
Contents lists available at SciVerse ScienceDirect

Journal of Fluids and Structures

Journal of Fluids and Structures 40 (2013) 185–200
0889-97
http://d

n Corr
E-m
1 Pr
journal homepage: www.elsevier.com/locate/jfs
Shape optimization of a blunt body Vibro-wind
galloping oscillator

J.M. Kluger a,1, F.C. Moon a,n, R.H. Rand a,b

a Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
b Department of Mathematics, Cornell University, Ithaca, NY 14850, USA
a r t i c l e i n f o

Article history:
Received 7 September 2012
Accepted 25 March 2013
Available online 28 May 2013

Keywords:
Vibro-wind
Galloping instability
Energy harvesting
46/$ - see front matter & 2013 Published by
x.doi.org/10.1016/j.jfluidstructs.2013.03.014

espondence to: Department of Mechanical E
ail addresses: jociek@mit.edu (J.M. Kluger), f
esent address: Department of Mechanical E
a b s t r a c t

The nonlinear dynamics of a transverse galloping blunt body oscillator is analyzed with
respect to its geometric shape and size. The oscillator's equation of motion is studied using
an approximation for the lateral aerodynamic force that is a polynomial function of the
angle of attack. The harmonic balance method is used to solve the nonlinear differential
equation of motion. This solution is used to determine the geometric parameters that
minimize its critical wind speed for instability, increase its amplitude sensitivity to wind
velocities beyond the critical speed, and minimize or eliminate amplitude hysteresis for
increasing and decreasing wind speed. Optimum combinations of blunt body size and
shape can be found that best satisfy these desired behaviors. These findings may be useful
for creating a reliable, efficient wind energy harvesting system.

& 2013 Published by Elsevier Ltd.
1. Introduction

Several systems of fluid–structure dynamics have been proposed to extract energy from the wind (Bryant and Garcia,
2011; Frayne, 2008; Li and Lipson, 2009; McKinney and DeLaurier, 1981; Moon, 2010a, 2010b; Tang et al., 2008). These
systems exploit the unsteady, nonlinear dynamics of blunt body aerodynamics (Moon, 1992; Rand, 2012). As an energy
harvester design goal, one desires a geometric shape and size that minimizes the critical wind speed for instability, increases
the sensitivity of amplitude to wind velocities beyond the critical speed, and minimizes or eliminates hysteresis with respect
to increasing and decreasing wind speeds.

In the Cornell fluid–structure harvester, arrays of cantilevered blunt bodies are assembled in a panel (Moon, 2010b). This
system has been called a Vibro-wind energy harvester or Vibro-wind for short. This type of energy harvester lends itself to
clean power generation in urban areas, at night, or in wind speeds as low as 2–3 m/s, which are significantly below the 9 m/s
start-up velocity of a typical large-scale wind turbine. A Vibro-wind panel occupying one square meter and operating at 10%
efficiency in 10 m/s wind might be able to generate 54 W of electricity, a figure on par with solar panels (Moon, 2010a,
2010b). Vibro-wind panels consist of hundreds of centimeter sized bodies (Kuroda and Moon, 2007). In this paper, however,
we only examine a single oscillator.

Vibro-wind motion is an example of transverse aerodynamic galloping, the phenomenon of structures with low aspect
ratio cross sections developing self-excited oscillations when placed in a fluid flow (Blevins, 1990). These oscillations occur
at approximately the natural frequency of the structure. In 1956, Den Hartog used the quasi-steady hypothesis to linearize
aerodynamic forces and describe the onset of transverse galloping.
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Nomenclature

A, B, C, D coefficients of polynomial approximation to
CFY

B̂¼B/A, Ĉ¼C/A, D̂¼D/A coefficients of polynomial
approximation to CFY normalized for A

CFY lateral aerodynamic force coefficient
depth blunt body streamwise dimension
fs formation frequency of vortices in wake

shear layer
h blunt body characteristic diameter
L cantilever length
l blunt body axial length normal to the flow
k cantilever stiffness
m effective vibrating mass
mBB blunt body mass
mcant cantilever mass
n¼ρh2l/2m nondimensionalized mass
r coefficient of viscous system damping
St¼ fsh/V Strouhal number

t time
U¼V/ωh nondimensionalized air velocity
V air velocity
Y¼y/h nondimensionalized oscillator displacement
Y'¼dY/dτ nondimensionalized oscillator velocity
y¼ /h nondimensionalized oscillator amplitude
y blunt body displacement
y blunt body amplitude
_Y¼dy/dt blunt body velocity
α angle of attack of blunt body relative to wind
β¼θ/(y/L)coefficient relating beam tip angle and

deflection
δ isosceles triangle main vertex angle
ζ¼r/2mωnondimensionalized damping coefficient
η ratio of blunt body's rear diameter to front

diameter
θ structural angle
ρ air density
τ¼ωt nondimensionalized time
ω¼

ffiffiffiffiffiffiffiffiffi
k=m

p
natural angular frequency
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The quasi-steady hypothesis assumes that the vortex shedding frequency is not in resonance with the natural structural
frequency. In the vortex shedding model, there are two nondimensional parameters that characterize the vortex frequency:
the Reynolds number, proportional to the velocity; and the Strouhal number, St¼ fSh/V, where fS is the frequency of vortex
shedding in units of hertz, V is the free stream flow velocity, and h is the cylinder diameter. Characteristics of fluid–structure
dynamics have been summarized by Blevins (1990). For obstacles on the order of 20 mm and velocities on the order of 5 m/s,
the Reynolds number is around 7000. In this regime, the alternating vortex flow behind a cylinder-type obstacle is well
established for a given frequency. One can show that for 103oReo104, the range of Reynolds numbers for Vibro-wind
systems, St¼ 0.13, where St¼ fsh/V. For an obstacle of width h¼20 mm and V¼1–5 m/s, the shedding frequency, fs, is
7–32 Hz. This paper assumes that fs does not equal the structural natural frequency of Vibro-wind systems. For the oscillators
described in the experimental section of this paper, fs does not equal the structural natural frequency for the important wind
speeds (the critical wind speeds for oscillation and the wind speeds with hysteresis). For structural natural frequencies that
do not resonate with the vortex shedding frequency, the aerodynamic forces acting on the oscillating body at any instant are
considered equivalent to those acting on a static body with the same angle of attack with respect to the fluid flow (Blevins,
1990; Den Hartog, 1956). The studies described in this paper use the quasi-steady hypothesis to analyze the dynamics of the
body without reference to the details of the aerodynamic flow itself. For information on the fluid flow behind oscillator
cylinders, refer to Luo et al. (1993).

Parkinson used the quasi-steady hypothesis to solve the equation of motion for the transverse galloping of a square
cylinder. This equation of motion approximated CFY, the nondimensionalized lateral aerodynamic force coefficient, as a
seventh-order polynomial of α, the cylinder's angle of attack. Parkinson noted the occurrence of oscillation hysteresis for
particular wind speeds (Parkinson and Smith, 1964). Van Oudheusden (1995) extended Parkinson's analysis to a cylinder
undergoing translation coupled with rotation.

