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Abstract—Thin, planar, radio frequency microelectromechan-
ical systems (MEMS) resonators have been shown to self-oscillate
in the absence of external forcing when illuminated by a direct cur-
rent (dc) laser of sufficient amplitude. In the presence of external
forcing of sufficient strength and close enough in frequency to
that of the unforced oscillation, the device will become frequency
locked, or entrained, by the forcing. In other words, it will vibrate
at the frequency of the external forcing. Experimental results
demonstrating entrainment for a disk-shaped oscillator under
optical and mechanical excitation are reviewed. A thermomechan-
ical model of the system is developed and its predictions explored
to explain and predict the entrainment phenomenon. The validity
of the model is demonstrated by the good agreement between the
predicted and experimental results. The model equations could
also be used to analyze MEMS limit-cycle oscillators designed to
achieve specific performance objectives. [1499]

I. INTRODUCTION

ENTRAINMENT is a phenomenon that can occur when a
periodic force is applied to a dynamical system whose free

oscillation is self-excited, i.e., it vibrates even in the absence
of external forcing. If the forcing is strong enough and the fre-
quency difference between the forcing and the unforced oscilla-
tion is small enough, the response occurs at a multiple of the
forcing frequency rather than at the natural frequency of the
system. In such a case, the response is said to be entrained by
the forcing function and the system is said to be phase, or fre-
quency locked. A canonical example of entrainment behavior is
the Mathieu–Van der Pol oscillator model

(1)

where is the time and , , , , and are the system pa-
rameters. The equation is a combination of two well-known dy-
namical equations. The first is a Van der Pol equation [1] term

, which when (negative damping for low-am-
plitude oscillations) leads to steady-state vibrations, called a
limit cycle. This limit cycle can be entrained due to the presence
of a nonlinear Mathieu equation [1] term or
the nonparametric forcing term , which renders the limit
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Fig. 1. Disk-shaped oscillator. [Right: scanning electron microscope (SEM)
image of actual structure].

cycle unstable in certain regions of the frequency spectrum, al-
lowing it to be entrained [2], [3]. A study of entrainment and the
effect of changing the parmeters for 1 is done in [4].

Entrainment in a high -factor ( ), flat-disk-shaped,
Si-based, microelectromechanical systems (MEMS) oscillator
(Fig. 1) with a tuning range of 50 kHz at a 1.2-MHz oper-
ating frequency is described here. An essential feature of this
oscillator is that outside of a certain region of the forcing fre-
quency, the device vibrates at a constant amplitude at its natural
frequency, independent of the external modulation frequency,
while inside the region, the device locks itself to the external
modulation. The motivation for such a device comes from the
fact that the resonant mode operation of micro and nanoscale
oscillators has gained wide interest for applications such as
electromechanical filters [5], amplifers, nonlinear mixers [6],
[7], atomic scale imaging, scanning probe microscopes, ul-
trasensitive magnetometers [8], and biological and chemical
sensors [9]. Since the resonant frequency of the vibrating sensor
carries the information, a fixed resonant frequency limits the
applicability of MEMS in many cases. An example is integrated
tunable high filters which could significantly reduce size and
power consumption of telecommunication devices [10], [11].
Similarly, a broadband variable frequency micromechanical
oscillator could form the basis of a micromechanical spec-
trum analyzer. Development of a tunable detector could also
greatly benefit magnetic resonance force microscopy (MRFM).
Resonant devices can also yield valuable information about
the physical properties of materials, especially the sources of
internal friction.

In the disk shaped oscillator to be described here, modulation
of the absorbed laser energy leads to dynamic thermal stresses
that change the stiffness of the device on time scales compa-
rable to the period of vibration [12]. When this occurs, the oscil-
lator is said to be parametrically excited. This term, “parametric
excitation,” stems from the time varying parameters of the dif-
ferential equations that describe the motion of an oscillator. In
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Fig. 2. Experimental setup.

contrast to the case of external excitation, where a small excita-
tion cannot produce a large response unless the drive frequency
is nearly resonant, small parametric excitation can produce a
large response when the frequency of excitation is at certain in-
teger ratios of the natural frequency of the system. Electrostat-
ically driven parametric resonance in MEMS has been studied
by Turner et al. [13], [14], Rugar and Grütter [15], and Carr
et al. [16]. Parametric resonance in an electrostatically driven
nanowire was observed by Yu et al. [17]. Rugar and Grütter
point out that parametric drive can be used not only to amplify
motion but to reduce thermomechanical noise as well, greatly
increasing sensitivity of sensors built using parametric drive.

