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Abstract. One of the more well-studied equations in the theory of ODEs is the Mathieu differential
equation. Because of the difficulty in finding closed-form solutions to this equation, it is often necessary

to seek solutions via Fourier series by converting the equation into an infinite system of linear equations
for the Fourier coefficients. In this paper we present results pertaining to the stability of this equation

and convergence of solutions. We also investigate ways to modify the linear-system form of the equation

in order to study a wider class of equations. Further, we provide a method in which the Mathieu
differential equation can be generalized to be defined on an infinite fractafold, with our main focus

being the fractal blow-up of the Sierpinski gasket. We discuss methods for studying the stability of

solutions to this fractal differential equation and describe further results concerning properties and
behavior of solutions.
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1. Introduction

The Mathieu differential equation, as will be defined in Section 2, takes the form
d2u
dt2

+ (δ + ε cos t)u = 0, where δ, ε ∈ R are fixed, and u : R → R. Named after French

mathematician Émile Léonard Mathieu (1835-1890), the origin of the Mathieu differential
equation stems from real-world phenomena. For example, it describes the motion of a
pendulum subject to a periodic driving force. See [21] for more details.

One topic pertaining to the Mathieu differential equation which has been much re-
searched is the stability of solutions. See [2, 10, 16, 17, 28]. Readers may also read
[21, 18] for a brief introduction to this area. Most of the existing literature concerns
the parameter space, i.e. the space of δ-ε pairs, whose choices can drastically alter the
behavior of solutions. This paper presents research results and new phenomena both on
the parameter space and on solutions.

On the other hand, another area of mathematics which has been actively researched
in recent years is analysis on fractals, based on J. Kigami’s construction of Laplacians on
post-critically finite self-similar sets. See [13, 15, 14, 22]. It is of interest to define and
study the Mathieu differential equation on fractal domains, and one suitable domain is
the infinite Sierpinski gasket developed by R.S. Strichartz [24]. Existing research on the
infinite Sierpinski gasket and on other ‘fractafolds’ be found in [12, 20, 23, 25, 26, 27].
In particular, we will use the important result concerning the spectrum of the Laplacian
on the infinite Sierpinski gasket by A. Teplyaev [27]. We will explore a way to generalize
the Mathieu differential equation to be defined on the infinite Sierpinski gasket.

This paper is organized as follows. In Section 2, we provide relevant background on
the Mathieu differential equation, give definitions which will be used throughout the
remainder of the paper, and describe some of the methods used to study the relationship
that the values of δ and ε have to the solutions of the equation; in doing so we will
discuss ‘transition curves’ and the ‘truncation method’ used to study solutions to the
Mathieu differential equation. In Section 3 we present a number of proofs for theorems
pertinent to the Mathieu differential equation and provide justification for the methods
presented in Section 2. Some of our methods and proofs are modified versions from
[1, 9]. In Section 4 we provide a discussion of computational results in studying the
Mathieu differential equation, including results related to the asymptotic behavior of
transition curves and the convergence of solutions. In Section 5 we give an overview of
the Sierpinski gasket (SG) and provide definitions of various terms in fractal analysis,
such as the fractal Laplacian and the infinite Sierpinski gasket (SG∞), to be used in
the remaining sections. In Section 6 we extend the content of Sections 2, 3, and 4 to
the fractal setting by explaining how the ‘Mathieu differential equation defined on the
real line’ can be generalized to a ‘Mathieu differential equation defined on the infinite
Sierpinski gasket.’ We describe how solutions to this generalization can be studied by
considering solutions expanded as a linear combination of eigenfunctions of the fractal
Laplacian. We also describe how the ‘truncation method’ on the line can be used to
study the Mathieu differential equation on SG∞. In Section 7 we provide computational
results and observations about the shape and asymptotic behavior of the transition curves
for the Mathieu differential equation on SG∞ and also about the behavior of solutions.
In Section 8 we describe further research that can be done on the Mathieu differential
equation and its fractal generalizations. Section 9, the Appendix, describes an alternate
approach to the ‘truncation method’ which involves partitioning Fourier coefficients into
various equivalence classes.



Cao, Coniglio, Niu, Rand, and Strichartz 3

A website for this research has been created at http://pi.math.cornell.edu/∼aac254/.
We invite the reader to visit this website, as it contains plots, graphs, data, and other
information gathered from the research.

2. Definitions and Methods

In this section we give formal definitions pertaining to the Mathieu differential equation
on the real line and then describe the main methods used to study it.

2.1. Background & Definitions. We begin by defining the Mathieu differential equa-
tion on the real line.

Definition 2.1 (Mathieu Differential Equation). The Mathieu differential equation (on
the real line) is defined as

d2u

dt2
+ (δ + ε cos t)u = 0, (2.1)

where δ, ε ∈ R are fixed and u : R→ R is unknown.

Henceforth, the abbreviation ‘MDE’ will often be used to denote ‘Mathieu differential
equation.’ Also, unless otherwise specified, the term ‘Mathieu differential equation’ (and
its abbreviation), when used in Sections 2, 3, and 4, will always refer to the MDE defined
on the real line, as opposed to the later sections which discuss the MDE as defined on a
fractal domain.

The particular values of δ and ε chosen can drastically alter the corresponding solutions
to the MDE (see [21], for example). With this in mind, we make the following definition.

Definition 2.2 (Stable and Unstable δ-ε Pairs). (a). An ordered pair (δ, ε) ∈ R2 is a
stable pair of values if every solution to the corresponding MDE remains bounded for all
t ∈ R.

(b). An ordered pair (δ, ε) ∈ R2 is an unstable pair of values if there exists a solution
to the corresponding MDE which is unbounded.

In order to understand which values of δ and ε correspond to stable pairs and which
correspond to unstable pairs, it is useful to examine the δ-ε plane given in Figure 2.1. In
this figure, the horizontal axis is the δ-axis, and the vertical axis is the ε-axis. The gray
shaded region of the plane corresponds to (δ, ε) pairs which are stable and is called the
stable region; the white region of the plane corresponds to (δ, ε) pairs which are unstable
and is called the unstable region. The solid curves and dashed curves which are either
orange or black are called the transition curves and form the boundary between the stable
region and the unstable region. The curves which share the same color (either orange or
black) and the same format (either solid or dashed) share certain properties in common
which will be discussed in Section 2.2.

There exists a systematic method for determining the stable and unstable regions shown
in Figure 2.1, which we describe in Section 2.2. A useful result regarding this method is
given in [21] as follows:

Theorem 2.3. A pair (δ, ε) lies on a transition curve for the MDE if and only if there
exists a corresponding nontrivial solution u : R → R which is periodic with period 2π or
4π.

http://pi.math.cornell.edu/~aac254/
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Figure 2.1. Stable and Unstable Regions of the δ-ε plane.

Theorem 2.3 motivates us to study the solutions to the MDE with Fourier series.

Remark 2.4. In this paper, we say f is periodic of period 2Nπ, or f is 2Nπ-periodic, if
N is the smallest positive integer such that f admits the Fourier expansion

f(t) =
∞∑
j=0

aj cos

(
j

N
t

)
+
∞∑
j=1

bj sin

(
j

N
t

)
.

2.2. Fourier Expansion and Matrix Form. Let us suppose we have a periodic solu-
tion u with period 2π or 4π to the Mathieu differential equation. In this case, we can
write the Fourier series expansion of u as

u(t) =
∞∑
j=0

aj cos

(
j

2
t

)
+
∞∑
j=1

bj sin

(
j

2
t

)
.

If we plug this Fourier series for u into the MDE, rearrange terms, and use some
trigonometric identities, we find that the function u given above solves the MDE if and
only if the two infinite systems of linear homogeneous equations shown below for the
cosine and sine coefficients are satisfied. See [18] and [21] for more details.

cosine coefficients



δa0 + ε
2
a2 = 0,(

δ −
(

1
2

)2
)
a1 + ε

2
(a3 + a1) = 0,

(δ − 1)a2 + εa0 + ε
2
a4 = 0,(

δ −
(
j
2

)2
)
aj + ε

2
(aj−2 + aj+2) = 0, (j ≥ 3),

and

sine coefficients


(
δ −

(
1
2

)2
)
b1 + ε

2
(b3 − b1) = 0,

(δ − 1)b2 + ε
2
b4 = 0,(

δ −
(
j
2

)2
)
bj + ε

2
(bj−2 + bj+2) = 0, (j ≥ 3).
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To solve these systems of equations, we consider putting them into matrix form. Read-
ers can check that the above two systems of equations are equivalent to the following four
equations in matrix form collectively, which correspond to cosine or sine coefficients with
even or odd indexes. All the matrices are tridiagonal.