Further work has been done to investigate the relationship between oscillator performance and geometry. In 2009,
Barrero-Gil (2010, Energy Harvesting from Transverse Galloping) explored the influence of cross section geometry and
mechanical properties on the mechanical power of an oscillator. Other studies have related the shape of the lateral
aerodynamic force coefficient versus angle of attack curve to system performance. Barrero-Gil showed that the location and
number of inflection points in the CFY(α) curve influence the wind speeds during which the oscillator exhibits hysteresis
(Barrero-Gil et al., 2009). Researchers such as Parkinson, Barrero-Gil, and Novak have experimentally determined the
coefficients in the CFY(α) polynomial approximation for cylinders of various cross sections (Barrero-Gil, 2010; Novak et al.,
1974; Parkinson and Smith, 1964).

The aformentioned studies as well as this paper's analysis are for steady oscillations even though in wind harvesting
systems, the wind may be transient or unsteady. Earlier Cornell studies have shown that energy can be harvested from a
Vibro-wind array panel in unsteady wind conditions (Moon, 2010a, 2010b).

This paper discusses the dynamics of an oscillator that is not coupled to an electrical system: the piezoceramic's leads are
configured in an open-circuit. The oscillator motion may vary with the inclusion of an energy harvesting device such as a
resistor, capacitor, or battery. For example, Erturk et al. (2010) show that coupling a piezoaeroelastic oscillator with a resistor
decreases the critical wind speed. Thus, this paper serves as a starting point for understanding the role of oscillator
geometry on a piezoaeroelastic energy harvester's performance.
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The purpose of this paper is to analytically determine a blunt body cross section with a low critical wind speed, high
amplitude sensitivity to wind speed, and minimal hysteresis during galloping that can be used to scavenge energy from
the wind.

This paper is organized as follows: The mathematical model governing the oscillator's motion is presented in Section 2.
Section 3 describes the results of this model, and Section 4 describes experiments. Then, Section 5 shows the theoretical
optimization of critical wind speed, amplitude, and hysteresis as a function of geometry. Finally, this paper's findings are
discussed and summarized in Section 6.
2. Model

The Vibro-wind oscillator is a composite structure consisting of a piezoelectric beam cantilevered to a frame at one end
and adhered to a steel beam of 0.006-inch thickness at the other end. The free end of the steel beam is inserted into a foam
blunt body whose shape is a cylinder of noncircular cross section. The model of this cantilevered oscillator is an extension of
the Parkinson and Smith (1964) purely translational oscillator. Both models obey the equation:

m€yþ r _yþ ky¼ 1
2
CFYρV

2hl; ð1Þ

where m is the effective mass of the oscillator, r is the viscous damping, k is the cantilever stiffness, CFY is the lateral
aerodynamic force coefficient, ρ is the density of air, V is the wind speed, h is the characteristic dimension of the blunt body
normal to the flow, and l is the blunt body axial length normal to the flow (Fig. 1) (Parkinson and Smith, 1964).

Since an appropriate aerodynamic theory defining CFY is unknown, this model uses measured aerodynamic forces from
the quasi-steady model. That is, the aerodynamic force acting on a dynamic cylinder in wind speed V, is considered
equivalent to the force acting on a static cylinder with the corresponding angle of attack in wind speed Vrel. The validity of
quasi-steady assumptions for a similar system is described in Van Oudheusden (1995).

Using the quasi-steady theory, the lateral aerodynamic force coefficient, CFY can be approximated as a polynomial on α,
the angle of attack:

CFY ¼ Aα−Bα3 þ Cα5−Dα7: ð2Þ

This approximation requires at least a seventh degree polynomial to capture hysteresis behavior (Barrero-Gil et al., 2009;
Parkinson and Smith, 1964).

The kinematic relationship between angle of attack, oscillator displacement, and oscillator velocity differs between this
model and the Parkinson and Smith model. Fig. 1 depicts the relationship between wind velocity, V, oscillator displacement,
y, oscillator velocity, _Y , and structural angle, θ, for a uniform cantilever.

For a uniform cantilevered beam of length L, the relationship between structural angle, θ, and displacement, y, is

θ¼ 3
2
y
L
: ð3Þ

Thus, the angle of attack for small _Y/V, such that α can be approximated by tan(α), is defined as

α¼ _y
V
−θ¼ _y

V
−
3
2
y
L

¼ _y
V
−β

y
L
; ð4Þ

where the coefficient β can be used for structural designs other than the uniform cantilever. The value of β for the composite
cantilevers used in the Cornell Vibro-wind system is described in Section 4.2.4. The angle of attack, α, for a purely translating
Fig. 1. Model of one-degree-of-freedom galloping for coupled translation and rotation of a uniform cantilevered blunt body oscillator. Fy is the lateral
aerodynamic force, Lift is aerodynamic lift, Drag is aerodynamic drag, y is oscillator displacement, _Y is oscillator velocity, V is wind velocity, Vrel is the
summation of wind velocity and oscillator velocity, θ is the angle between the blunt body and the wind velocity, α is the angle of attack: the angle between
the blunt body and the wind velocity, h is the blunt body diameter, and Lcant is the cantilever length.
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cylinder is equivalent to Eq. (4) when β¼0:

α¼ _y
V
: ð5Þ

It is interesting to note that the expression for angle of attack for an oscillator with one torsional degree of freedom is
equivalent to Eq. (4) when θ¼y/R, defining R as the radial distance between the rotation axis and the blunt body. In such a
system, as described in Van Oudheusden (1995), R remains constant; whereas in our system, radial distance R decreases as
the cantilever bends.

3. Analysis and simulation

To analyze the steady-state amplitude of our system in different wind speeds, we nondimensionalize the differential
equation of motion, solve it using the method of harmonic balance in WxMaxima, a computer algebra program, and plot the
resulting expression using the ezplot command in MATLAB (Rand and Armbruster, 1987). We also compare the nonlinear
analysis to the numerical integration solution using the ode23 function in MATLAB.

3.1. Nondimensionalized equation of motion

The equation of motion given in Eq. (1) can be nondimensionalized by dividing through by kh (cantilever stiffness x blunt
body diameter). Factoring out Aα from the expression for CFY in Eq. (2) illustrates how the coefficient A affects the oscillator's
linear critical wind speed and how B, C, and D affect its nonlinear behavior such as hysteresis. The resulting
nondimensionalized equation of motion and angle of attack are given below:

Y″þ 2ζY′þ Y ¼U2nAα½1−B̂α2 þ Ĉα4−D̂α6�; ð6aÞ

α¼ Y′
U
− β

Yh
L

; ð6bÞ

where Y, Y′, and Y″ are the nondimensional displacement, velocity and acceleration respectively, ζ is the damping ratio, U is
the nondimensional wind speed, n is the nondimensional mass, and h is the blunt body characteristic diameter. B̂¼ B=A,
Ĉ ¼ C=A, and D̂¼D=A are coefficients of the polynomial approximation to CFY normalized for A. Definitions of these
parameters in terms of physical parameters are listed in Nomenclature.

