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ABSTRACT
We obtain power series solutions to the \abc equation"

dy

dx
= a+ b cos y + c cos x;

valid for small c, and for small b. This equation is shown to
determine the stability of the quasiperiodic Mathieu equation,

�z + (� + �A1 cos t+ �A2 cos!t)z = 0;

in the small � limit. Perturbation results of the abc equation
are shown to compare favorably to numerical integration of the
quasiperiodic Mathieu equation.

INTRODUCTION

This work is motivated by an interest in the the
quasiperiodic Mathieu equation:

�z + (� + �A1 cos t+ �A2 cos !t)z = 0; (1)

which has been investigated by (Zounes and Rand, 1998)
in the case that A1 = A2 = 1. In particular, we seek ex-
pressions for transition surfaces in parameter space which
separate regions of stability from regions of instability in
Equation (1). (Equation (1) is said to be stable if all solu-
tions remain bounded as t!1, and unstable otherwise.)

In this work, we use perturbations valid for small �,
small !, and � � 1=4. Let

� =
1

4
+ ��1; (2)

! = �; (3)

� = �t: (4)

Applying Equations (2)-(4) to Equation (1) gives

�z +
1

4
z = �(��1 �A1 cos t� A2 cos � )z (5)

_� = �: (6)

Using the method of averaging to lowest order in �, we seek
solutions of the form

z = R(t) cos(
t

2
+ �(t)); (7)

_z =
�R(t)

2
sin(

t

2
+ �(t)): (8)

Substituting Equations (7) and (8) into Equation (5) gives

_R(t) = �2� sin(
t

2
+ �(t))F; (9)

_�(t) = �
2

R(t)
� cos(

t

2
+ �(t))F: (10)

where F = �(�1 + A1 cos t+ A2 cos � )R cos( t

2
+ �(t)).

Averaging Equations (9) and (10) in t, while holding
R;� and � constant, gives the slow 
ow

_R =
A1

2
�R sin 2� (11)
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_� = �(
A1

2
cos 2�+ A2 cos � + �1) (12)

Solving Equation (11) for R gives

R = R0 exp

�
A1�

2

Z
t

0

sin 2�dt1

�
; (13)

where R0 is a constant of integration.
How can we tell the stability of Equation (1) from the

averaged slow 
ow equations? Note that Equations (12)
and (6) give an autonomous 
ow on the � � � torus. This

ow exhibits either (a) limit cycles (which generically come
in pairs, one stable and one unstable), or (b) a quasiperi-
odic 
ow having no limit cycles. In the limit cycle case (a),
� will be a periodic function of t, and so will sin 2�. In
such a case, the integral in Equation (13) will in general be
non-zero over one cycle, and R will either grow unbounded
as t ! 1 or will decay to zero. Since the Wronskian of
Equation (1) is constant in time, an exponentially decaying
solution must be accompanied by a second linearly inde-
pendent solution which is exponentially growing. Thus a
limit cycle in Equations (12) and (6) means Equation (1) is
unstable.

On the other hand, if the torus 
ow is quasiperiodic,
then by ergodicity (Arnold and Avez, 1968) the time mean
in Equation (13) is equal to the space mean, that is

lim
t!1

1

t

Z
t

0

sin 2�dt1 =
1

� � 2�

Z �

�=0

Z
2�

�=0

sin 2�d�d� = 0:

(14)
In this case R will remain bounded as t!1 and Equation
(1) is stable.

We now choose � to be the independent variable in
Equations (12) and (6) giving

d�

d�
=

d�

dt
�

d�

dt
= �1 +

A1

2
cos 2�+A2 cos �: (15)

For convenience of notation, we let

y = 2�;

x = �;

a = 2�1; (16)

b = A1;

c = 2A2;

then Equation (15) becomes

dy

dx
= a+ b cos y + c cosx: (17)

Table1. InvarianceofEquation(17)under thetransformations listedforeach
octant. Note that none of these operations change the qualitative behavior of
Equation (17).