For the cosine coefficients with even indexes, we have
δ ε

2

ε δ − 12 ε
2

ε
2

δ − 22 ε
2

ε
2

δ − 32 ε
2

. . . . . . . . .


︸ ︷︷ ︸

A


a0

a2

a4

a6
...


︸ ︷︷ ︸
aeven

=


0
0
0
0
...


︸ ︷︷ ︸

0

.

For the sine coefficients with even indexes, we have
δ − 12 ε

2
ε
2

δ − 22 ε
2

ε
2

δ − 32 ε
2

. . . . . . . . .


︸ ︷︷ ︸

B


b2

b4

b6
...


︸ ︷︷ ︸
beven

=


0
0
0
...

 .

For cosine coefficients with odd indexes, we have
δ − 1

4
+ ε

2
ε
2

ε δ − 9
4

ε
2

ε
2

δ − 25
4

ε
2

ε
2

δ − 49
4

ε
2

. . . . . . . . .


︸ ︷︷ ︸

C


a1

a3

a5

a7
...


︸ ︷︷ ︸
aodd

=


0
0
0
0
...

 .

For sine coefficients with odd indexes, we have
δ − 1

4
− ε

2
ε
2

ε δ − 9
4

ε
2

ε
2

δ − 25
4

ε
2

ε
2

δ − 49
4

ε
2

. . . . . . . . .


︸ ︷︷ ︸

D


b1

b3

b5

b7
...


︸ ︷︷ ︸
bodd

=


0
0
0
0
...

 .

We can solve the above four matrix equations separately. If either of the first two
equations has a nontrivial solution in `2, then the MDE has a 2π-periodic solution, since

u(t) :=
∑

j=0,2,4,6,...

aj cos

(
j

2
t

)
+

∑
j=2,4,6,...

bj sin

(
j

2
t

)
solves the MDE and is 2π-periodic, comparing with Remark 2.4. Similarly, if either the
third or fourth equations has a nontrivial solution in `2, then the MDE has a 4π-periodic
solution, since

u(t) :=
∑

j=1,3,5,...

aj cos

(
j

2
t

)
+

∑
j=1,3,5,...

bj sin

(
j

2
t

)
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solves the MDE and is 4π-periodic, also comparing with Remark 2.4. Interested readers
can also read the appendix for equations in matrix form for periodic solutions with larger
periods, say 2Nπ with N an arbitrary positive integer.

Now we return our discussion to Figure 2.1, where we plot the stable and unstable
regions. According to Theorem 2.3, the transition curves consist of (δ, ε) pairs with
nontrivial 2π- or 4π-periodic solutions. Equivalently, by the above discussion, (δ, ε) lies
on a transition curve if and only if at least one of the four equations in matrix form
discussed above has a nontrivial solution in `2. Since we develop four different equations
in matrix form, we use different colors (orange and black) and line formats (solid and
dashed) in Figure 2.1 to distinguish between the four matrix equations:

• If (δ, ε) falls on a black solid line, then the equation Ax = 0 has a nontrivial
solution.

• If (δ, ε) falls on a black dashed line, then the equation Bx = 0 has a nontrivial
solution.

• If (δ, ε) falls on an orange solid line, then the equation Cx = 0 has a nontrivial
solution.

• If (δ, ε) falls on an orange dashed line, then the equation Dx = 0 has a nontrivial
solution.

2.3. Truncation Method. In finite-dimensional linear algebra, a homogeneous matrix
system of equations Mx = 0, where M is an m ×m matrix, has a nontrivial solution if
and only if the determinant of M is zero. Although our four systems of matrix equations
above are infinite, we hope to use techniques from finite-dimensional linear algebra to
study the properties of these infinite systems.

For each infinite matrix, fix m ∈ N and consider its m×m leading principal submatrix.
Below we give the truncated matrices Am and Bm of A and B, respectively, as examples.
Cm and Dm are defined similarly.

Am =



δ ε
2

ε δ − 12 ε
2

ε
2

δ − 22 ε
2

ε
2

δ − 32 ε
2

. . . . . . . . .
ε
2

δ − (m− 1)2



Bm =



δ − 12 ε
2

ε
2

δ − 22 ε
2

ε
2

δ − 32 ε
2

ε
2

δ − 42 ε
2

. . . . . . . . .
ε
2

δ −m2


Taking the determinant of each truncated matrix yields an algebraic expression involving
δ and ε. Setting each expression equal to zero, we can then plot each equation in the
δ-ε plane and obtain a set of algebraic curves in the variables δ and ε. If we choose m
sufficiently large, the δ-ε curves derived from the truncated matrices will be very close to
the true transition curves corresponding to the infinite matrices. This statement is made
precise by Ikebe et al. in [1], and we present their results in Section 3.2.
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2.4. Backward Recursion. In addition to studying the parameter space, it is also of
interest to investigate the set of periodic solutions to the MDE. Motivated by the discus-
sions in Section 2.2, we will study the Fourier coefficients of periodic solutions. For the
computational results presented the paper, when numerically computing Fourier coeffi-
cients of solutions, instead of computing a2, a4, a6,... successively given an initial value a0

(and similarly for the other three matrix equations) using the recursion relation on Page
4, we will compute Fourier coefficients by setting initial value an0 for some large index n0

and compute an0−2, an0−4, an0−6,... successively. The former method is called the ‘forward
recursion method’, whereas the latter method is called the ‘backward recursion method.’
We choose to use the backward recursion method instead of the more commonly-used
forward recursion method due to the instability of the forward recursion method, which
will be discussed in Section 3.1. Also see [9] for more details on the backward recursion
method.

3. Three-Term Recurrence Relations and Truncations of the Infinite
Matrices

In this section, we will provide theoretical foundation for the methods we use. In doing
so we will discuss the asymptotic convergence of Fourier coefficients and provide an error
estimate for the truncation method we use for approximating the transition curves. (We
will extend these techniques to the fractal MDE in later sections.)

In this section, we work in generality by considering matrices of the form
δ − λ1 − γε α1ε

β1ε δ − λ2 α2ε
β2ε δ − λ3 α3ε

β3ε δ − λ4
. . .

. . . . . .

 , (3.1)

where αj, βj, λj ∈ R for j ≥ 1, and γ ∈ R; further, we assume that {αj}∞j=1 and {βj}∞j=1

are bounded sequences and that limj→∞ λj = ∞. Note that matrices A,B,C, and D as
defined in Section 2.2 are special cases of (3.1). In addition, we always assume αj, βj 6= 0,
for all j ≥ 0, in this section. We will consider equations of the form

δ − λ1 − γε α1ε
β1ε δ − λ2 α2ε

β2ε δ − λ3 α3ε

β3ε δ − λ4
. . .

. . . . . .




c1

c2

c3

c4
...

 =


0
0
0
0
...

 , (3.2)

where c = (c1, c2, · · ·)T ∈ `2 :=
{

(x1, x2, ...)
T :
∑∞

j=1 |xj|
2 <∞

}
is a real sequence.

3.1. Asymptotic Behavior of {cj}∞j=1. Three-term recurrence relations (TTRRs) and
difference equations have been well-studied throughout the last century. Since (3.2)
naturally gives a TTRR,{

(δ − λ1 − γε)c1 + α1εc2 = 0,

βj−1εcj−1 + (δ − λj)cj + αjεcj+1 = 0, for j ≥ 2,
(3.3)
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we can use existing theorems to study the asymptotic behavior of the sequence {cj}∞j=1

as j →∞. Below we first present the well-known Poincaré Theorem (see [9]), also called
the Poincaré-Perron Theorem, which describes the asymptotic behavior of solutions to
general TTRRs, and then we will see how the theorem applies to the equations above.