Zalalutdinov et al. have produced continuous wave (CW)
laser driven limit-cycle oscillations in MEMS resonators in
the shapes of disks [12], domes [18], paddles [19], and wires.
Parametric amplification [20], entrainment [21], and operation
in air [19] have been demonstrated. These devices usually are
thin (100–250 nm) flexural or torsional structures suspended
over a substrate.

Next, we present the experimental setup and results, then the
modeling of the system and determination of model parameters,
followed by results from the model and predictions of system
behavior.

II. EXPERIMENT

A. Setup

The oscillator (Fig. 1) considered here consists of a disk of
diameter 40 m and thickness 250 nm, made of single crystal
silicon resting on a SiO pillar of diameter 6.7 m. The fabri-
cation process is described in [22].

An overview of the experimental setup is shown in Fig. 2. The
disk oscillator is placed in a vacuum chamber capable of being
pumped to pressures below 1 mtorr, low enough that dissipa-
tion due to surrounding gases is insignificant. The samples are
situated near a quartz window. A long working distance, 0.35
NA 20 , microscope objective is placed outside the vacuum
chamber.

Light from a He–Ne laser ( 633 nm) is directed through
the microscope objective and focused to a 2- m diameter spot
on the surface of the disk, near its periphery. The incident light
is partly transmitted through the thin Si disk. The transmitted
component reflects from the substrate back through the disk, in-
terfering with the directly reflected light, forming a Fabry–Perot
cavity interferometer. The effect is that the net reflected and ab-

sorbed light intensity are periodic functions of the deflection of
the disk at the point of illumination [22]. Thus, the reflected
signal, directed into an alternating current (ac)-coupled pho-
todetector, can be used to measure the motion of the oscillator.

The photodetector output is fed into the network analyzer
in order to measure and record the amplitude and frequency
of the motion. The network analyzer can also output an ac
signal of varying amplitude and frequency. This signal is fed to
a piezoelectric actuator adhered with double-stick tape to the
back of the specimen substrate, providing inertial excitation of
the system. The incident laser beam may also be modulated
using an RF generator driving an electro-optic modulator.

B. Results

As the direct current (dc) component of the incident laser
beam is increased beyond a threshold value, the disk will begin
to self-oscillate, i.e., it will vibrate at a resonant mode with a
relatively large amplitude of motion, even in the absence of
external forcing [23]. The system is said to have undergone
a “Hopf bifurcation,” wherein a “limit cycle” (oscillation at a
single frequency and amplitude) is born out of a “fixed point”
(equilibrium position) with a change in one of the system param-
eters (dc power here). The mechanism for the limit-cycle oscil-
lations is the feedback between deflection of the disk and laser
heating. As the disk deflects it moves into a region of higher or
lower absorption, changing the temperature of the disk resulting
in a thermal driving force. When the thermal driving force is at
the correct phase with respect to the motion, (governed by the
equilibrium position of the disk with respect to the peaks and
valleys of the laser absorption) positive feedback occurs, driving
the disk to large oscillations. In addition, temperature changes
induce thermal stresses that couple to the bending of the disk,
changing its stiffness. The effect is to parametrically drive the
system, i.e., drive it by modulation of the spring constant of the
oscillator.

With the dc laser intensity set above the threshold for self-os-
cillation, the disk can be entrained by inertial (piezo) excitation.
As the piezodrive frequency approaches the self-oscilla-
tion frequency the motion of the disk is entrained, i.e., the disk
begins to vibrate at the piezofrequency (Fig. 3). This case is re-
ferred to as 1 : 1 piezopumping. The corresponding amplitude
of motion is shown in Fig. 4. The disk vibrates in the symmetric
(0,0) mode. The mode was verified by using a second, modu-
lated laser to thermally drive the oscillator about its 1.18-MHz
resonant frequency. Scanning the detection laser across the sur-
face of the disk, the phase between the drive and detection lasers
was observed to be constant, showing that the mode shape is
symmetric.

The amplitude remains at a low, constant value in the region
away from the resonance of the structure. This is the amplitude
of the limit cycle. The amplitude starts increasing in a region
near the resonance of the device. This is called the entrainment
region since the disk response is entrained by the driver. Hys-
teresis of entrainment is seen while sweeping the pilot signal
backward.