Octant Invariance of Equation (17)

(Signs of a,b,c)

1(+;+;+) ||

2(+;+;�) c 7! �c; x 7! x � �

3(+;�;�) b 7! �b; c 7! �c; x 7! x� �; y 7! y � �

4(+;�;+) b 7! �b; y 7! y � �

5(�;+;+) a 7! �a; x 7! x� �; y 7! � � y

6(�;+;�) a 7! �a; c 7! �c; y 7! � � y

7(�;�;�) a 7! �a; b 7! �b; c 7! �c; y 7! �y

8(�;�;+) a 7! �a; b 7! �b; x 7! x� �; y 7! �y

We shall refer to Equation (17), which gives a slope �eld
on the x � y torus, as the "abc equation". In summary,
if the solution to Equation (17) on the torus possesses a
limit cycle, then the quasiperiodic Mathieu equation (1)
is unstable; if the abc equation is quasiperiodic (no limit
cycles), then Equation (1) is stable. Note that these results
are based on the method of averaging, and assume that
� << 1.

THE ABC EQUATION

In this work we shall be interested in the question of
which points in a � b � c parameter space correspond to
stable solutions (no limit cycles in the abc equation), and
which correspond to unstable solutions (limit cycles). We
begin by noting that it is su�cient to study the �rst octant
(a � 0, b � 0, and c � 0) only. This is because Equation
(17) is invariant under a variety of translations of x and y

and sign changes in y. For example, in the case of the second
octant, Equation (17) is invariant under the transformations
c 7! �c and x 7! x � �. See Table 1. In the remainder of
this work we shall use perturbation theory to study the abc
equation for small values of c and b.

Small c Approximation

When c = 0, Equation (17) becomes

dy

dx
= a+ b cos y: (18)
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Note that Equation (18) is autonomous, that is, indepen-
dent of x. When Equation (18) is viewed as a 
ow on the
y-circle, the y values for which dy=dx = 0 are �xed points.
But if we view Equation (18) as a 
ow on the x-y torus, then
y values for which dy=dx = 0 are limit cycles. Therefore a
limit cycle for Equation (18) corresponds to the y values for
which

a+ b cos y = 0) cos y = �a
b
: (19)

For real positive solutions to Equation (19) we require

b � a: (20)

Thus for small values of c, parameters satisfying Equation
(20) are unstable.

If b < a, then for c = 0 all solutions to the abc equation
are in general quasiperiodic and such points in parameter
space are stable. However, KAM theory (Guckenheimer and
Holmes, 1983) tells us that for small values of c, tongues of
instability will emanate from points in the a � b plane for
which the winding number of the (non-limit cycle) orbit is
rational. In order to calculate the winding number, we write
Equation (18) in the form:

dy

dt
= a+ b cos y;

dx

dt
= 1; (21)

which has the exact solution:

x(t) = t; y(t) = arctan

�
2� tan �t

2

(a+ b) tan2 �t

2
+ (b� a)

�
(22)

where � =
p
a2 � b2, and where the constants of inte-

gration have been chosen to satisfy the initial condition
x(0) = 0; y(0) = 0. Now we consider the Poincar�e map
with surface of section x = 0 mod 2�. Setting t = 2n�,
where n is an integer, we obtain the circle map:

yn = arctan

�
2� tan�n�

(a + b) tan2 �n� + (b� a)

�
(23)

The winding number � is given by

� = lim
n!1

yn
2�n

= � =
p
a2 � b2 (24)

where we have used the fact that yn changes by 2� when
the argument of tan�n� changes by �.

From Equation (24) and KAM theory we conclude that
as c is increased from zero, tongues of instability emanate
from the following curves in the a� b plane:

� =
p
a2 � b2 =

m

n
) a =

r
m2

n2
+ b2 (25)

where m and n are relatively prime positive integers. See
Figure 1. This result illustrates an essential di�erence be-
tween the quasiperiodic Mathieu equation (1) and the usual
Mathieu equation (i.e. Equation (1) with A2 = 0), in the
small � limit. Namely that the former has a dense set of in-
stability regions, whereas although the latter has an in�ni-
tude of instability regions, these are spaced a �nite distance
away from one another (Stoker, 1950).