Theorem 3.1 (Poincaré-Perron Theorem, [9]). For j ≥ 1, let cj+1+bjcj+ajcj−1 = 0 with
limj→∞ bj = b and limj→∞ aj = a. Let t1 and t2 denote the zeros of the characteristic
equation t2 + bt + a = 0. Then, if |t1|6= |t2|, the difference equation has two linearly
independent solutions {xn} and {yn} satisfying

lim
j→∞

xj
xj−1

= t1, lim
j→∞

yj
yj−1

= t2.

If |t1|= |t2|, then

lim sup
j→∞

|cj|
1
j = |t1|

for any nontrivial solution {cj} to the recurrence relation.

With this theorem in mind, we consider the TTRR

fjcj+1 + djcj + gj−1cj−1 = 0 (j ≥ 1), (3.4)

where {fj} and {gj} neither of which contains 0 as one of its terms, are uniformly
bounded, and where |dj|→ ∞ as j →∞. Notice that, with our assumptions, the solution
of Equation 3.4 is uniquely determined by specifying the first two terms c1 and c2. We can
derive the following proposition from the Poincaré-Perron Theorem, adapting its proof
directly from the proof of the Poincaré-Perron Theorem in [9].

Proposition 3.2. Assume {fj} and {gj}, neither of which is equal to the zero sequence,
are uniformly bounded, and assume that |dj|→ ∞ as j →∞. Then the TTRR (3.4) has
two linearly independent solutions {xj} and {yj} satisfying

xj
xj−1

∼ −gj−1

dj
,

yj
yj−1

∼ −dj−1

fj−1

.

Proof. The proof is modified directly from the proof for the Poincaré-Perron Theorem
in [9]. For convenience, we assume dj 6= 0 for any j, since otherwise we can consider the

TTRR defined for j ≥ M for some large M . Let ĉj =
(∏j−1

i=1
fi
di

)
cj. Then the TTRR

becomes

ĉj+1 + ĉj +
fj−1gj−1

dj−1dj
ĉj−1 = 0.

By the Poincaré-Perron theorem, there exists a pair of linearly independent solutions of
this new recurrence, {x̂j} and {ŷj}, satisfying

lim
j→∞

x̂j
x̂j−1

= 0, lim
j→∞

ŷj
ŷj−1

= −1.

For j sufficiently large, x̂j does not vanish. Indeed, if x̂j0 = 0 for some j0 ∈ N then

the TTRR implies
x̂j0+2

x̂j0+1
= −1, which cannot happen if j0 were sufficiently large (since
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x̂j
x̂j−1
→ 0). Similarly, for j sufficiently large ŷj does not vanish, for if ŷj0 = 0 for some

j0 ∈ N then
ŷj0
ŷj0−1

= 0, which cannot happen for j0 sufficiently large (since
ŷj
ŷj−1
→ −1).

Let H
(1)
j = x̂j/x̂j−1 and H

(2)
j = ŷj/ŷj−1. Then

H
(i)
j+1H

(i)
j +H

(i)
j +

fj−1gj−1

dj−1dj
= 0, i = 1, 2.

Multiplying each side by H
(l)
j , l 6= i, we get{

H
(1)
j+1H

(1)
j H

(2)
j +H

(1)
j H

(2)
j +

fj−1gj−1

dj−1dj
H

(2)
j = 0,

H
(2)
j+1H

(2)
j H

(1)
j +H

(1)
j H

(2)
j +

fj−1gj−1

dj−1dj
H

(1)
j = 0.

Subtracting one equation from the other, we obtain

H
(1)
j H

(2)
j

(
H

(1)
j+1 −H

(2)
j+1

)
=
fj−1gj−1

dj−1dj

(
H

(1)
j −H

(2)
j

)
.

So, since

H
(1)
j ∼ 0 and H

(2)
j ∼ −1,

we have

H
(1)
j =

fj−1gj−1

dj−1dj

1

H
(2)
j

H
(1)
j −H

(2)
j

H
(1)
j+1 −H

(2)
j+1

∼ −fj−1gj−1

dj−1dj
.

Therefore,

xj
xj−1

=

(∏j−1
i=1

di
fi

)
x̂j(∏j−2

i=1
di
fi

)
x̂j−1

= H
(1)
j

dj−1

fj−1

∼ −gj−1

dj
,

and

yj
yj−1

=

(∏j−1
i=1

di
fi

)
ŷj(∏j−2

i=1
di
fi

)
ŷj−1

= H
(2)
j

dj−1

fj−1

∼ −dj−1

fj−1

. �

Let {zj} be an arbitrary solution to the TTRR 3.4. We say {zj} is a minimal solution
of the TTRR if it obeys

zj
zj−1
∼ −gj−1

dj
, and we say {zj} is a dominant solution of the

TTRR if it satisfies
zj
zj−1
∼ −dj−1

fj−1
. Note that limj→∞ zj = 0 if {zj} is a minimal solution

and limj→∞ zj =∞ if {zj} is a dominant solution.
We can apply Proposition 3.2 to study Equation 3.3, since Equation 3.3 consists of an

equation for c1, c2 and a TTRR of the form 3.4.

Corollary 3.3. Assume ε 6= 0.
(a). Equation 3.2 has a unique solution up to multiplication by a constant.
(b). Let c = (c1, c2, c3, ...)

T be a nontrivial solution to Equation (3.2). If c ∈ `2, then

cj will decay with the asymptotic behavior
cj
cj−1
∼ βj−1ε

λj−δ . If c /∈ `2, then cj will diverge

with the asymptotic behavior
cj
cj−1
∼ λj−1−δ

αj−1ε
.
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Proof. It is equivalent to studying Equation 3.3.
(a). Given c1 ∈ R, we can solve c2, c3, · · · inductively, which gives us a solution to

Equation 3.3. In this way, any solution to Equation 3.3 is uniquely determined by c1.
(b) Any solution c = {cj}∞j=1 can be written as a linear combination of {xj} and {yj}

as given in in Proposition 3.2, and hence there exist p, q ∈ R such that cj = pxj + qyj
for all j. Note that if q 6= 0 then {zj} is a dominant solution, and if q = 0 then {zj} is a
minimal solution.

If {cj} ∈ `2 then limj→∞ cj = 0 and thus {cj} cannot be a dominant solution; thus, we

must have p = 0 and hence
cj
cj−1
∼ βj−1ε

λj−δ . On the other hand, if {cj} /∈ `2 then p 6= 0 and

hence
cj
cj−1
∼ λj−1−δ

αj−1ε
.

�

Corollary 3.3 shows that there is a sharp contrast between the two possible types of
behavior that a solution to Equation (3.2) can have. Since {αj} and {βj} are bounded se-
quences, when (δ, ε) are fixed and properly chosen any solution {cj} to (3.2) will converge
to 0 very rapidly; otherwise, all nontrivial solutions will tend to infinity very fast.

If c1 ∈ R is an initial value which corresponds to a minimal solution, Proposition 3.2
shows that numerically computing the solution with the forward recursion method is un-
stable, since a small error in computation will lead to a dominant solution, in which {cj}
explodes. On the other hand, the backward recursion method can give a good approxi-
mation for a minimal solution. In [9], detailed discussions are given on this method, as
well as a corresponding error estimate. We briefly state the result here.

Proposition 3.4 ([9]). Fix a large N , and set cN+1 = 0, cN = 1. Compute cN−1, cN−2, · · · , c1

one-by-one backward with TTRR (3.4). If {xk} is an arbitrary minimal solution and {yk}
is an arbitrary dominant solution, then {cj} satisfy

ck
ck−1

(
xk
xk−1

)−1

− 1 =
rN
rk−1

· 1− rk/rk−1

1− rN/rk−1

,

where rk = xk
yk

and 1 ≤ k ≤ N .

3.2. The Truncation Method. In this part, we introduce the truncation method for
determining which (δ, ε) pairs yield nontrivial solutions of (3.2). We start from the
observation
δ − λ1 − γε α1ε

β1ε δ − λ2 α2ε
β2ε δ − λ3 α3ε

β3ε
. . . . . .
. . .

