ, such that 0 < |ε| � |µ| � 1. The first reduction is performed using the
two variable expansion method associated with ε. This leads to a slow flow amplitude-phase
system. The second perturbation parameter µ which appears in the induced slow flow system
allows the application of a second perturbation method, yielding analytical approximations of
the transition curves of Equation (1).

2. Perturbation Method and Slow Flow System

The two small parameters ε and µ introduced in Equation (1) allow implementation of two
successive perturbation techniques. In the first step we use the two variable expansion method
[10] associated with the parameter ε. The method consists of introducing two time scales by
associating two separate independent variables: ξ = t and η = εt . Substituting these new
variables as well as the expressions of the first and second derivatives of x with respect to
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t in term of the new variables, Equation (1) transforms to the following partial differential
equation

∂2x

∂ξ 2
+ 2ε

∂2x

∂ξ∂η
+ ε2 ∂2x

∂η2
+ (δ + ε cos ξ + εµ cos(ξ + �η))x = 0. (2)

We expand x and δ in power series:

x(ξ, η; ε) = x0(ξ, η) + x1(ξ, η)ε + · · · (3)

δ = 1

4
+ δ1ε + · · · . (4)

Substituting (3), (4) into (2) and collecting terms gives

∂2x0

∂ξ 2
+ 1

4
x0 = 0, (5)

∂2x1

∂ξ 2
+ 1

4
x1 = −2

∂2x0

∂ξ∂η
− δ1x0 − x0 cos ξ − x0µ cos(ξ + �η). (6)

We take the solution to Equation (5) in the form

x0 = R(η) cos

(
ξ

2
− θ(η)

)
. (7)

Substituting (7) into (6) and removing secular terms gives

dR

dη
= −R

2
[sin 2θ + µ sin(2θ + �η)], (8)

dθ

dη
= −δ1 − 1

2
[cos 2θ + µ cos(2θ + �η)]. (9)

Note that the parameter µ appears in this slow flow system (8), (9) as a new perturbation
parameter. Equation (8) has the solution

R(η) = R(0) exp

{
−1

2

∫
[sin 2θ + µ sin(2θ + �η)] dη

}
. (10)

Equation (10) will exhibit unbounded solutions if Equation (9) has a limit cycle. The reason
is that the integral in (10) will in general not vanish if θ(η) is a periodic function. On the other
hand, all solutions of (10) will be bounded if (9) does not exhibit a limit cycle. In this case the
torus flow (9) will be ergodic and the integral in (10) will vanish.

This reasoning leads us to believe that Equation (9) can, to O(ε), determine the stability
of the QP Mathieu Equation (1). This is confirmed by numerical simulation of Equation (9),
for µ = 1, see Figure 2. Comparison with Figure 1, based on Equation (1), for µ = 1, shows
excellent agreement.

Note that Figure 2 is point-symmetric about δ1 = 0, � = 0, whereas Figure 1 is not. This
may be explained by noting that Equation (9) is invariant under the transformation δ1 → −δ1,
� → −�, θ → −θ + (π/2).
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Figure 2. Stability chart obtained by numerically integrating slow flow Equation (9) for µ = 1. Points in the
blackened regions correspond to absence of limit cycles (stable). Points in the white regions correspond to the
presence of limit cycles (unstable). Compare with Figure 1.

Figure 3. Stability chart obtained by numerically integrating slow flow Equation (9) for µ = 0.1. Points in the
blackened regions correspond to absence of limit cycles (stable). Points in the white regions correspond to the
presence of limit cycles (unstable).
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In Figure 3 we present a numerical simulation of Equation (9) for µ = 0.1. Note that this
figure has many qualitative features in common with Figure 2 (which corresponds to µ = 1).
Our goal in this paper is to gain understanding of Figures 1–3 by obtaining analytical expres-
sions for the transition curves separating the regions of stability from those of instability. In
order to do so, we will use a second perturbation analysis on the slow flow system (8), (9) for
small µ.

3. Second Perturbation Method and Transition Curves

To begin with, we transform Equations (8), (9) from polar variables R, θ to rectangular
variables A, B via the equations:

A = R cos θ, B = R sin θ. (11)

This gives

dA

dη
=
(

δ1 − 1

2

)
B − µ

A

2
sin �η − µ

B

2
cos �η, (12)

dB

dη
= −

(
δ1 + 1

2

)
A + µ

B

2
sin �η − µ

A

2
cos �η. (13)

We set τ = �η, whereupon these equations become

�
dA

dτ
=
(

δ1 − 1

2

)
B − µ

A

2
sin τ − µ

B

2
cos τ, (14)

�
dB

dτ
= −

(
δ1 + 1

2

)
A + µ

B

2
sin τ − µ

A

2
cos τ. (15)

We treat these equations by algebraically eliminating B, giving a single second order o.d.e.
on A. To do this, we differentiate (14) with respect to τ and then substitute dB/dτ from (15).
Finally we solve (14) for B and substitute the result. This gives an equation which may be
written in the form

d2A

dτ 2
+ f1(τ )

dA

dτ
+ f2(τ )A = 0, (16)

where f1(τ ) and f2(τ ) are 2π -periodic functions and where

f1(τ ) = O(µ) and f2(τ ) =
(

δ2
1 − 1

4

�2

)
+ O(µ). (17)