The total size of the entrainment region (i.e., adding the re-
gions while sweeping forward and backward) is 3.3% of the nat-
ural frequency of oscillation. The piezodrive voltage in above
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Fig. 3. Frequency of response versus piezofrequency, obtained experimentally.

Fig. 4. Amplitude of response versus piezofrequency, obtained experimentally.
Amplitude shown as mV output from photodetector. Actual amplitude of mo-
tion is shown in [23] to range 80–160 nm or 0.13–0.26 �.

Fig. 5. Entrainment region for varying piezomodulation in 1 : 1 piezopumping
case, obtained experimentally.

cases was 4 V which roughly corresponds to a base displace-
ment of 0.8 , where is the wavelength of the incident
laser beam. Fig. 5 shows that the entrainment region increases
with the amplitude of the inertial modulation.

The disk’s motion can also be entrained by modulating the
incident laser beam near the frequency ratios of 1 : 1 and 2 : 1 of
the disk’s limit-cycle frequency, with the piezodrive switched
off. The entrainment regions for 2 : 1 laser pumping are shown
in Fig. 6, and as before, the entrainment zone increases with the
amplitude of the laser modulation.

III. SYSTEM MODEL

A. Model

Although the previously described system is a structure and
hence will have spatially varying temperature and deformation
fields, it will be simplified for modelling purposes as a 1-DOF
nonlinear mass-spring-dashpot system, coupled to the thermal
problem through a thermal forcing and a temperature-dependent
spring stiffness [12]. Time in the governing equations will be

Fig. 6. Entrainment region for varying ac laser modulation in 2 : 1 laser
pumping case, obtained experimentally.

normalized with respect to the natural frequency of the oscillator
and hence the small amplitude frequency is 1.0.

First, consider the thermal model. The rate at which the tem-
perature increases is proportional to the heat input minus the
heat loss through the central pillar, which, in accordance with
Newton’s law of cooling, is proportional to the temperature of
the disk. This leads to

(2)

where is the temperature and and are thermal constants.
The laser power absorbed by the disk is

(3)

where is the incident laser power, is the depth of the
laser modulation, and the frequency of modulation. The

term in (3) approximates the change
in the absorbed intensity due to deflection of the disk inside the
interference pattern. Here, is the minimum absorption and
the contrast. The displacement of the illuminated point of the
disk is and is the equilibrium position of the disk relative
to the laser absorption pattern; both of these quantities are nor-
malized by the .

The equation of the vibration of the disk is

(4)

where is the quality factor of the oscillator, which is found
from the bandwidth of the experimentally obtained amplitude
response curve. represents the amplitude of the sinusoidal
base vibration term, which models the external piezodrive. As
the temperature increases, radial tensile and hoop compressive
stresses are developed that increase the stiffness of vibration
modes involving predominantly radial bending and decrease the
stiffness of modes involving predominantly hoop bending. The
relative stiffness thus is modeled as . may be positive
or negative depending on the structure and mode of vibration.
At high frequencies, the temperature modulation away from the
point of laser heating diminishes considerably, and thus is a



PANDEY et al.: ANALYSIS OF FREQUENCY LOCKING IN OPTICALLY DRIVEN MEMS RESONATORS 1549

decreasing function of frequency. The term models the op-
tothermal forcing, which arises here from out-of-plane thermal
expansion of the disk, which is typically curved due to release
of nonuniform residual stresses. This term is treated as a base
excitation in (2)–(4). The term models the structural nonlin-
earity of this disk.

B. Model Parameters

The parameters of the model [(2)–(4)] are determined using
a number of analysis. Using the finite element method (FEM),
the transient heat conduction problem of the disk heated over a
small region that simulates the laser illumination area is solved.
The resulting initial temperature increase rate and steady-state
temperature provide the values of and , respectively. The
temperature field for modulated laser heating is computed as
well. The change in stiffness due to the resulting thermal stresses
is analyzed by finding the changes in frequency of the (0,0)
mode using FEM. Similarly, the cubic stiffness term and the
optothermal drive term are derived from FEM. Damping is
estimated from experiments. The optical parameters , , and

are estimated using a film-substrate-gap analysis [24]. The
model parameters derived in such a fashion are 0.0176
C/ W, 0.488, 3.53 10 C, 1.3 10

C, 0.06, 0.26, 0.0001, 10 ,
0.375, and 0.06. See [25] for more details.