 = δI −


λ1 + γε −α1ε
−β1ε λ2 −α2ε

−β2ε λ3 −α3ε

−β3ε
. . . . . .
. . .


= δI − T (ε),

where I is the identity matrix and the shorthand notation T (ε) is used in the last equality.
Clearly, for a fixed ε, equation (3.2) has nontrivial solutions if and only if δ is an eigenvalue
of T (ε).

The eigenvalue problem for infinite tridiagonal matrices has been widely studied. In
[1], there is a result on the error between eigenvalues of the truncated matrices and those
of the corresponding infinite matrix. We state the result in Theorem 3.5 below.
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Here we consider the infinite symmetric tridiagonal matrix T of the form

T =


d1 f1

f1 d2 f2

f2 d3 f3

f3
. . . . . .
. . .

 ,

where dn →∞ as n→∞ and {fn} bounded. Denote its n× n truncation by Tn, i.e.,

Tn =


d1 f1

f1 d2 f2

. . . . . . . . .

fn−1 dn

 .

Theorem 3.5. ([1]) Let T and Tn (n ≥ 1) be given as above.
(a). T has pure point spectrum.
(b). If δ is a given simple eigenvalue of T , then there exists, for each n ∈ N, an eigenvalue
ln of Tn such that the sequence {ln}∞n=1 satisfies ln → δ as n→∞. For any such sequence
the error is given by

ln − δ =
fn+1cncn+1

cTc
(1 + o(1)),

where c = (c1, c2, · · ·)T ∈ `2 is an eigenvector corresponding to δ.

We can extend the above result to nonsymmetric tridiagonal matrices.

Theorem 3.6. Let T be an infinite tridiagonal matrix of the form

T =


d1 f1

g1 d2 f2

g2 d3 f3

g3
. . . . . .
. . .

 ,

where dn →∞ as n→∞, and {fn}∞n=1 and {gn}∞n=1 are bounded, positive, and nonzero.
Let Tn be the n × n truncation of T . If δ is a given simple eigenvalue of T , then there
exists, for each n ∈ N, an eigenvalue ln of Tn such that the sequence {ln}∞n=1 satisfies
ln → δ as n→∞. For any such sequence the error is given by

ln − δ =

√
fn+1gn+1cncn+1∑∞

j=1 κjc
2
j

(1 + o(1)),

where κj :=
√∏j−1

i=1
gi
fi

and where c = (c1, c2, · · ·)T ∈ `2 is an eigenvector corresponding

to δ.

Proof. (a) Let

T ′ =


d1

√
f1g1√

f1g1 d2

√
f2g2√

f2g2 d3

√
f3g3

√
f3g3

. . . . . .

. . .

 .
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We observe that

T =


κ1

κ2

κ3

. . .

 · T ′ ·

κ−1

1

κ−1
2

κ−1
3

. . .

 .

It is clear that T ′ is a self-adjoint operator from `2 to `2 with pure point spectrum by
Theorem 3.5.

Let

c′ = diag(κ−1
1 , κ−1

2 , · · ·)c = (κ−1
1 c1, κ

−1
2 c2, · · ·)T ,

where c = (c1, c2, · · ·)T . Clearly, the eigenvalue equation (δI − T )c = 0 holds if and only
if (δI − T ′)c′ = 0 in a pointwise sense, where I is the identity transformation.

In addition, from Corollary 3.3 we deduce that there is a one-to-one correspondence
between eigenvectors of T and T ′ in `2. Indeed, if c is an eigenvector of T in `2, we have
c′j
c′j−1

=
κ−1
j cj

κ−1
j−1cj−1

∼ −
√
fj−1gj−1

dj
because

cj
cj−1
∼ −gj−1

dj
by Corollary 3.3, which implies c′ is

an eigenvector of T ′ in `2, and for the same reason if c′ ∈ `2 is an eigenvector of T ′ then
c = diag(κ1, κ2, · · ·)c′ is an eigenvector of T in `2.

Now, using Theorem 3.5 we deduce that there is a sequence of eigenvalues of the
truncated T ′n that converges to the eigenvalue δ of T ′ and hence of T , since T and T ′

have the same eigenvalues. In addition, noticing that, for each n ∈ N, Tn has the same
eigenvalue as T ′n, we see that there is a sequence of eigenvalues of Tn which converges to
δ. Lastly, the error estimate comes by applying Theorem 3.5 to T ′ with the eigenvector
c′ = diag(κ−1

1 , κ−1
2 , · · ·)c. �

4. Observations and Analysis for the Mathieu Differential Equation on
the Line

The Mathieu differential equation has been an important topic in differential equations
due to its numerous real-world applications. However, most of the existing work on the
MDE focuses on theoretical analysis of the stable and unstable regions of the δ-ε plane,
such as the asymptotic behavior of the transition curves, and there has not been much
computational work done on the stability curves as well as on the solutions to the Mathieu
differential equation. In this section, in addition to describing some of our theoretical
results, we will explain our computational results on the intricate shape of the δ-ε curves
and on the converging behavior of the solutions.

4.1. The δ-ε Plot. In this part, we use the truncation method introduced in Section 2
and Section 3 to study the δ-ε curves in more detail.

As discussed above, the transition curves are found via 2π-periodic and 4π-periodic
Fourier expansions of solutions. However, one might wonder what the curves would be
if the same process is undertaken for Fourier expansions of larger periods, say periods
8π, 16π, 32π, .... The answer is that curves corresponding to expansions of larger periods
in fact ”fill in” the stable regions whose boundary is obtained using the 2π- and 4π-
periodic expansions. See Figure 4.1 for an illustration.

In fact, this “fill in” property remains valid for even larger periods, and a proof is given
below.
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Figure 4.1. Curves corresponding to expansions of larger periods: curves
with 2π-periodic solutions (black solid and black dashed), curves with
4π-periodic solutions (orange solid and orange dashed), curves with 8π-
periodic solutions (red dashed) and curves with 16π-periodic solutions (blue
dashed).

Proposition 4.1. Let D be the set of δ-ε pairs such that the corresponding MDE has a
solution of period 2kπ for some k ≥ 3. Then D is dense in the stable region.

Proof. First, if (δ, ε) is a stable pair, then by the discussion given in Chapter VI of [21]
we can find two linearly independent solutions u1 and u2 of the MDE, such that(

u1(2π)
u′1(2π)

)
= ei2πθ

(
u1(0)
u′1(0)

)
,

(
u2(2π)
u′2(2π)

)
= e−i2πθ

(
u2(0)
u′2(0)

)
,

for some θ ∈ [0, 1
2
]. θ is uniquely determined by the pair (δ, ε), so we may view θ = θ(δ, ε)

as a function from the stable region to [0, 1/2].
In fact, by the Floquet Theorem, there exists a 2×2 matrix A depending only on (δ, ε)

such that, for any solution u of the MDE,(
u(t+ 2π)
u′(t+ 2π)

)
= A

(
u(t)
u′(t)

)
.

So (δ, ε) is a stable pair only if the two eigenvalues of A both have norm 1, which can
be written as ei2πθ and e−i2πθ. Readers can find details in [21]. Clearly, A depends
continuously on the parameter (δ, ε), which shows that θ = θ(δ, ε) is a continuous function
on the stable region.

Next, we fix θ0 ∈ [0, 1
2
] and ε ∈ R, and show that only countably many δ’s can be

found such that θ0 = θ(δ, ε). Recall that for each such δ we have a solution u1 to the
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corresponding MDE so that e−iθ0tu1(t) is a 2π-periodic function. We have the Fourier
series expansion e−iθ0tu1(t) =

∑∞
j=−∞ cje

ijt, which implies

u1(t) = eiθ0t
∞∑

j=−∞

cje
ijt.

Plugging this into the Mathieu differential equation, we get the following equation for
the coefficients,



. . . . . . . . .

δ − (θ0 − 2)2 ε
2

ε
2

δ − (θ0 − 1)2 ε
2

ε
2

δ − θ2
0

ε
2

ε
2

δ − (θ0 + 1)2 ε
2

. . . . . . . . .





...
c−2

c−1

c0

c1

c2
...