3.2. Solution of the equation of motion

With the nondimensionalized equation of motion, Eq. (6), we use the method of harmonic balance in the computer
algebra system WxMaxima to determine the nondimensionalized oscillator amplitude for a given wind speed. The first step
of this calculation is to assume a solution of the form Y ¼ Y cosðωtÞ, and substitute that solution into Eq. (6). Here Y is the
nondimensionalized oscillator amplitude and ω is its frequency. Next we use trigonometric identities to reduce the powers
of the sinusoidal terms. By neglecting higher-order harmonics, the coefficients of cos(ωt) and sin(ωt) can be set equal to zero.
This gives two simultaneous algebraic equations on Y and ω. We eliminate ω and obtain the following equation on Y (Rand
and Armbruster, 1987):

35nDY
6
U6γ6 þ 210ζDY

6
U5γ5 þ 40nCY

4
U6γ4 þ ð105þ 420ζ2ÞnDY6

U4γ4

þf160ζnCY4
U5 þ ð280ζ3 þ 420ζÞnDY6

U3gγ3 þ 48nBY
2
U6γ2

þð80þ 160ζ2ÞnCY4
U4γ2 þ ð105þ 420ζ2ÞnDY6

U2γ2

þ 96ζnBY
2
U5 þ 160ζnCY

4
U3 þ 210ζnDY

6
U

n o
γ þ 64nAU6−128ζU5

þ48nBY
2
U4 þ 40nCY

4
U2 þ 35nDY

6 ¼ 0; ð7Þ
where γ¼βh/L. The comparable expression for the Parkinson and Smith oscillator undergoing pure translation can be found
by using the method described above with the nondimensionalized equivalent of Eq. (5) to define the of angle of attack, or
equivalently, by substituting the value β¼0 directly into Eq. (7). The result is

64nAU6−128ζU5 þ 48nBY
2
U4 þ 40nCY

4
U2 þ 35nDY

6 ¼ 0: ð8Þ

3.3. Plot the resulting equations

The analytical solutions for steady state amplitude versus wind velocity are plotted and compared to numerical solutions
from MATLAB in Fig. 2.
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3.4. Model comparison

There are two significant observations about the plot in Fig. 2. The first is that both models give the same critical wind
speed. The mathematical reason for this can be seen by substituting Y ¼ 0 into Eqs. (7) and (8). Solving these equations for U
gives the same nondimensionalized critical wind speed for both models, namely:

U0 ¼
2ζ
nA

: ð9Þ

The other significant observation about these models is that they exhibit different behaviors for large wind speeds.
The large wind speed behaviors for both models are independent of the nondimensional parameters n and ζ. They are
complicated expressions of A, B̂, Ĉ, D̂. For the oscillator parameters given in the caption of Fig. 2, the Parkinson and Smith
purely translational model curve asymptotically approaches a straight line with the equation:

Y ¼ 0:293U−0:034: ð10Þ

where Y is the oscillator's nondimensionalized amplitude and U is the nondimensionalized wind speed. On the other hand,
the Cornell–Oudheusden curve for translation coupled with rotation approaches a constant amplitude that is independent
of wind speed. This constant amplitude value for an oscillator with a uniform cantilever and parameters given in Fig. 2
caption is shown in Eq. (11a). Eq. (11b) shows the constant amplitude expression for structural designs other than a uniform
cantilever, where β is the coefficient relating the structural angle, θ, to displacement, Y; h is the blunt body diameter; and L is
the beam length

Y ¼ 0:652; ð11aÞ

Y ¼ 0:293
βh=L

: ð11bÞ
4. Experimental verification of model

The three purposes of this experiment were to qualitatively verify the Oudheusden–Cornell model, to roughly estimate
the coefficients in the the lateral aerodynamic force approximation (Eq. (2)) for a Vibro-wind system, and to determine if
trends in these coefficients for different shapes agree with the results of experiments conducted at higher Reynolds
numbers. The aerodynamic force approximation for oscillators in the Reynolds number regime 103oReo104 is not well
established. However, this regime is the range applicable to Vibro-wind oscillator arrays. We adopted a phenomological
model for this experimental investigation and hope future researchers will more rigorously verify these findings.
Fig. 2. Bifurcation diagram comparing the Oudheusden–Cornell model to the Parkinson and Smith model for a theoretical oscillator. This simulation used
the lateral aerodynamic force approximation coefficients for a square cylinder given by Parkinson and Smith (1964) as A¼ 2.69, B̂¼ 62.5, Ĉ¼ 2330, and
D̂¼ 22 300. Other parameters used were a natural frequency, ω, of 37 rad/s; damping coefficient, ζ, of 0.022; mass parameter, n, of 0.012; and structural
angle coefficient, β, of 1.5. These parameter values are typical for an oscillator with the dimensions shown in the figure. —, Oudheusden–Cornell cantilever
model (Eq. (7)); —, Asymptote of the Oudheusden–Cornell cantilever model. ○, ode23 increasing wind speed; +, ode23 decreasing wind speed. — ∙ —.
Parkinson and Smith purely translational model (Eq. (8)). _ _ _ _ , Asymptote of the Parkinson and Smith purely translational model.
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4.1. Set-up and procedure

These experiments were performed in a laminar, low-speed, low-turbulence wind tunnel at Cornell University. The test
section had a cross section that was 25 cm wide and 25 cm high. The square prism had cross sectional sides of 1.3 cm and a
length of 2.0 cm. It was made out of styrafoam that had a density of 27.9 Kg/m3. A composite cantilever with a total length of
11.5 cm was inserted about 0.6 cm deep into the rear face of the blunt body, as shown in Fig. 3. The cantilever segment
closest to the blunt body was made out of a 0.006 in. thick feeler gage, a steel beam that is commonly used to measure small
distances. The feeler gage had a width of 1.3 cm and was cut to 6.4 cm in length. The last 1.3 cm segment length of the feeler
gage was glued to the plastic mount of a 303YB Piezo System Standard Double Quick-Mount Piezoelectric Bending actuator.
The PZT element was 1.3 cm wide, 0.55 mm thick, and 3.5 cm long. 4.6 mm segments at each end of the PZT element were
adhered to plastic mounts. The plastic mount that was not glued to the feeler gage was bolted to an aluminum truss.
The truss was weighted downwith brass bars to minimize vibrations which otherwise could have affected the experimental
results.

A Speedtech WindMate 200 Hand-Held Wind Meter was placed about 25 cm behind the blunt body. The WindMate
recorded air flow speeds with an accuracy of one-tenth meter per second. After the oscillator test, a second WindMate was
used to verify the accuracy of the first WindMate.

A Polytec ofv-2500 Vibrometer was used to measure blunt body amplitude. The vibrometer was placed about 1.3 m
outside of the test section, and its laser was focused on the center of the blunt body side facing the vibrometer.
The vibrometer measured amplitude with an accuracy of one-tenth of a millimeter.

The experimental procedure consisted of starting the wind tunnel air flow at a velocity of 1 m/s, which was below
the oscillator's critical wind speed. The air flow was increased in increments of 0.1 m/s until the maximum wind speed of
2.8 m/s was reached. Then, the air flow was decreased in increments of 0.1 m/s until the air flow was less than the critical
speed and the oscillator stopped vibrating.