IV. ENTRAINMENT ANALYSIS

The model equations [(2)–(4)] are analyzed using numer-
ical integration. Results of the analysis are compared to the ex-
perimental data in order to establish the validity of the model.
Fourth-order Runge–Kutta method with adaptive step-sizing is
used for integrations. The system is allowed to reach a steady-
state [26] at each frequency.

The steady-state results are analyzed to determine the ampli-
tude and frequency of the response. If the frequency spectrum
of the response shows a single peak at the forcing frequency, the
forcer is said to have entrained the response of the oscillator. In
order to simulate the entrainment experiments, in which the fre-
quency is swept, in the numerical experiments the last point of
the simulation at the previous frequency is taken as the initial
condition for the next step. A step of 0.01 to 0.001 in the nor-
malized frequency is used to compute and plot the amplitude
and frequency response against the pilot frequency. From this
data, the entrainment region can be determined.

As in the experiments, the disk must first be in a condition of
limit-cycle oscillations in order for the motion to be entrained.
For the standard parameters, the threshold for self-oscillation is
490 W, which leads to a steady-state vibration amplitude of

; see [26] for details. The self-oscillations are hys-
teretic, with the amplitude of motion dropping to zero at 425 W
while sweeping backwards.

A. Entrainment Simulations for 2 : 1 Laser Modulation

In the 2 : 1 laser entrainment case, laser modulation is applied
at close to twice the natural frequency of the disk oscillator and
the response of the system is computed. Fig. 7 shows the calcu-
lated dependence of the amplitude of oscillation versus 1/2 the
laser modulation frequency.

Fig. 7. Amplitude of response R versus 1/2 frequency of laser modulation.
M = 0, ' = 0:6, and P = 600 �W with 2 : 1 laser modulation, obtained
by numerical simulations. Time has been normalized so that the small amplitude
frequency is 1.0.

Fig. 8. Frequency of the response versus 1/2 frequency of laser modulation.
M = 0, ' = 0:6, and P = 600 �W with 2 : 1 laser modulation, obtained
by numerical simulations. Time has been normalized so that the small amplitude
frequency is 1.0.

This simulation is performed for a CW laser power of 600 W
and a modulation ( ), of 0.6. Piezodrive is switched off in this
case. Away from , the amplitude remains constant at
around 0.25, the amplitude of the unforced limit cycle. At a
frequency of 1.008, the amplitude drops to 0.23 which is the
amplitude corresponding to forced oscillation at this frequency.
Thus, the forcing function entrains the limit-cycle oscillation at
this frequency. After this, the amplitude keeps increasing until
a forcing frequency of 1.0198. At this frequency, the amplitude
again drops down, when the system loses entrainment. This be-
comes clearer in Fig. 8 where the response frequency versus
1/2 the frequency of laser modulation is plotted. The frequency
of response is almost constant around a value of 1.01, the fre-
quency of the unforced limit-cycle oscillation, and then jumps
down to 1.008 at the 1/2 forcing frequency value of 1.008. After
this point, the frequency of response is entrained to the forcing
frequency and continues to increase until the forcing frequency
reaches 1.0198 where it loses entrainment and drops back down
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Fig. 9. Amplitude of response R versus frequency of piezodrive, obtained by
numerical simulations. M = 0:0001, ' = 0:0, and P = 600�W for 1 : 1
piezomodulation.

to 1.01. At frequencies just outside of the entrainment region,
beats are observed due to the superposition of the forced re-
sponse and limit-cycle oscillations.

The bend of the amplitude-frequency curve in the entrain-
ment region is due to the cubic nonlinearity in the system. Plot-
ting the backbone curve, i.e., the curve which gives the relation-
ship between amplitude and frequency for Duffing’s equation
[1] ( ), gives a good match with the entrainment
curve (Fig. 7).

Similar behavior is seen while sweeping the pilot frequency
backward. Hysteretic behavior is observed as the entrainment
does not occur at the same point as the forward sweep. Initially,
the response amplitude remains constant at the limit-cycle am-
plitude until it reaches the frequency of 1.0111 where it jumps to
an amplitude of 0.271 and is entrained. The amplitude reduces
as the forcing frequency is decreased until it reaches a value of
1.0012 where entrainment is lost and the amplitude of the re-
sponse jumps back to the limit-cycle amplitude value.