=



...
0
0
0
0
0
...


.

From this we can see that there are only countably many values of δ such that the
corresponding equation has a nontrivial solution {cj}∞j=−∞ ∈ {c ∈ CZ|

∑∞
j=−∞|cj|2<∞}.

Now, we prove the proposition by contradiction. Suppose D is not dense in the stable
region. Then, there is a ball in the δ-ε plane where θ does not take any dyadic rational
value, noticing that when θ is a dyadic rational the MDE has 2kπ-periodic solutions u1, u2

for some k. This means θ equals a constant θ0 on that ball, since θ is a continuous function
of (δ, ε). However, for this fixed θ = θ0, and a fixed ε in the ball, there are only count-
ably many possible values for δ, which can not fill in the ball. This gives a contradiction.�

Next we will discuss the asymptotic behavior of the stable and unstable regions. Ex-
isting works including [10], [16], and [28] cover two important observations:

(i) First, as illustrated in Figure 4.2, the width of each stable band gets thinner and
thinner as |ε| tends to ∞. In [28], it is shown that the width of the kth stable
band will decrease exponentially on |ε|≥ k2 as |ε|→ ∞.

(ii) Secondly, for each fixed ε, the width of kth unstable band becomes smaller as
k increases. An estimate is given in [2] and [10] with different methods, both
yielding

dk =
2|ε|k

2m((k − 1)! )2

(
1 + o

(
|ε|2

k2

))
,

where dk is the width of the kth unstable band with ε fixed.

Since the study of the type of convergence in the second observation is comparatively
complete, we focus on the type in the first observation, which concerns the width of the
stable band as |ε|→ ∞. In particular, we study the first ten stable bands by computing
the width of each band from ε = 0 to ε = 50 in increments of 0.1. A graph for each
stable band, plotting width vs epsilon, are shown below. Then we use the curve fitting
toolbox in MATLAB to estimate the fitting curves between ε and width in each stable
band. Please see Figure 4.3 and Figure 4.4 for the result and fitting curves.

The last topic we will discuss before moving on to talk about solutions to the MDE is
to approximate and simplify the irregular boundary between stable and unstable regions
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Figure 4.2. The width of the 5th stable band.

for practical use. We can see that most (δ, ε) pairs in the first and the fourth quadrants
which lie below by the line ε = δ and above by the line ε = −δ are stable, while most
(δ, ε) values in those quadrants outside that region form unstable pairs. For any w > 0,
let Rw := {(δ, ε) ∈ R2 : 0 < ε < w and − δ < ε < δ}. We are interested in determining
the probability, for various values of w, that a δ-ε pair is stable, given that it lies in the
triangle Rw.

So, we numerically compute the probabilities with different choices of w. Notice that
the line ε = δ (as well as the line ε = −δ) alternatively passes through stable and unstable
regions. So, we define wi to be the δ-coordinate of the point of intersection between the
line ε = δ and the right boundary of the i-th unstable region; also, for each i, we define
Pi to be the probability that a δ-ε pair is stable, given that it is in Rwi

. Readers can see
figure 4.5 for an illustration of how we divide the regions into triangles.
Pi can also be considered as the probability of getting a stable (δ, ε) pair within the

triangular regions, which can characterize how well the irregular boundaries can be ap-
proximated by lines ε = ±δ. We list the Pi, 1 ≤ i ≤ 18 in Table 1.

In addition, we also obtain a surprisingly good fitting curve of the form Pi = ai+b
i+c

, with
a = 0.9938, b = −0.1424, c = 0.3608. See figure 4.6 for details.

4.2. Solutions of the Mathieu Differential Equation. Now we discuss the periodic
solutions for the Mathieu differential equation. In Corollary 3.3, we showed that the
sequence {cj} of Fourier coefficients to periodic solutions corresponding to δ-ε pairs on the
transition curves converge rapidly. Hence, given a δ-ε pair on a transition curve, we can
calculate explicitly the coefficients of the corresponding solution with a finite truncation
of the Fourier series and use those coefficients to plot, with very high accuracy, solutions
to the MDE.

One question one might investigate is as follows. Suppose one fixes a transition curve
and considers periodic solutions corresponding to various (δ, ε) points along that transi-
tion curve. How do properties of solutions change as ε varies?

To be more precise, we need some new notation. Recall from Section 2.2 that, when
solving 2π- or 4π- periodic solutions, we can rewrite the MDE as a system of linear
equations for Fourier coefficents, which collectively can be rewritten as four independent
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Fitting curve of the form: a
b+ecx

.

1st stable band, a = 0.2278, b = −0.09431, c = 1.994

2nd stable band, a = 1.390, b = 0.8504, c = 1.24

3rd stable band, a = 6.045, b = 3.674, c = 0.9081

4th stable band, a = 20.17, b = 2.507, c = 0.6972

5th stable curve, a = 56.06, b = 23.20, c = 0.5527

Figure 4.3. The width of first 5 stable bands.
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Fitting curve of the form: a
b+ecx

.

6th stable band, a = 136.8, b = 12.38, c = 0.4496

7th stable band, a = 303.0, b = 20.39, c = 0.374

8th stable band, a = 623.9, b = 164.2, c = 0.3168

9th stable band, a = 1212, b = 283.9, c = 0.2726

10th stable curve, a = 2248, b = 473.9, c = 0.2377

Figure 4.4. The width of 6th-10th stable bands.
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(a) Rw1
(b) Rw2

(c) Rw3 (d) Rw4

Figure 4.5. The triangle area corresponding to Rw1 , Rw2 , Rw3 , and Rw4 .
The green area is the stable region, and shaded area is the unstable region.

homogeneous matrix equations, with corresponding matrices A,B,C,D. The transition
curves consist of the δ-ε pairs such that one of these matrices degenerates. In this way,
a transition curve can be labeled with a matrix and an integer k ≥ 1, so that for each
δ-ε pair on this transition curve, δ is the kth smallest real number such that the matrix
degenerates with the fixed ε. We want a more convenient way to label these transition
curves, and to achieve this, we proceed as follows. Fix a transition curve, let ε = 0 on
the transition curve, and solve the corresponding equation in matrix form. According to
the discussion in Section 2.2, we can then construct a periodic solution to the MDE, and
the solution is clearly an eigenfunction of d2

dt2
. For example, if we consider the transition

curve labeled by A and k = 2 we will get cos t as a solution with the above process. In
this way, a transition curve can be labeled with an eigenfunction of d2

dt2
. In light of this,

we define p(ϕ, ε) to be the point in the δ-ε plane with prescribed ε-coordinate which lies
on the transition curve corresponding to the eigenfunction ϕ.
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Table 1. The probability Pi’s.

i Pi
1 0.625056436387445
2 0.784428425813594
3 0.845139663995868
4 0.878143787704672
5 0.899154589232086
6 0.913800056779179
7 0.924632580597566
8 0.932988858616457
9 0.939640860147421
10 0.945067300763657
11 0.949581603650156
12 0.953397960289362
13 0.956667925443240
14 0.959502140424685
15 0.961982968671620
16 0.964174006346465
17 0.966133547589692
18 0.967239011961280

Figure 4.6. Probabilities Pi and the fitting curve.

As shown in Section 2, the transition curves can be organized into four different classes,
made up of points {p(sin kt, ε)}, {p(cos kt, ε)}, {p(sin 2k+1

2
t, ε)}, {p(cos 2k+1

2
t, ε)} with our

new notation. It is natural to study them separately.
First we consider the class {p(sin kt, ε)}. Because of the symmetry of the transition

curves across the δ-axis, it suffices to only consider positive values of ε. In fact, if u is a so-
lution corresponding to the pair (ε, δ), then u(t+π) is a solution corresponding to the pair
(−ε, δ) since − cos t = cos(t+π). The normalized solutions are plotted in Figures 4.7-4.9,
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where by ‘normalized solution’ we mean a solution u for which maxt∈R u(t) = 1. In plot-
ting the graphs we have used the particular values k = 1, 2, 3 and ε = 5, 10, 20, 40, 80, 160.
15× 15 truncated matrices are used to compute the solutions. The horizontal axis is the
t-axis, and the vertical axis is the u-axis.