4.2. Equation of motion parameters measurement

Oscillator parameters for the nonlinear equation of motion (see Eqs. 1 and 2) such as mass, viscous damping, cantilever
stiffness, structural angle for a given displacement, and aerodynamic force coefficients were determined in the
following ways.

4.2.1. Measurement of mass
The effective oscillating end mass can be found using two different methods. The first method integrates the kinetic

energy of differential mass elements along the length of a beam when mass displacement is based on Euler–Bernoulli beam
theory. For a blunt body on a uniform cantilever, this method gives the effective mass as

m¼mBB þ 0:236mcant ð12Þ
where mBB is the blunt body mass and mcant is the cantilever mass. The coefficient in front of mcant agrees within 3% of the
value 0.243 given by the Euler–Bernoulli beam equation for a cantilever undergoing first modal transverse vibration (Inman,
2008). This integrating method could be extended to structural designs other than the uniform cantilever.

A second method was actually used in this experiment because the mass and stiffness of the two plastic mounts on the
PZT component were not readily available, and these parameters affect the cantilever's kinetic energy. This method
measured the oscillator's natural frequency and cantilever stiffness, and then used those values to calculate the oscillator's
Fig. 3. Experimental set-up.
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effective mass. The natural frequency was measured using an oscilloscope in a wind speed of about 2.2 m/s. The cantilever
stiffness was measured using the procedure described in Section 4.2.3. Based on the measured natural frequency and
cantilever stiffness, the experimental oscillator had an effective mass of 0.21 g. Cantilever and blunt body masses were also
measured separately. The square cylinder had a mass of 0.091 g, and the cantilever had a mass of 3.8 g. Based on the
experimental effective mass, the square cylinder accounted for 43% of the oscillator's effective mass while the cantilever
accounted for 57% of it.

4.2.2. Measurement of viscous damping
The coefficient of viscous damping, r, was measured by recording blunt body displacement versus time after disturbing

the blunt body from equilibrium in the absence of any air flow. This was done using the vibrometer described in Section 4.1.
The damping was calculated from the envelope function for the decaying oscillations.

4.2.3. Measurement of cantilever stiffness
As mentioned above, the cantilever was a compound structure of a PZT bender and thin elastic steel strip. Cantilever

stiffness, k, was determined by hanging known masses from the cantilever when it was clamped to a horizontal beam on
a truss. Using this method, it was determined that the cantilever was slightly nonlinear and obeyed the equation k¼
2.4(1+11.3y), where cantilever stiffness, k, is given in units of N/m, and displacement, y, is given in units of m. For these
experiments, the maximum displacement, y, was on the order of 3 mm, so the value of the cantilever stiffness changed by
about 3% due to displacement.

4.2.4. Analysis of theoretical structural angle
As described in Section 2, the Oudheusden–Cornell model uses the beam theory of a uniform cantilever to relate blunt

body angle to displacement. The resulting equation, Eq. (3), is repeated below:

θ¼ 3
2
y
L
¼ β

y
L
: ð13Þ

For the Vibro-wind oscillator, however, the cantilever consists of two beams in series that have different second
moments of inertia, I, and Young's Modulus, E. This dual composition complicates the relationship between structural angle
and displacement at the end of the cantilever. Using the boundary conditions of equal displacement, slope, moment, and
shear force at the interface between the two beam components, the following equation relating cantilever tip angle to
displacement is derived:

θ¼ 3
2

ðEIÞgL2P þ 2ðEIÞgLgLp þ ðEIÞpL2g
ðEIÞgL3P þ 3ðEIÞg½LgL2P þ L2gLp� þ ðEIÞpL3g

y; ð14Þ

where y is blunt body displacement, θ is blunt body structural angle, (EI) is the product of Young's Modulus and the second
Moment of Inertia, and L is the length of the beam. The subscripts g and p indicate whether the term refers to the feeler gage
steel strip or PZT beam respectively. This analysis neglects effects of the two plastic mounts on the PZT component. Based on
typical steel properties and data published by Piezo-Systems, the oscillator described in this experimental section has values
of (EI)g¼7.754e−4 N m2, (EI)p¼1.933e−3 N m2, Lg¼6.35e−2 m, Lp¼ 3.18e−2 m, and L¼Lp+Lg¼ 9.53e−2m. These values
result in a structural angle-displacement relationship of θ¼1.74 y/L. The proportionality constant in this equation differs by
about 16% from the value of 1.5 for a uniform cantilever (see Eq. (13)).

4.2.5. Analysis of the aerodynamic force coefficients
The oscillator parameters of mass, viscous damping, and cantilever stiffness were directly measured, but the lateral

aerodynamic force versus angle of attack was not. Although both this experiment and Parkinson and Smith's (1964)
experiment were for a square cylinder, it is suspected that Parkinson and Smith's coefficients in the polynomial
approximating lateral force (see Eq. (2)) do not accurately describe the force for this experiment's Reynolds number. The
Parkinson and Smith data was collected at a Reynolds number of 22 300 whereas this experiment's data was collected at
Reynolds numbers ranging from 1500 to 2500.

Our wind tunnel lab did not readily have the equipment necessary to measure lateral aerodynamic force directly for
varied angles of attack. Therefore, a semi-empirical method was used to determine the coefficients in the lateral
aerodynamic force approximation polynomial, CFY¼ Aα½1−B̂α2 þ Ĉα4−D̂α6�. As shown in Eq. (9), A could be determined by
the oscillator's critical wind speed. Eq. (9) is repeated below with nondimensional critical wind speed replaced by its
dimensionalized equivalent:

V0 ¼
2ζ
nA

ωh: ð15Þ

Having measured critical wind speed, V0, viscous damping, ζ, mass parameter, n, frequency, ω, and blunt body
diameter, h, Eq. (15) could be solved for A.

The other force coefficients were determined by iterative curve-fits to the experimental data. The effects of different B̂, Ĉ,
and D̂ values on a theoretical bifurcation plot's amplitude values and hysteresis region are described in Sections 5.2 and 5.3.
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The coefficients found using this analysis are given in the Cornell row of Table 1. They are compared to the coefficients found
by Parkinson and Smith (1964) and the coefficients derived from data collected by Luo et al. (1993).

4.3. Experimental results

4.3.1. Experimental data for a square cylinder
The three data sets suggest several trends for different flow conditions. One trend is that significantly lower Reynolds

numbers and lower aspect ratios l/h cause the force polynomial to have a higher value for A. Comparing the Cornell data to
the Parkinson and Smith data, for which both the Reynolds number and the aspect ratio l/h decrease by a factor of 14,
A increases by a factor of 3.7. Comparing the Parkinson and Smith data to the Luo data, however, for which the Reynolds
number decreases by the smaller factor of 1.5 and the aspect ratio l/h increases by a factor of 2.5, A decreases by a factor of
2.0 instead of increasing. Smaller aspect ratios may affect the flow by making it more three-dimensional. In Table 1, the
coefficients B̂, Ĉ, and D̂ are divided by A in order to compare the shape of the CFY versus α curve independently of A, which
affects the oscillator's critical wind speed. B̂ does not show any trend for decreasing Reynolds number or increasing aspect
ratio, l/h. Ĉ and D̂ increase for lower Re.