Now we will use perturbations to obtain a small-c ap-
proximation for the transition surface which bounds the re-
gion containing limit cycles. For c = 0 this is given by the
equation

a = b; c = 0: (26)

This transition is characterized by a saddle-node bifurcation
and the occurrence of a degenerate (semistable) limit cycle.
In the c = 0 case this occurs when

cos y = �a
b
= �1 ) y = �: (27)

When c > 0, this transition continues to be characerized by
the occurrence of a degenerate limit cycle. Using symmetry
properties of the abc equation, we prove in the Appendix
that this limit cycle satis�es the condition

y(0) = �: (28)

Generalizing Equation (26) for c > 0, we expand a
around b in a power series in c. Substituting the equations

a = b+ ck1 + c2k2 + : : : (29)

y = y0 + cy1 + c2y2 + : : : (30)

into Equation (17), expanding for small c and collecting
terms, we obtain a sequence of di�erential equations, the
�rst three of which are:

c0:
dy0
dx

= b(1 + cos y0) (31)

c1:
dy1
dx

= k1 + cosx� by1 sin y0 (32)

c2:
dy2
dx

=
2k2 � (y1

2 cos y0 + 2y2 sin y0)b

2
: (33)
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From Equation (27) we see that the appropriate solution to
Equation (31) is y0(x) = �: Substituting this into Equation
(32) we obtain:

y1(x) = k1x+ sinx+ 
1 (34)

where 
1 is a constant of integration. In order for the per-
turbation solution to be uniformly valid as x!1, we must
remove any secular terms which grow linearly in x. Thus
we take k1 = 0. Also, Equation (28) gives 
1 = 0. Thus we
�nd that y1(x) = sinx. Substituting y0(x) and y1(x) into
Equation (33) we obtain:

dy2
dx

=
b

2
sin2 x+ k2: (35)

Using the identity sin2 x = 1

2
� 1

2
cos 2x in Equation (35), we

require k2 = �
b

4
for no secular terms. Thus Equation (29)

gives the following expression for the transition surface:

a = b�
b

4
c2 +O(c3): (36)

This process can be extended to obtain a higher order
expression for the transition surface. For example,

a = b� c2
b

4
+ c4(

4b+ 7b3

256
)� c6(

4b+ 73b3 + 58b5

9216
) +O(c8):

(37)

Small b Approximation

When b = 0, Equation (17) becomes

dy

dx
= a+ c cos x; (38)

which has the solution:

y(x) = ax+ c sinx+ �; (39)

where � is an integration constant. Since the phase space
is a torus, the unperturbed solution (39) will represent a
periodic motion with winding number m=n when

a =
m

n
; (40)

where m and n are relatively prime positive integers. To see
what happens to this periodic solution for small values of b,

we expand a and y in power series in b (for a �xed value of
c):

a = a0 + a1b+ : : : ; where a0 =
m

n
(41)

y = y0 + y1b+ : : : ; where y0(x) = a0x+ c sinx+ �:(42)

Substituting (41) and (42) into Equation (17), expanding
and collecting terms yields:

dy1
dx

= a1 + cos y0 (43)

Equation (43) may be integrated to give

y1(x) = y1(0) + a1x+

xZ

0

cos(a0u+ c sinu+ �) du (44)

which may be written in the form

y1(x) = y1(0) + a1x +cos�
xR
0

cos(a0u+ c sinu) du

� sin�
xR
0

sin(a0u+ c sinu) du; (45)

where y1(0) is an integration constant. Now we require the
perturbed motion to continue to be periodic with winding
number m

n
. Such a motion will correspond to an n�cycle

in the Poincar�e map with surface of section
P

: x = 0 mod
2�. Thus we require

y(0) = y(2n�) mod2� (46)

y0(0) + y1(0)b+ � � � = y0(2n�) + y1(2n�)b+ � � �

mod2�; (47)

y0(0) = y0(2n�); y1(0) = y1(2n�) mod2� (48)

Note that from Equations (42) and (45)

y0(2n�) = 2n�a0 + � = 2�m + �; y0(0) = �; (49)
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y1(2n�) = y1(0) + 2n�a1

+ cos�

2n�Z

0

cos(
m

n
u+ c sinu) du

� sin�

2n�Z

0

sin(
m

n
u+ c sinu) du: (50)

Now Equations (49) identically satisfy the �rst of Equations

(48). Also, in Equation (50),
2n�R
0

sin(m
n
u+ c sinu) du = 0

since the integrand is an odd function. Thus the second of
Equations (48) requires

a1 = �
1

2n�
cos�

2n�Z

0

cos(
m

n
u+ c sinu) du (51)

The transition surface separating points in parameter space
which have limit cycles from those which don't corresponds
to the limiting values of cos �, namely cos� = �1, which
gives:

a1 = �
1

2n�

2n�Z

0

cos(
m

n
u+ c sinu) du (52)

In the special case of n = 1, the integral in Equation (52)
reduces to a Bessel function of the �rst kind (Abramowitz
and Stegun, 1965):

a1 = �Jm(�c); n = 1: (53)

The expression for the transition surfaces becomes:

a =
m

n
� b

1

2n�

2n�Z

0

cos(
m

n
u+ c sinu) du+ O(b2) (54)

We have extended these results to include O(b2) terms, but
we omit the associated expressions here to save space. For
n = 1; m = 1; c = 1, we obtained

a = 1� 0:44005 b+ 0:3367 b2 + O(b3) (55)

Figure 2 shows the perturbation results (37) and (55).