Figure 4.7. Normalized solutions corresponding to p(sin t, 0) (solid
black), p(sin t, 5) (red), p(sin t, 10) (orange), p(sin t, 20) (green), p(sin t, 40)
(blue), p(sin t, 80) (purple).

Figure 4.8. Normalized solutions corresponding to p(sin 2t, 0) (solid
black), p(sin 2t, 5) (red), p(sin 2t, 10) (orange), p(sin 2t, 20) (green),
p(sin 2t, 40) (blue), p(sin 2t, 80) (purple).

Figure 4.9. Normalized solutions corresponding to p(sin 3t, 0) (solid
black), p(sin 3t, 5) (red), p(sin 3t, 10) (orange), p(sin 3t, 20) (green),
p(sin 3t, 40) (blue), p(sin 3t, 80) (purple).

An interesting pattern can be observed from Figure 4.7. The sequence of t-coordinates
of these maximal points appears to approach 0 monotonically as ε increases. Figures 4.8
and 4.9 show the same behavior as well.

We now use curves to fit a curve of the t-coordinate of these relative maxima in [0, π]
as a function of ε. We still pick the same three transition curves, and take ε from 1 to
200, in increments by 1. The relationship of t coordinate of maximal points and ε on the
three curves are shown in figure 4.10, and the fitting curve is of the form t = aε+b

ε2+cε+d
.

For the case of p(sin 2t, ε) and p(sin 3t, ε), does the same convergence behavior occur if
one considers the sequence of the first minima when t > 0? We also do the computation,
and show the results in figure 4.11, where the same kind of fitting curve also works.
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t-position of maximal point on curve p(sin t, ε), with
a = 3.031, b = 5.736, c = 10.18, d = 14.88.

t-position of maximal point on curve p(sin 2t, ε), with
a = 10.31, b = 22.8, c = 17.43, d = 29.09.

t-position of maximal point on curve p(sin 3t, ε), with
a = 432.5, b = 1345, c = 607.2, d = 1257.

Figure 4.10. t-position of maximal points, with fitting curve t = aε+b
ε2+cε+d

.

In case of p(sin 3t, ε), the same observation applies to the second maxima when t > 0.
See figure 4.12 for details.

One can also consider the behavior of the u-coordinate of these various sequences of
local extrema. See figure 4.13 for the behavior of u-coordinate of the first minimal points
on the curve p(sin 2t, ε), where we can fit the points well with a rational function of the

form aε2+bε+c
ε2+bε+c

.
For the curve p(sin 3t, ε), there are three local extremes on each solution, and we also

do the computation for the u-coordinate for the first minimal and the second maximal
value. The fitting curve is a little more complicated, of the form t = aε3+bε2+cε+d

ε3+dε2+eε+g
. See

figure 4.14.
Next, we turn to the solutions on curves p(cos kt, ε), and we do experiments for k =

0, 1, 2. Please look at figure 4.15,4.16,4.17 for the results.
We can see that the shapes of these curves are different from those in figure 4.7 4.8,4.9.

The first curve p(cos 0t, ε) is of course very special, as it corresponds to the constant
functions. It turns out the solution is always positive on this curve, as a consequence of
Sturm’s Theorem [17]. Also, we have the minimal values of the solutions at π, see figure
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t-position of the second maximal point on curve p(sin 2t, ε), with
a = 2.272, b = 4.602, c = 12.75, d = 19.84.

t-position of the second maximal point on curve p(sin 3t, ε), with
a = 710.8.5, b = 1894, c = 5324, d = 1.045× 104.

Figure 4.11. t-position of the second maximal points, with fitting curve
t = aε+b

ε2+cε+d
.

Figure 4.12. t-position of the third maximal points on curve p(sin 3t, ε),
with fitting curve t = aε+b

ε2+cε+d
, a = 9.567, b = 23.07, c = 22.86, d = 40.46.

Figure 4.13. u-position of the second maximal points on curve p(sin 2t, ε),

with fitting curve t = aε2+bε+c
ε2+dε+e

. a = 0.8393, b = −0.5638, c = 5.566, d =
−0.1973, e = 5.571.

4.18 for the minimal values for different choices of ε. We use a fitting curve of the form
u = aε+b

ε2+cε+d
.
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u-position of the second maximal point on curve p(sin 3t, ε), with
a = 0.7784, b = −3.71, c = 21.57, d = 150, e = −3.899, f = 30.57, g = 149.9.

u-position of the third maximal point on curve p(sin 3t, ε), with
a = 0.8166, b = −4.106, c = 20.44, d = 136.9, e = −4.234, f = 25.11, g = 136.8.

Figure 4.14. u-position of the second and third maximal points corre-
sponding to curve p(sin 3t, ε), with fitting curve u = aε3+bε2+cε+d

ε3+eε2+fε+g
.

Figure 4.15. Normalized solutions corresponding to p(cos 0t, ε), with ε =
0, 1, 2, 3, 4, 5, 10, 20, 40, 80, 160.

Figure 4.16. Normalized solutions corresponding to p(cos t, ε), with ε =
0, 1, 2, 3, 4, 5, 10 in the left graph, and ε = 10, 20, 40, 80, 160 in the right
graph.

The solutions on the second curve is a little more complicated. As shown in figure 4.16,
we can see that minimal value is achieved at t = π in [0, 2π] for ε = 0 and ε = 1, but
as ε becomes larger, the minimum point splits into two different minimum points. This
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Figure 4.17. Normalized solutions corresponding to p(cos 2t, ε), with ε =
0, 1, 2, 3, 4, 5, 6 in the left, and ε = 6, 7, 8, 9, 10, 20, 30, 40, 60, 80, 100, 160 in
the right.

Figure 4.18. The u coordinate of minimum points of solutions for points
p(cos 0, ε), with ε = 0, 1, · · · , 200. Fitting curve u = aε+b

ε2+cε+d
, with a =

−0.02171, b = 0.2895, c = 0.2289, d = 0.2895.

is an interesting phenomenon, and we have an explanation for this in Theorem 4.4. We
do computations on the t-coordinate of the minimum points as ε gets larger. Please see
figure 4.19 for the data, and we use a fitting curve of the form t = aε+b

ε2+cε+d
.

Figure 4.19. The t coordinate of minimum points of solutions for points
p(cos t, ε), with ε = 2, · · · , 200. Fitting curve y = aε+b

ε2+cε+d
, with a =

241, 9, b = 1284, c = 310.8, d = 177.1.

Another thing we need to highlight here is that the maximal absolute value does not
occur at 0 or π, but at some other points. So, as usual, we normalize the solutions so
that their minimum value are −1, and we compute values of solutions at the two other
local peaks at 0 and π, which is shown in figure 4.20. It is also interesting to see in figure
4.21 that the local maximal value at 0 drop rapidly near ε = 0, and then increase quickly.

The solutions on the curve p(cos 3t, ε) is even more complicated. Still, we observe
the split of one peak. When ε = 0, 1, 2, 3, 4, 5, we only see one maximum point, but as ε
becomes larger, we see two maximum points. We also do computation on the t coordinate
of one of these splited maximum point. See figure 4.22 for the computation result, where
we use fitting curves of the form t = aε2+bε+c

ε2+dε+e
.
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Figure 4.20. The u coordinate of minimum points of solutions for points
p(cos t, ε), with ε = 0, 1, 2, · · · , 200. Fitting curve u = aε2+bε+c

ε2+dε+e
, with a =

0.8687, b = −1.631, c = 0.8498, d = −1.72 and e = 0.8497.

Figure 4.21. The u coordinate of minimum points of solutions for points
p(cos t, ε), with ε = 0, 1, 2, · · · , 200. Fitting curve u = aε+b

ε2+cε+d
, with a =

0.2495, b = −4.991, c = −3.037, d = 6.722.

Figure 4.22. The t coordinate of maximum points of solutions for points
p(cos 2t, ε), with ε = 5, 6, · · · , 200. Fitting curve t = aε2+bε+c

ε2+dε+e
, with a =

0.5572, b = 88.5, c = −3.009, d = 55.35 and e = −157.7.

We also do experiment on the t coordinate of the first minimum points and the u-
coordinate of the peaks on the curve p(cos 2t, ε).