In addition to changes in the experiment's Reynolds number or aspect ratio, l/h, the dynamic test may have introduced
effects that did not occur in the static tests.

4.3.2. Experimental data for a trapezoidal cylinder
Shapes with low critical wind speeds, high amplitude sensitivity, and minimal hysteresis are optimal for a Vibro-wind

energy harvester system. These properties depend on the lateral aerodynamic force coefficients, A, B̂, Ĉ, and D̂. For this
reason, it is desirable to identify any trends in A, B̂, Ĉ, and D̂ for different oscillator shapes. Such data has been collected by
Luo et al. (1993) for Reynolds numbers exceeding the range applicable to Vibro-wind. Here, we collect data on a trapezoidal
cylinder so that we can compare its performance to that of the square in the Vibro-wind Reynolds number regime.

Table 2 shows the force coefficients derived from an experiment similar to the one described in Sections 4.1 and 4.2 for a
trapezoidal cylinder. The table compares this experiment's force coefficients to those derived from Luo et al. (1993). The two
data sets differ by the Reynolds number in which the data was collected and the aspect ratio, l/h, of the blunt bodies. Both
blunt bodies have a rear:front diameter ratio, η, of 0.75, and the streamwise:cross-stream ratios, depth/h, differ by only 15%.
The two data sets seem to show that as Reynolds number and aspect ratio l/h increase, B̂ and Ĉ increase, while A and D̂
remain relatively constant. Reasons for these differences may be the change in flow behavior for different Reynolds
numbers, and aspect ratios.

4.3.3. Conclusions from experiment
The data for the square cylinder in Fig. 4 and trapezoidal cylinder in Fig. 5 weakly verify the Oudheusden–Cornell model.

The experimental data for the square has a qualitative shape that agrees with the curves made by simulating the Parkinson
and Smith and Oudheusden–Cornell models (Eqs. (7) and (8) respectively). The experimental data for the trapezoid has a
qualitative shape that agrees well with the model curves for wind speeds less than 5 m/s. Furthermore, the square oscillator
exhibited hysteresis for wind speeds greater than the critical wind speed for oscillation, and the trapezoidal oscillator
exhibited hysteresis for wind speeds starting at the critical wind speed. The phenomenon of hysteresis is predicted by both
the Parkinson and Smith and Oudheusden–Cornell models. The general wind speed ranges in which the hysteresis occurred
relative to the critical wind speed agrees with the relative ranges predicted by previous researchers' lateral force coefficients
Table 1

Comparison of coefficients in the lateral aerodynamic force coefficient approximation CFY¼ Aα½1−B̂α2 þ Ĉα4−D̂α6� for a square cylinder found by Parkinson
and Smith in a static test, fitted to Luo data from a static test, and by the present authors in a semi-empirical curve-fit to dynamic test data.

A B̂ ¼B/A Ĉ ¼C/A D̂ ¼D/A Re Aspect ratio l/h

Based on Luo et al. (1993) 5.50 38.0 1260 12 400 34 000 9.2
Parkinson and Smith (1964) 2.69 62.5 2330 22 300 22 300 23
Cornell 10.0 55.0 3900 70 000 1000–2300 1.6

Table 2

Comparison of coefficients in the lateral aerodynamic force coefficient approximation CFY¼ Aα½1−B̂α2 þ Ĉα4−D̂α6�¼ based on data from a static test by Luo
et al. (1993) and a semi-empirical curve-fit to dynamic data collected by the present authors for a trapezoidal cross section.

A B̂ ¼B/A Ĉ ¼C/A D̂ ¼D/A Re Aspect ratio l/h Streamwise: Cross-Stream ratio depth/h

Trapezoid 1 (Luo et al., 1993) 2.79 30.3 444 1790 34 000 9.2 1
Cornell 2.70 1.85 167 1850 6000–8000 1.5 0.85
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for similar shapes (Luo et al., 1993; Parkinson and Smith, 1964). In the high wind speed regime, however, the square cylinder
experimental data does not seem to confirm either model over the other, and the trapezoid experimental data does not
agree with either model.

As mentioned in Section 4.2.5, this data can be used to roughly estimate the aerodynamic force coefficients of cylinders
with lower aspect ratios and in lower Reynolds number flows. Low Re and small aspect ratios are characteristics of the low
wind speeds and small blunt bodies used by Vibro-wind. These factors may make the lateral aerodynamic force coefficient A
and coefficient ratios B̂, Ĉ, and D̂ have different values than those derived from previous experiments, which were conducted
for larger Reynolds numbers and aspect ratios. Parkinson and Smith noted that lower Reynolds numbers shift the peak of
the CFY versus α curve to the left (Parkinson and Smith, 1964). Luo et al. (2003) have also used a 2-D hybrid vortex
computation scheme to numerically investigate why lowering the Reynolds number shifts the inflection point in the CFY
versus α curve to a lower value of α. The peak of the CFY versus α curve for both the Cornell square and Cornell trapezoid
shifts to the left when compared to the Parkinson and Smith (1964) and Lou et al. (1993) data for the same shape in a higher
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Re. The Cornell square data was collected at Reynolds numbers 21 and 14 times respectively smaller than that of the Luo or
Parkinson and Smith data. The Cornell trapezoid was collected at a Reynolds number 5 times smaller than the Luo trapezoid
data. The trend of a left-shifting peak CFY for decreasing Re, however, is not observed for the decrease in Re of only 1.5
between the Luo and Parkinson and Smith square data.

Several observations can be made when comparing the aerodynamic coefficients of the square and trapezoidal blunt
bodies tested in this experiment. First, the square cylinder has a larger A value than the trapezoid. As shown in Eq. (9),
shapes with larger A values have lower critical wind speeds. Second, using each shape's force coefficients to plot its
corresponding CFY versus α curve, we see that the square cylinder's curve has a higher peak value, which corresponds to
higher amplitude sensitivity than the trapezoid. This means that if the square and trapezoid cylinders were the same size
and had the same viscous damping and mass, the square would oscillate with larger amplitudes than the trapezoid. Third,
when nondimensionalized and normalized for the damping coefficient and mass parameter, the square cylinder also has a
smaller range of wind speeds with hysteresis than the trapezoidal cylinder. These trends in critical wind speed, amplitude
sensitivity, and hysteresis agree with the trends based on (Luo et al., 1993) for higher Reynolds numbers and aspect ratios.