NUMERICAL INTEGRATION

In order to check the foregoing perturbation results we
numerically integrated the quasiperiodic Mathieu equation
(1) in conjunction with Floquet theory (Stoker, 1950) for
a �ne mesh of rational values of � and A1. The results for
! = � = 0:1 and A2 = 0:5 are displayed in Figure 3, which
should be compared to the perturbation results in Figure 2.
We note that the numerous instability regions predicted by
KAM theory in Figure 1 do not show up in Figures 2 and
3. This is due to their being very thin for � = 0:1.

CONCLUSIONS

In this work we have used the method of averaging
to investigate the dynamics of the quasiperiodic Mathieu
equation (1). Using the ergodic theorem, we showed that
a necessary and su�cient condition for Equation (1) to be
stable is that the resulting slow 
ow, called the abc equation
(17), must not possess a limit cycle. We used KAM theory
to show that the abc equation (17) exhibited a dense set
of points in the ab parameter plane from which instability
arises via Arnold tongues. See Figure 1. This result sup-
plements previous work (Zounes and Rand, 1998) in which
it was shown that as the order of the perturbation method
increased, the number and density of instability regions in-
creased.

Comparison of the analytical results obtained from
the abc equation (17) with numerical integration of the
quasiperiodic Mathieu equation (1) shows good agreement
for � = 0:1, cf. Figures 2 and 3. These �gures also show
that for small � most of the instability regions (for n > 1)
are very small, to the point of being too thin to be seen in
Figures 2 and 3. In addition, it was found that the points
on the a�axis from which the instability tongues emerge,
predicted by perturbation theory to occur at a = m

n
, actu-

ally occur (for �nite values of �) at larger values of a, cf.
Figures 2 and 3.
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APPENDIX: DEGENERATE LIMIT CYCLE

Lemma 1. If y = f (x) is a solution to Equation (17), then
y = �f (�x) is also a solution to Equation (17).

Proof. Let y = f (x) be a solution to Equation (17):

df (x)

dx
= a + b cos f (x) + c cosx; (56)

where a, b, and c are real-valued parameters. Replacing x

by �x in Equation (56) gives

df (�x)

d(�x)
= a+ b cos f (�x) + c cos(�x): (57)

Using the chain rule on the left and noting that cosine is an
even function gives

d(�f (�x))

dx
= a+ b cos(�f (�x)) + c cosx: (58)

Writing g(x) = �f (�x), Equation (58) becomes

dg(x)

dx
= a+ b cos g(x) + c cosx: (59)

Equations (17) and (59) have the same form, therefore
y = g(x) = �f (�x) is a solution to Equation (17).

Theorem 1. The degenerate limit cycle of Equation (17) has
the property that y(0) = �.

Proof. When c = 0 and 0 � a < b Equation (17)
has two limit cycles; see Equation (19). For small c, by
structural stability, we are guaranteed that two limit cycles
still exist but now for nearby values of a and b.

Consider parameter values a, b, and c such that Equa-
tion (17) has two limit cycles. Let the initial condition for
one of the limit cycles, y = f(x), be

y(0) = f (0) = A: (60)

From Lemma (1), since the limit cycle y = f(x) is a so-
lution, y = �f (�x) is also a solution. Since y = f (x) is
a periodic solution (a limit cycle), y = �f (�x) must also
be a limit cycle. Therefore, the second limit cycle has the
initial condition

y(0) = �f (0) = �A: (61)

But the vector �eld is periodic with period 2�, therefore
Equation (61) can be written as

y(0) = �A = (2� � A)mod2�: (62)

Now what happens as the parameters a, b, and c approach a
value at which the two limit cycles coalesce into a degenerate
limit cycle? Since the two limit cycles merge, their initial
conditions must also merge. Therefore from Equations (60)
and (62),

y(0) = A = 2� �A ) A = � ) y(0) = � (63)

for the degenerate limit cycle.

6 Copyright c
 1999 by ASME