Figure 4.23. The t coordinate of the second peak of solutions for points
p(cos 2t, ε), with ε = 5, 6, · · · , 200. Fitting curve t = aε2+bε+c

ε3+dε2+eε+f
, with

a = 269.3, b = 4745, c = −9715, d = 641.3, e = −2040 and f = −6017.
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Figure 4.24. The t coordinate of the second peak of solutions for points
p(cos 2t, ε), with ε = 1, 2, · · · , 200. Fitting curve t = aε3+bε2+cε+d

ε3+eε2+fε+g
, with

a = 0.7931, b = −4.642, c = 6.596, d = 13.45, e = −− 5.508, f = 9.829 and
g = 13.44.

Figure 4.25. The t coordinate of the second peak of solutions for points
p(cos 2t, ε), with ε = 1, 2, · · · , 200. Fitting curve y = aε2+bε+c

ε2+eε+f
, with a =

−0.006875, b = 0.7009, c = −8.537, d = −2.457, e = 8.857.

Figure 4.26. The t coordinate of the second peak of solutions for points
p(cos 2t, ε), with ε = 5, 6, · · · , 200. Fitting curve y = aε2+bε+c

ε3+dε2+eε+f
, with

a = 0.2268, b = −25.1, c = 587.7, d = 4.775, e = −156 and f = 1002.

4.3. Explanation on the Behavior of the Solutions. Before the end of this section,
we give a proof on the convergence of the t-coordinates of the peaks. This interesting
point is that the behaviors are closely related to the asymptotic behavior of the transition
curves, i.e. how δ behaves as ε increases to ∞. There are several works on this problem,
and here we refer [17] for one version. Readers can find other dicussions in [28].

Theorem 4.2 (W.S. Loud). For fixed ε > 0, let δ be the kth smallest value on the
transition curves. Then we have

δ = −ε+ (k − 1

2
)
√

2ε+O(ε1/2),

as ε→ +∞.
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Figure 4.27. Normalized solutions corresponding to p(sin 1
2
t, ε), with ε =

0, 1, 2, 3, 4, 5, 10, 20, 40, 80, 160.

Figure 4.28. Normalized solutions corresponding to p(sin 3
2
t, ε), with ε =

0, 5, 10, 20, 40, 80, 160.

Figure 4.29. Normalized solutions corresponding to p(cos 1
2
t, ε), with ε =

0, 1, 2, 3, 4, 5, 10, 20, 40, 80, 160.

Figure 4.30. Normalized solutions corresponding to p(cos 3
2
t, ε), with ε =

0, 1, 2, 3, 4, 5, 10, 20, 40, 80, 160.

Notice that in the above theorem, we fix a transition curve and let ε → ∞, which is
exactly the way we study the behavior of the solutions. Now, we apply the theorem to
derive some interesting facts that we have observed in our experiments.

Lemma 4.3. For fixed ε > 0, let δ be the kth smallest value on the transition curves,
and u be a nontrivial periodic solution for the corresponding MDE. Then, for large ε > 0,
there is no local extremum of u in [cε, π) where cε ∼ ε−1/4.
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Proof. Let cε be the zero of δ + ε cos t in (0, π), where theorem 4.2 guarantee the
existence of cε when ε is large. In addition, we have the estimate by using Taylor expansion
of cos t locally at 0,

lim
ε→∞

cε
ε1/4

= (2k − 1)
1
2 2

3
4 .

We will show u′(t) 6= 0 on [cε, π), which immediately implies the lemma.
First, we show there is no t ∈ [cε, π) such that u(t)u′(t) > 0, by contradiction. Without

loss of generality, we assume u(t0) > 0 and u′(t0) > 0 for some t0 ∈ [cε, π). Then we
can show that u(t) > 0, u′(t) > 0 for any t ∈ [t0, π]. If this is not true, we can take
t1 = inf{t ∈ [t0, π] : u(t) ≤ 0 or u′(t) ≤ 0}, then u(t) and u′(t) are both increasing on
[t0, t1] as {

d
dt
u = u′,

d
dt
u′ = −(δ + ε cos t)u,

where −(δ + ε cos t) > −(δ + ε cos cε) = 0 on (cε, π). As a consequence, u(t1) > 0 and
u′(t1) > 0, which contradicts the definition of t1, noticing that both u, u′ are continuous.
As a result, we see that u(t) > 0, u′(t) > 0 for any t ∈ [t0, π]. On the other hand, u satisfies
the boundary condition u(π) = 0 or u′(π) = 0, since u takes a Fourier series expansion
in one of the following forms (see [21]):

∑∞
j=0 cj cos jt,

∑∞
j=1 cj sin jt,

∑∞
j=0 cj cos 2j+1

2
t or∑∞

j=0 cj sin 2j+1
2
t. This gives a contradiction.

Using the above observation, we can see u′(t) 6= 0 for any t ∈ [cε, π). Otherwise, if
u′(t) = 0 for some t ∈ [cε, π), we should have u(t) 6= 0, so that u(t + h)u′(t + h) > 0 for
some small h > 0. �

Theorem 4.4. (a). Consider a fixed transition curve characterized by the solution u(t) =
sin kt or u(t) = cos(k+ 1

2
)t. Fix a large ε > 0, and let u be a nontrivial periodic solution.

Then, we have all the local extremums of u in
⋃
n∈Z(−cε + 2nπ, cε + 2nπ), where cε tends

to 0 as ε→∞. (cε depends on k)
(b). Consider a fixed transition curve characterized by the solution u(t) = cos kt or

u(t) = sin(k + 1
2
)t. Fix a large ε > 0, and let u be a nontrivial periodic solution. Then,

we have all the local extremums of u in πZ∪ (
⋃
n∈Z(−cε+ 2nπ, cε+ 2nπ)), where cε tends

to 0 as ε→∞. (cε depends on k)
In addition, there is a critical value α ≥ 0 given by the equation

δ − ε = 0,

where we view δ as a function of ε on a fixed transition curve. Then π is a local maximum
of |u| if 0 ≤ ε < α, and π is a local minimum of |u| is ε > α. When ε = α and the curve
is not characterized by cos 0t = 1, π is a local maximum of |u|.

Proof. (a) Lemma 4.3 shows that there are no local extremums in [cε, π). By symmetry,
we do not have local extremums in

⋃
n∈Z[cε, 2nπ + π)∪ (2nπ + π, cε]. It remains to show

(2k + 1)π, k ∈ Z are not local extremums in these cases. It is enough to show that π is
not a local extremum.

Note that for any case in part (a), a nontrivial 2π- or 4π-periodic solution u corre-
sponding to a point (δ, ε) on a transition curve is written as a sum of sines or as a sum
of cosines: u(t) =

∑∞
k=0 ak sin(kt) or u(t) =

∑∞
k=0 ak cos(k + 1

2
)t.

It is easy to see that u(π) = 0. We therefore conclude that u′(π) 6= 0, since otherwise
u would be the trivial solution. As a result, π is not a local extremum.
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(b) We only need to understand the behavior of u at π. The idea is essentially the
same as the proof of Lemma 4.3, where we look at the sign of δ + ε cos t. It is also clear
that u(π) 6= 0 and u′(π) = 0 in this case.

Notice that u′′(π) = −(δ − ε)u(π), and we set u(π) > 0 by multipling a constant, so
that we can conveniently look at the absolute value of u. If δ + ε cos π = δ − ε > 0, then
π is a local maximum of |u|; if δ − ε < 0, then π is a local minimum of |u|. For the case
that ε = δ, we can see that δ − ε cos t > 0 on (0, 2π) \ {π} except for the case δ = ε = 0,
which only happens on the curve characterized by cos 0t. So π is still a local maximum
of |u|.