In the next section, we will explore the possibility of optimizing aerodynamic force constants to decrease critical wind
speed, increase amplitude sensitivity, and diminish amplitude hysteresis in the flow behavior.
5. Blunt body shape optimization

Blunt body size and cross section shape affect its performance in a Vibro-wind energy harvesting system. Here, good
performance is defined as a blunt body with a low critical wind speed, high amplitude sensitivity to wind speed, and minimal
hysteresis during galloping. This section discusses how blunt body shape and size play a role in these three components of
performance. The characteristics of a theoretical optimal oscillator are described. The discussion uses the performance of a square
cylinder with the lateral aerodynamic force coefficients found by Parkinson and Smith (1964).
5.1. Critical wind speed for oscillation

As described in Section 3.4, the solution to the nonlinear differential equation modeling the oscillator can be solved to
determine the oscillator's critical wind speed, V0, required for galloping to begin. Eq. (9) is dimensionalized and repeated below:

V0 ¼
2r
hlρA

: ð16Þ

Eq. (16) shows that critical wind speed can be minimized by decreasing viscous damping, r; increasing the blunt body
frontal area to wind direction, hl; and increasing the aerodynamic force approximation coefficient, A. Viscous damping
depends on blunt body shape and increases with blunt body size. Since both the frontal area, hl, and viscous damping, r,
increase with blunt body size, one would need to determine which variable is more sensitive to changes in blunt body size.
If for a given increase in blunt body size, hl increases more than r, then the critical wind speed will be reduced. The
aerodynamic force coefficient, A, in Eq. (2) depends on the shape of the blunt body. The value of A for different shapes has
been extensively studied (e.g. Alonso and Meseguer, 2006; Luo et al., 1998). As can be seen by differentiating Eq. (2), A is the
slope of the lateral aerodynamic force coefficient when angle of attack α equals 0:

A¼ dCFY

dα

�����
α ¼ 0

: ð17Þ

The blunt body is unstable if A is positive (Blevins, 1990).
5.2. Amplitude sensitivity to wind speed

Another constraint on the lateral force polynomial approximation coefficients is that the oscillator have a high amplitude
sensitivity to wind speed. One way to implement this constraint is to require that the lateral aerodynamic force coefficients
meet an arbitrary peak value on the CFY versus α curve because larger peak CFY values correspond to larger amplitudes (see
Fig. 7). As can be seen in the equation for the lateral aerodynamic force versus angle of attack, Eq. (2),
CFY¼Aα½1� B̂α2 þ Ĉα4 � D̂α6�, the values of the CFY curve increase as the magnitudes of A and Ĉ increase. They decrease
as the magnitudes of B̂ and D̂ increase. The order of decreasing sensitivity of the peak value to changes in these coefficients
is Ĉ, D̂, A, and B̂. The computer algebra program WxMaxima was used to symbolically solve for the peak CFY value in Eq. (2)
and set the peak to a value between 0 and 1. Fig. 6 depicts the relationship between coefficients B̂, Ĉ, and D̂, such that the
peak CFY value equals 0.6. This peak value was selected because it represents a slightly higher amplitude sensitivity to wind
speed than that of a square cylinder, which has a peak CFY value of 0.57 based on the coefficients found by Parkinson and
Smith (1964).
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5.3. Hysteresis minimization

The final constraint on the lateral aerodynamic force approximation coefficients is that the oscillator exhibit minimal
hysteresis. This requirement is imposed because practical wind energy harvesting will occur in a variable wind
environment, and with hysteresis, one would not know which bifurcation branch the oscillator would end up on. It is
better to minimize hysteresis and eliminate it if possible.

For this purpose, we solved Eq. (7) for the starting and ending wind speeds of the hysteresis region as a function of the
oscillator parameters. We did this using the computer algebra program WxMaxima. First, we set the derivative of Eq. (7)
with respect to Y equal to 0. This equation was then combined with Eq. (7) in order to eliminate Y . The final equation is a
quadratic on U, and its two roots are the nondimensionalized wind speeds for which hysteresis begins and ends (i.e. the
local extrema in Fig. 2 for U(Y)). Using the quadratic formula on the final equation, the nondimensionalized wind speeds
when hysteresis starts and ends obey the following equation:

UHysteresis ¼
ð13230D̂2

−3780B̂ĈD̂þ 800Ĉ
3Þζ 7ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80ð20Ĉ2

−63B̂D̂Þ3
q

nAð6615D̂2
−3780B̂ĈD̂þ 800Ĉ

3 þ 756B̂
3
D̂−180B̂

2
Ĉ
2Þ

; ð18Þ

where ζ is the reduced damping coefficient, n is the mass parameter, and A, B̂, Ĉ, and D̂, are the lateral force coefficients.
The hysteresis region is eliminated when the discriminant of Eq. (18) is equal to or less than 0. When the discriminant

equals 0, the starting and ending wind speeds equal each other, and the local maximum and minimum in the curve of U
versus Y (as shown in Fig. 8) become a single inflection point. The discriminant equals 0 and hysteresis vanishes when

B̂D̂

Ĉ
2 ≥0:318: ð19Þ
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The findings from this analysis are that the existence of hysteresis depends only on the parameters B̂, Ĉ, and D̂, for any
oscillator.

When the hysteresis region does exist, values of parameters in Eq. (18) affect its size and location. For typical force
coefficient values, increasing the magnitude of B̂ or D̂ shifts the hysteresis region to higher wind speeds and decreases the
range of wind speeds with hysteresis. Increasing the magnitude of Ĉ shifts the hysteresis region to lower wind speeds and
increases the range of wind speeds with hysteresis. B̂, Ĉ, and D̂ values can be changed by altering a blunt body's shape.

According to Eq. (18), the midpoint and range of nondimensional wind speeds in the hysteresis region are both
proportional to the nondimensional group ζ/nA, or (reduced damping coefficient)/(mass parameter x A). When this expression
is dimensionalized, the midpoint and range of wind speeds in the hysteresis region are proportional to r/hl, where r is the
viscous damping, and hl is the blunt body's frontal area to the wind direction. Thus, the location and size of the hysteresis
region can be adjusted by changing the blunt body shape (which changes A and viscous damping) or its size (which changes
frontal area and viscous damping). Additional significance to the hysteresis midpoint and range both being proportional to
ζ/nA is that changing a parameter in this group can reduce hysteresis and shift it to lower wind speeds, or increase hysteresis
and shift it to higher wind speeds. However, such a change cannot both decrease the size of the region and shift it to higher
wind speeds. Also, since the expression ζ/nA is the same nondimensional group that appears in the expression for critical
wind speed (see Eq. (9)), adjusting these parameters to shift the hysteresis region also shifts the critical wind speed by a
proportional amount. Furthermore, the expression ζ/nA is independent of oscillator natural frequency, or, its mass and
cantilever stiffness, which signifies that changing the oscillator natural frequency does not affect the hysteresis region or
critical wind speed.
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5.4. Findings relating geometry to performance

The three subsections above describe how blunt body cross sectional shape affects the oscillator's critical wind speed,
amplitude sensitivity to wind speed, and hysteresis region. If one assumes a continuum of shapes corresponding to a
continuous variation of constants A, B̂, Ĉ, and D̂, then one can search in this design space for shapes that satisfy the three
design criteria. Evidence of a such a continuum is discussed in Section 5.4.1. Fig. 6 shows values of B̂, Ĉ, and D̂ in B̂-Ĉ-D̂- space
that eliminate hysteresis or satisfy the peak CFY requirement.