Thus, from the aforementioned results, we see that in the sim-
ulations the entrainment region is 2.2% of the base frequency.
Comparing it with the experimental results where the entrain-
ment region is 1.55% shows that the simulations give reason-
ably good agreement with the experiments.

B. Simulations for 1 : 1 Piezoentrainment

Here we look at simulations for the case when the oscillator is
excited using piezodrive close to its natural frequency, while the
laser is applied without modulation. The amplitude versus fre-
quency curves for forward and backward sweeping are plotted
in Fig. 9.

As before, entrainment occurs over a wide range, from a fre-
quency of 1.0072 to 1.043 while sweeping up and from 1.012
to 1.005 sweeping down. The backbone curve provides a good
fit to the entrainment curve.

Similar results are seen in the plot of frequency of response
versus frequency of piezodrive (Fig. 10). Comparison with ex-
periments shows good agreement; the total entrainment region
is 3.7% for simulation while the experiments showed 3.4% wide
entrainment region.

Fig. 10. Frequency of the response versus frequency of piezodrive, obtained
by numerical simulations. M = 0:0001, ' = 0:0, and P = 600 �W for
1 : 1 piezomodulation.

Fig. 11. Amplitude of response versus frequency of laser modulation, obtained
by numerical simulations. M = 0:0, ' = 0:6, and P = 600 �W for 1 : 1
laser-modulation.

C. Simulations for 1 : 1 Laser Entrainment

Simulations for 1 : 1 laser pumping of disk oscillator with
the piezodrive switched off are considered next. The amplitude
versus frequency plot is shown in Fig. 11. Entrainment is seen
in this case while sweeping forward as well as backward. Un-
like the previous two cases, the region for entrainment in 1 : 1
laser pumping while sweeping backward is observed to be much
larger than the entrainment region in forward sweeping.

D. Effect of Changing Equation Parameters and

To study the effects of the parametric term and the
optical drive term in the model equations, simulations are
performed with and .

First, consider , i.e., the effect of static deflection due to
heating is neglected. For 2 : 1 laser modulation case, the system
shows entrainment, although the amplitude drops down to zero
while sweeping backwards when the entrainment is lost (see
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Fig. 12. Amplitude response for 2 : 1 laser modulation case , obtained by nu-
merical simulations for D = 0, M = 0:0, ' = 0:6, and P = 920 �W
for 2 : 1 laser-modulation.

Fig. 13. Amplitude of response versus frequency of piezodrive, obtained by
numerical simulations for D = 0, M = 0:0001, ' = 0:0, and P =

600 �W for 1 : 1 piezomodulation.

Fig. 12). Entrainment in this case is seen only at a very high
value of CW laser power, 920 W since the Hopf bifurcation
threshold increases as decreases (see [23]). With decreasing

, the Hopf bifurcation changes from subcritical to supercrit-
ical. Thus an unstable limit cycle always exists between the
stable limit cycle and the equilibrium. If the amplitude during
entrainment goes below the unstable limit-cycle amplitude, it
will drop to zero when entrainment is lost, instead of jumping
back to the stable limit cycle. Hence, the results obtained by ne-
glecting the term in this case contradict the experimental ob-
servations. Note that even at an applied laser power of 1000 W,
the absorbed power is at most 260 W, thus the maximum tem-
perature is 10 C and the change in static deflection
due to setting is , an insignificant
change that has no impact on the Hopf bifurcation value.

For 1 : 1 piezodrive, if , the model predicts that the disk
will show the resonant behavior of a forced oscillator (Fig. 13).
The limit cycle does not exist and entrainment is not predicted in
this case which contradicts the experimental results. The same

Fig. 14. Amplitude of response versus frequency of piezodrive, obtained by
numerical simulations for C = 0, M = 0:0001, ' = 0:0, and P =

600 �W for 1 : 1 piezomodulation.

is the case for 1 : 1 laser drive. Hence, we see that the optical
drive term is important to model the system correctly.

Next, consider the case when parametric amplification is ne-
glected, i.e., , shown in Fig. 14. In this case the limit cycle
occurs, although at a lower amplitude. In 2 : 1 laser entrainment
simulations, the system never becomes entrained, in contradic-
tion with the experiments.

In the 1 : 1 piezocase, for entrainment is seen between
a frequency of 1.001 and 1.098 while sweeping forward and be-
tween the frequency of 1.0005 and 1.003 while sweeping back-
ward. The point at which entrainment is lost sweeping back-
ward moves closer to the point where the system is entrained
sweeping forward.