Next we construct analytic expressions for the transition curves in δ1-� parameter plane which
separate stable (bounded) solutions from unstable (unbounded) solutions. From Floquet the-
ory, we know that on these transition curves there exist periodic solutions with period 2π or
4π , since the period of the coefficients f1 and f2 is 2π . Thus we follow Stoker [11] and seek
a solution to (16) in the form of a Fourier series with period 4π (which includes period 2π as
a special case):

A(τ) =
∞∑

n=0

cn cos
nτ

2
+ dn sin

nτ

2
. (18)
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We substitute (18) into (16) and collect terms. This work is algebraically intensive and was
done on MACSYMA. There result four sets of algebraic equations on the coefficients cn

and dn. Each set deals exclusively with ceven, deven, codd and dodd, respectively. Each set is
homogenous and of infinite order, so for a nontrivial solution the determinant must vanish.
This gives four infinite determinants. For brevity we omit showing these here. We find that in
the unperturbed autonomous case, µ = 0, these determinants have the following roots:

� =
√

4 δ1
2 − 1

N
, N = 1, 2, 3, . . . . (19)

Equation (19) represents resonance conditions between the µ = 0 slow flow oscillator given
in Equations (14), (15), and the slow flow forcing functions sin �η, cos �η. In order to obtain
expressions for the associated transition curves, we detune these resonances:

� =
√

4 δ1
2 − 1

N
+ µσ1 + µ2σ2 + · · · , N = 1, 2, 3, . . . , (20)

where the detuning constants σi are as yet unknown. We substitute Equation (20) into each
of the four vanishing determinants, expand in µ, collect terms and solve for the unknown
constants σi . Here are the first two transition curves obtained in this way:

� =
√

4 δ1
2 − 1 ±

(
2 δ1

√
4 δ1

2 − 1 + 4 δ1
2 − 1

)
µ

8 δ1
2 − 2

−
((

8 δ1
2 − 1

) √
4 δ1

2 − 1 − 16 δ1
3 + 4 δ1

)
µ2

256 δ1
4 − 128 δ1

2 + 16
+ · · · , (21)

� =
√

4 δ1
2 − 1

2
−
(
(4 δ1 + 3)

√
4 δ1

2 − 1 + 16 δ1
2 − 5

)
µ2√

4 δ1
2 − 1

(
48 δ1

2 − 12
) + · · · . (22)

Note that these expressions are singular in the neighborhood of δ1 = ±1/2. Nevertheless,
these expressions compare favorably with the numerical results shown in Figure 3 (see
Figure 4 where the first eight transition curves are displayed).

4. Discussion

The analytical methods presented in this work offer an explanation of the nature of the stability
chart shown in Figures 1–3 which may be expressed in words, as follows. For small values of
µ, the expressions for the transition curves given by Equations (21), (22) require that |δ1| >

1/2. This means that the cos t driver in Equation (1) is too detuned off of 2:1 resonance with
the unforced oscillator to produce instability. (This follows from the fact that in the usual
Mathieu equation, Equation (1) with µ = 0, the 2:1 transition curves have the well-known
expression δ = 1/4 ± ε/2 + O(ε2).) Thus the instability associated with the transition curves
(21), (22) cannot come from 2:1 resonance with the cos t driver, and must have some other
source. The resulting motion, if µ = 0, would be a QP motion with frequencies 1 coming

from the cos t driver, and
√

δ2
1 − (1/4), which is the slow flow frequency of the slow time

modulating functions A(η), B(η), see Equations (12), (13). Now if µ = 0, another resonance
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Figure 4. Transition curves, as obtained from double-perturbation procedure for µ = 0.1. Compare with Figure 3.

can occur between the A(η), B(η), µ = 0 oscillator, which runs with slow flow frequency√
δ2

1 − (1/4), and the slow flow driver, sin �η, cos �η, which runs at slow flow frequency �.
This latter frequency is seen to be the difference between the two drivers in the original QP
Mathieu Equation (1), and may be thought of as the extent of the drift of the cos(1 + ε�)t)

driver relative to the cos t driver. The order of the superharmonic tells how many cycles the
slow flow A,B oscillator goes through in one cycle of the frequency � slow flow driver during
instability, that is, the order of the resonance. Thus we may conclude that each of the white
instability regions in Figures 1–3 corresponds to a distinct order of resonance between the
µ = 0 slow flow motion and the frequency of drift between the two drivers in Equation (1).

5. Conclusion

In this work, we have constructed analytical expressions for the transition curves of the QP
Mathieu equation in the vicinity of the resonance 2:2:1. A double-perturbation procedure was
applied to obtain the analytical approximations to these transition curves. In a first step, we
have applied the two variable expansion method to the QP Mathieu equation and derived
the slow flow system. To obtain expressions for the transition curves we have implemented
another perturbative study near the proper resonance of the slow flow system. The analytical
expressions obtained by this procedure show a good agreement with the direct numerical
integration of the original QP Mathieu equation. Moreover, the results from the perturbation
expansions were used to draw qualitative conclusions regarding the structure of Figures 1–3.
It was shown that each of the white instability regions in Figures 1–3 corresponds to a distinct
order of resonance between the µ = 0 slow flow motion and the frequency of drift between
the two drivers in Equation (1).
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