As shown in Fig. 6, the lateral force coefficients of a blunt body can fall into one of four regions. Regions above the peak
CFY surface have lower amplitude sensitivity while regions below the surface have higher amplitude sensitivity. Regions
above the No Hysteresis surface do not have a hysteresis region while regions below the surface do have a hysteresis region.
Therefore, the optimal blunt body lies in the region above the No Hysteresis surface and below the peak CFY surface. Although
not clearly visible in the figure, a small optimal region occurs after the surfaces cross for small B̂, Ĉ, and D̂ values. This region
is labeled as Region 4. Fig. 7 plots the CFY versus α curves and Y versus U curves for blunt bodies in each region.

The spatial relationship of these two surfaces depicts a general trade-off between large amplitude sensitivity and
minimal hysteresis. This trade-off is supported mathematically. As discussed in Section 5.2 and shown in Eq. (2),
CFY¼Aα½1−B̂α2 þ Ĉα4−D̂α6�; the peak CFY value of a blunt body increases if the magnitudes of A and Ĉ increase and
decreases if the magnitudes of B̂ and D̂ increase. This means that for a blunt body with a given A value, larger peak CFY values
occur for smaller ratios of B̂D̂ : Ĉ

2
. On the other hand, Eq. (19) shows that hysteresis is eliminated for B̂D̂=Ĉ

2
≥0:318. That is,

hysteresis is minimized for larger ratios of B̂D̂ : Ĉ
2
. As shown in Eqs. (2) and (18), larger A values both increase the peak CFY

value and minimize the size of the hysteresis region. For an A value of 2.69, relatively small B̂, Ĉ, and D̂ values satisfy the
requirements for large amplitude sensitivity and minimal hysteresis, as indicated by Region 4 in Fig. 6. In this optimal
region, B̂D̂=Ĉ

2
is only slightly larger than 0.318 so that hysteresis is just eliminated and the peak CFY value is just above 0.6.

The location of the peak CFY surface in this figure depends on both the arbitrary peak value desired for the CFY versus α
curve and the assumed value of A (Fig. 6 assumes a value of A because there are four force coefficients, but only three axes
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may be drawn.). As shown in Eq. (2), CFY ¼ Aα½1� B̂α2 þ Ĉα4 � D̂α6�, the peak value of the CFY versus α curve is directly
proportional to A when all other coefficients stay constant. Increasing the assumed value of A while keeping the desired
peak CFY value constant would make the peak CFY surface appear to shift upwards along the D̂ axis, increasing the size of the
optimal Region 4. Effectively, if A increases, then B̂ must increase, Ĉ must decrease, or D̂ must increase to satisfy the peak
value. Conversely, the effect of increasing the desired peak CFY value while keeping the assumed value of A constant is to
shift the peak CFY surface downwards.

Fig. 6 shows the peak CFY surface for a peak CFY value of 0.6 and an A value of 2.69. For the reasons described in the
previous paragraph, the peak CFY surface is inaccurately plotted relative to the experimental B̂, Ĉ, and D̂ values if the
experimental A values greatly differ from the assumed A value of the peak CFY surface. A¼ 2.69 was chosen for the peak CFY
surface in Fig. 6 because that is the approximate A value for the Parkinson and Smith square blunt body, Cornell trapezoid,
and Luo trapezoid 1 (see Tables 1 and 2).

The coefficients for the square cylinder found by Parkinson and Smith (1964) lie below the No Hysteresis and above the
peak CFY surface, in Region 2. That is, the square cylinder has a low amplitude sensitivity and a hysteresis region. Coefficients
for all other shapes and experimental conditions described in this paper fall in Region 3, which has a higher amplitude
sensitivity than Region 2 but also exhibits hysteresis. These shapes include two trapezoidal cylinders with rear:front
diameter ratios, η, of 0.75 as listed in Table 2. They also include a trapezoidal cylinder with η¼ 0.5 and a triangle (η¼ 0)
based on data collected by Luo et al. (1993) that is discussed in Section 5.4.1. Fig. 6 slightly overrepresents the distances of
these two shapes from the peak CFY surface, meaning that Fig. 6 implies larger peak CFY values, because the shapes' actual A
values are less than the assumed A value of the peak CFY surface. Although all in Region 3, some of these shapes, such as the
Cornell trapezoid, are closer to the optimal Region 4 than others.

Fig. 6 also plots the trend in B̂, Ĉ, and D̂ values suggested by Luo et al.'s (1993) data as a blunt body cross section
transitions from a triangle to a square. This trend is discussed in detail in Section 5.4.1. The A values of this trend are within
10% of 2.69 for 0.7≤η≤0.8, where η is the ratio of the cross sectional rear:front diameter as shown in Fig. 8. Therefore, the
depiction of this trend with respect to the peak CFY surface in Fig. 8 is fairly accurate for these values of η. For plotted
segments of the trend corresponding to 0.1≤η≤0.7 and 0.8≤η≤0.9, A(η) differs by more than 10% from 2.69, and Fig. 6 skews
the quantitative relationship of the trend's coefficients with respect to the peak CFY surface. For η¼ 0.1, Fig. 6 overrepresents
the peak CFY value by 55%. For η¼ 0.9, Fig. 6 underrepresents the peak CFY value by 35%. However, these data points are
included because they accurately depict the suggested qualitative performance of the trend.

In addition to suggesting the blunt body geometry for improved energy harvester performance, the trends in lateral
aerodynamic force coefficients fitted to Luo's data support the idea that there is a continuum of shapes corresponding to
gradual variations in constants A, B̂, Ĉ, and D̂ and that one can search in this design space for shapes that satisfy the three
design criteria (Luo et al., 1993). Experimental studies supporting the shape continuum concept are described in the next
section.

5.4.1. Data supporting a continuum of lateral force coefficients
The previous section describes aerodynamic force approximation coefficients that minimize hysteresis and satisfy

amplitude sensitivity to wind speed. That discussion assumes that continuously changing a blunt body shape continuously
changes its aerodynamic force coefficients. Here, previous experimental studies that describe the coefficients of gradually
adjusted blunt body shapes are shown to support this continuum concept. These studies also suggest which shapes in the
continuum have optimal coefficient values.

Luo et al. (1993) measured the lateral aerodynamic force coefficient, CFY, versus angle of attack, α, for blunt bodies with
incrementally decreased rear diameters (see Fig. 8). The four shapes tested by Luo occupy a parameter space in which a
square is at one extreme, a triangle is at the other extreme, and two trapezoids are intermediate shapes. The data collected
by Luo can be fitted to the polynomial, CFY ¼ Aα½1−B̂α2 þ Ĉα4−D̂α6�. Fig. 8 shows how the coefficients in this equation varied
for each shape. The force coefficients for increasing rear diameter:front diameter ratio, η, in Fig. 8 can be fitted to functions
that sum one linear and one exponential term. The way in which these experimental coefficients seem to follow a pattern
suggests that a coefficient-shape continuum does exist and can be exploited to optimize blunt body performance.