In the case of 1 : 1 laser pumping case, when , entrain-
ment occurs though the system shows no hysteretic behavior
while sweeping backward. Taken together, the results suggest
that parametric amplification is needed to accurately model the
system.

E. Effect of Changing Strength of Pumping on the Entrainment
Regions

In the previous sections, the ac laser modulation was 60% of
the CW laser power, i.e., . Next, consider the change
in entrainment region with . Fig. 15 shows two -shaped re-
gions, each of which represent the entrainment region while
sweeping forward and backward in 2 : 1 laser entrainment sim-
ulations. The point where the system becomes locked is the fre-
quency where the amplitude jumps from the limit-cycle value
to the entrained amplitude value. Similarly, the entrainment lost
point is the frequency corresponding to the point where there
amplitude jumps back to the limit-cycle amplitude. The region
of entrainment goes to zero as and becomes larger as

is increased, in accordance with the experimental results (see
Fig. 5).

The frequency where entrainment is lost while sweeping
backward decreases linearly with ac modulation until ;
it then stabilizes close to 1. On the other hand, the frequency
at which the entrainment is lost while sweeping forward keeps
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Fig. 15. Entrainment regions for varying laser modulation, obtained by numer-
ical simulations. M = 0:0 and P = 600 �W for 2 : 1 laser-modulation.

Fig. 16. Entrainment regions for varying piezoamplitude, obtained by numer-
ical simulations. ' = 0:0 and P = 600 �W for 1 : 1 piezomodulation.

increasing linearly with . The total width of the entrainment
region increases from zero with to 2.4% for . The
experiments (see Fig. 6) show that for varying from 0 to 0.1
the entrainment region increases from 0 to 3.6%.

Similarly, as shown in Fig. 16, the entrainment region for 1 : 1
piezopumping increases with increasing amplitude of the
piezodrive. The entrainment region increases with the piezoam-
plitude, increasing from 0.2% for to 4.35% for

. These results match well with experimentally
observed entrainment regions (Fig. 5). Note that the shape of the
sweeping forward lost curve in Fig. 16 is somewhat similar to
the discontinuity in the curve around 1.7 V in Fig. 5.
This experimental behavior was observed consistently.

F. Effect of Changing CW Laser Power on Entrainment Region

Next, consider the effect of changing the CW laser power
on the entrainment region. Fig. 17 plots this result as the CW
laser power is varied 450–750 W in the 2 : 1 laser entrainment
simulations.

Fig. 17. Entrainment regions for varying power and laser modulation, obtained
by numerical simulations. M = 0:0 and P = 450–750 �W for 2 : 1 laser-
modulation.

Fig. 18. Entrainment regions for varying power and piezoamplitude, obtained
by numerical simulations. ' = 0:0 and P = 6 600–750 �W for 1 : 1
piezomodulation.

The natural frequency of the limit cycle increases, as shown
by the rightward movement of the entrainment curves. The total
width of the entrainment region increases for increasing laser
power from 2% at 500 W to 2.5% for 750 W.

In Fig. 18, entrainment regions for 1 : 1 piezopumping with
varying laser power are plotted. It is seen that the entrainment
region shifts right as the CW laser power increases. Thus the
base frequency shifts from 1.0095 at 500 W to 1.013 at 750 W
while the maximum width of entrainment changes from 4% to
4.1%.

V. SUMMARY AND CONCLUSION

The disk-shaped device described here will self-oscillate
when illuminated by laser light of sufficient intensity. This mo-
tion can be entrained, or frequency locked, to a small external
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signal. Entrainment by inertial (piezo) drive is demonstrated
when the piezo oscillates near a 1 : 1 ratio of the self-oscillation
frequency. Entrainment by modulating the incident laser at 1 : 1
and 2 : 1 is also demonstrated.

A mathematical model consisting of a coupled set of mechan-
ical and thermal differential equations is developed to describe
the oscillator. The model is analyzed using numerical methods.
Numerical integrations show that the model equations predict
hysteretic entrainment for 1 : 1 inertial, 1 : 1 laser, and 2 : 1 laser
pumping and that as the amplitude of pumping increases, so
does the range of entrainment frequencies, all in agreement with
the experiments. Numerical experiments show that the para-
metric term and the direct optical drive term are
both needed in order for the model to agree with experiments.
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