Luo's studies have shown that different blunt body shapes are unstable for different ranges of α, have different peak CFY
values, and show varying amounts of hysteresis (Luo et al., 1993, 1998). His data shows that the range of α for which the
blunt body is unstable (that is, dCFY/dα40) increases as the cylinder becomes less square (that is, η decreases). It also shows
that hysteresis tends to decrease and the peak CFY value tends to increase as η decreases. As discussed in Section 5.2, larger
peak CFY values correlate to larger blunt body amplitudes for a given wind speed.

The trends fitted to Luo's data in Fig. 8 suggest that for 0oηo0.15 and 0.6oηo1, cylinders have high amplitude
sensitivity and exhibit hysteresis. Since A is larger for η40.6, these cylinders also have lower critical wind speeds.
Additionally, although cylinders for η40.85 have hysteresis, the amount of hysteresis decreases as η increases. For,
0.15≤η≤0.6, cylinders have lower amplitude sensitivity and no hysteresis. The trade-off between higher amplitude
sensitivity or less hysteresis, as discussed in Section 5.4, makes the optimal cylinders occur for the η values in which
hysteresis has just disappeared (that is, B̂D̂=Ĉ

2 ¼ 0:318). Such η values include η¼ 0.15, η¼0.6, and η¼1. Since the value of A
is larger for η≥0.6, the optimal rear:front diameter values may be η¼0.6 or η≈1, which represent square-like trapezoids.

Further evidence supporting a continuum of shape coefficients is provided by Alonso and Meseguer (2006). Alonso has
experimentally determined trends in the instability of isosceles triangle blunt bodies for varied main vertex angle, δ, angle of
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attack, α, and radius of curvature for rounded corners. He recorded aerodynamic lift and drag for nine triangular cross
sections with main vertex angle, δ ranging from 101 to 901 and for three triangular cross sections with varied radii of
curvature. The aerodynamic lift and drag coefficients are related to the lateral force coefficient discussed in this paper by
dCFY/dα¼ dCL/dα+CD (Den Hartog, 1956). When the blunt body initial angle of attack, α0, is set equal to 0, then A in the
approximation of CFY (see Eq. (2)) satisfies the equation A¼(dCL/dα+CD)|α¼0.

Alonso determined that there is a range of initial angle of attacks, α0, for which a triangular blunt body is unstable, and
that this range can be approximated as α0¼7(δ/2 +51). The magnitude of A varies within this range of α0. Alonso explains
that A decreases as the main vertex angle, δ, increases, and A approaches 0 for δ¼701. Furthermore, as the blunt body
corners become more rounded, the range of range of α0 for which the blunt body is unstable decreases, but the magnitude of
A increases.

Trends in Alonso's experimental data not only support the concept of a shape-force coefficient continuum, but they
suggest that triangular blunt bodies with main vertex angle values between 301≤δ≤501, rounded corners, and possibly a
nonzero initial angle of attack will have the largest A values out of the shapes he considered. Angles of 301≤δ≤501
correspond to the same angles between front and side cross sectional edges as trapezoids with rear:front diameter ratios of
0.46≥η≥0.07.
6. Summary and conclusion

This paper analyzed the nonlinear dynamics of a transverse galloping blunt body oscillator with respect to its geometric
shape and size for the purpose of scavenging energy from the wind. The Oudheusden model for galloping, which applies to a
blunt body oscillating on a hinged bar, was extended to a blunt body oscillating on a cantilevered beam, the current
mechanism used by the Cornell Vibro-wind energy harvesting system. The amplitude of a galloping oscillator that couples
rotation with translation is always less than the amplitude of an oscillator that moves in pure translation. For a blunt body
with coupled translation and rotation, the vibration amplitude reaches a horizontal asymptote with increasing wind speed.
For a purely translational blunt body model, however, the amplitude continues to increase linearly with increasing wind
speed. The degree to which the rotation is coupled with the translation affects the oscillator's maximum attainable
amplitude. Therefore, the ideal connecting mechanism would minimize the blunt body's rotation as it oscillates.

Experimentally, this paper investigated the effects of a lower Reynolds number on the oscillator's lateral aerodynamic
force coefficients. This was done by using nonlinear dynamics analysis to fit the data to the aerodynamic force model. Few
experiments have been conducted at the Reynolds numbers in which Vibro-wind operates, 103oReo104. The coefficient
values based on data from Alonso and Meseguer (2006), Luo et al. (1993), and Parkinson and Smith (1964) were from
experiments conducted at Re4104. In their paper, Parkinson and Smith noted that lower Reynolds numbers shift the peak
of the CFY versus α curve to the left (Parkinson and Smith, 1964). Making use of the data available, this paper assumed that
the performance trends among different blunt body shapes remains the same for different Reynolds numbers. Experiments
conducted by these authors supported this assumption. Future tests of lateral aerodynamic force versus angle of attack
could be used to further verify it.

The main purpose of this paper was to theoretically determine the blunt body shape that optimizes a galloping
oscillator's performance. This paper showed that optimal combinations of lateral aerodynamic force coefficients A, B̂, Ĉ, and
D̂ minimize the critical wind speed for instability, increase the sensitivity of amplitude to wind velocities beyond the critical
speed, and minimize or eliminate amplitude hysteresis for increasing and decreasing wind speeds. Analysis of the
coefficients showed that the hysteresis region is shifted to higher wind speeds and its wind speed range is minimized and
even eliminated for large ratios of B̂D̂ : Ĉ

2
. Amplitude sensitivity to wind speed, quantified by the peak CFY value, increases

with Ĉ and decreases with B̂ and D̂. This suggests a general trade-off between minimizing hysteresis and increasing
amplitude sensitivity. Additionally, the midpoint and length of the hysteresis region and the critical wind speed for
oscillation to begin are all proportional to the nondimensional group, ζ/nA (proportional to viscous damping/frontal area).
Amplitude sensitivity is inversely proportional to ζ/nA. While amplitude sensitivity increases for smaller oscillator natural
frequencies, hysteresis and critical wind speed are independent of natural frequency.

This analysis assumed that there is a continuum of force coefficients for continuously adjusted shapes. Previous
experimental evidence supports the continuum concept and existence of a shape that satisfies the lateral aerodynamic force
performance requirements. Experimental data from Luo et al. (1993) suggests that the coefficients A, B̂, Ĉ, and D̂ adjust on a
continuum as blunt body cross sectional shape changes from a square to a triangle. Experimental data from Alonso and
Meseguer (2006) suggests that A adjusts on a continuum as the main vertex of an equilateral triangular cylinder changes
from a small angle to a large angle. Based on these data sets, the blunt body that would perform best for a Vibro-wind
energy harvester would be a trapezoidal prism with a rear:front diameter ratio of η≈0.15, η≈0.55, or η≈1, have rounded
corners, and possibly have a nonzero initial angle of attack. Previous Vibro-wind studies have found that blunt bodies that
are generally trapezoidal like but have truncated corners at the frontal edge (i.e. they are actually irregular hexagons with
right angles between front and side cross sectional edges) oscillate at lower critical wind speeds and show less hysteresis
than square blunt bodies (Moon, 2010a).
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