In addition, δ − ε is a strictly decreasing function of ε on (0,∞), so we can find a
critical point α such that δ − ε > 0 on (0, α), and δ − ε < 0 on (α,∞). To show that
δ − ε is strictly decreasing, notice that δ is the kth smallest value such that the MDE
has a 2π- or 4π-periodic solution, which is equivalent to say that δ is the kth smallest
eigenvalue of the self-adjoint operator −∆ − ε cos t on L2(R/4πZ). Let ε > ε′ > 0, and
δ, δ′ be the corresponding eigenvalues. Then using Raleigh quotient, we get

δ′ = max
u∈Mk,ε′

〈(−∆− ε′ cos t)u, u〉L2(R/4πZ)

‖u‖L2(R/4πZ)

> max
u∈Mk,ε′

〈(−∆− ε′ cos t− (ε− ε′)(cos t+ 1))u, u〉L2(R/4πZ)

‖u‖L2(R/4πZ)

= max
u∈Mk,ε′

〈(−∆− ε cos t)u, u〉L2(R/4πZ)

‖u‖L2(R/4πZ)

− (ε− ε′)

> inf
M

max
u∈M

〈(−∆− ε cos t)u, u〉L2(R/4πZ)

‖u‖L2(R/4πZ)

− (ε− ε′) = δ − (ε− ε′),

where Mk,ε′ is the space spanned by the smallest k eigenfunctions of −∆ − ε′ cos t and
the infimum in the last line is taken over all the k dimensional subspaces of dom∆ on
R/4πZ. �

Remark. In Theorem 4.2, Lemma 4.3 and Theorem 4.4, we considered the case that
ε ≥ 0. Since − cos t = cos(t+ π), for the case that ε ≤ 0, the MDE can be rewritten as

d2

dt2
û+ (δ − ε cos t)û = 0,

with û(t) = u(t−π). We can still use Theorem 4.2, Lemma 4.3 and Theorem 4.4 to study
solutions to the MDE with coefficient ε < 0, by applying a shift of π.

5. The Sierpinski Gasket and the Fractal Laplacian

In this section we give preliminary definitions and results concerning analysis on fractals
and provide a basic introduction to the ‘infinite’ Sierpinski gasket will be given. This
serves to set up the discussion of the generalization of the MDE to the fractal setting
described in in Section 6.

5.1. Sierpinski Gasket. Consider the three contraction mappings {Fi : R2 → R2}i=0,1,2

given by 
F0(x) = 1

2
x

F1(x) = 1
2
x+

(
1
2
, 0
)

F2(x) = 1
2
x+

(
1
4
,
√

3
4

)
,
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where x ∈ R2. Then {Fi}i=0,1,2 form an ‘iterated function system’ (see page 133 of [7]).
By Theorem 9.1 in [7], there exists a unique nonempty compact set K ⊂ R2 such that
(see [11])

K =
2⋃
i=0

Fi(K).

Then K is defined to be the Sierpinski gasket, often denoted SG. See Figure 5.1.

Figure 5.1. The Sierpinski Gasket

In studying SG it is useful to use its graph approximations, constructed as follows. Let
q0, q1, and q2 be the unique fixed points of F0, F1, and F2, respectively. Define a vertex
set V0 := {q0, q1, q2} ⊂ SG. Then Fi(SG) ∩ Fj(SG) = FiV0 ∩ FjV0,for any i 6= j. We
refer to V0 as the boundary of SG. We further define vertex sets Vn ⊂ SG for n ≥ 1
inductively by Vn :=

⋃2
i=0 Fi(Vn−1) and let V∗ :=

⋃∞
n=0 Vn be the set of all vertices. Note

that V∗ is dense in SG. For an m-tuple w = (w1, w2, · · · , wm), where wj ∈ {0, 1, 2} for
each wj (1 ≤ j ≤ m), we define Fw by

Fw := Fw1 ◦ Fw2 ◦ · · · ◦ Fwm

and say that w is a word of length |w| = m. With this, an edge relation ∼m on Vm can
be introduced as follows: for x, y ∈ Vm we say x ∼m y if and only if there exists a word
w of length m and unequal indices i, j ∈ {0, 1, 2} such that x = Fw(qi) and y = Fw(qj).
This relation on Vm gives a sequence of graphs Γm approximating SG, with the vertex
set Vm and the edge set Em = {{x, y}|x ∼m y}. See Figure 5.1 for Γ0,Γ1,Γ2.

Figure 5.2. Approximating graphs Γ0,Γ1,Γ2
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5.2. Fractal Laplacian. Now we are ready to define the Laplacian on SG. Suppose
u : SG→ R. We define the level-m discrete Laplacian ∆m by

∆mu(x) :=
∑
y∼mx

(u(y)− u(x)), x ∈ Vm \ V0.

Then we define the continuous Laplacian ∆ by

∆u(x) =
3

2
lim
m→∞

5m∆mu(x), x ∈ V∗ \ V0.

If the limit above converges uniformly on V∗ \ V0 to a continuous function, we say u ∈
dom∆ . In this case, we extend ∆u to all of SG, including points not in V∗ \ V0, by
continuity (recall that V∗ \ V0 is dense in SG). The continuous Laplacian on SG is the
analog of the usual ‘second-order derivative’ on the line.

We shall mention now the the following proposition derived by O. Ben-Bassat, R.S.
Strichartz,and A. Teplyaev in [3], which will be of interest in the next section.

Theorem 5.1 (O. Ben-Bassat, R.S. Strichartz & A. Teplyaev). Let u be a nonconstant
function in dom∆. Then u2 is not in dom∆.

A function u satisfying −∆u = λu for some number λ is called an eigenfunction of ∆
with eigenvalue λ.

If a function u : SG → R satisfies u|V0= 0, then we say that u satisfies the Dirichlet
boundary condition, and the eigenvalue problem{

−∆u = λu,

u|V0= 0

is called the Dirichlet eigenvalue problem. A function u satisfying both of these equations
is called a Dirichlet eigenfunction of ∆.

Similarly, we have a notion of a ‘Neumann condition’ as follows. Define the normal
derivative ∂n(qi) for i ∈ {0, 1, 2} by

∂nu(qi) := lim
m→∞

(
5

3

)m
(2u(qi)− u(Fm

i (qi+1))− u(Fm
i (qi−1))),

where we have identified indices modulo 3.
If a function u : SG → R satisfies ∂u(qi) = 0 for i = 0, 1 and 2, then we say that u

satisfies the Neumann boundary condition, and the eigenvalue problem{
−∆u = λu,

∂u(qi) = 0, for i = 0, 1, 2

is called the Neumann eigenvalue problem. A function u satisfying both of these equations
is called a Neumann eigenfunction of ∆.

Dirichlet and Neumann eigenfunctions on SG are the analog of sine and cosine functions
on the line.
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5.3. Spectral Decimation. A method for explicitly computing all possible eigenvalues
and eigenfunctions of ∆ was introduced in [8] using a process called spectral decimation.
Below we briefly discuss some results from spectral decimation we will use. Readers can
find detailed discussion on spectral decimation in [8] and [22].

Proposition 5.2. Suppose λm 6= 2, 5, 6, and λm−1 is given by

λm−1 = λm(5− λm). (5.1)

(a) If u is a λm−1-eigenfunction of ∆m−1 on Vm−1, then it can be uniquely extended to be
a λm-eigenfunction of ∆m defined on Vm.

(b) Conversely, if u is a λm-eigenfunction of ∆m on Vm, then u|Vm−1 is a λm−1-
eigenfunction of ∆m−1 on Vm−1.

If we want to extend an eigenfunction of ∆m−1 with eigenvalue λm−1 to an eigenfunction
of ∆m using the proposition above, we have two choices, except when λm−1 = 6 (as we
will see below), in which to extend the eigenfunction:

λm =
5±

√
25− 4λm−1

2
.

For convenience, define the functions ψ+(x) and ψ−(x) by

ψ−(x) =
5−
√

25− 4x

2
, ψ+(x) =

5 +
√

25− 4x

2
.

The numbers 2, 5, 6 are called forbidden eigenvalues, and it turns out that each Dirichlet
eigenfunction of ∆ comes from a 2-, 5-, or 6-eigenfunction of ∆m0 for some m0 ≥ 0, while
all the Neumann eigenfunctions come from 5- or 6-eigenfunctions of ∆m0 for some m0 ≥ 0.
If u is a Dirichlet or Neumann eigenfunction, we call m0 the generation of birth and u|Vm0

the initial function.
Suppose u is an eigenfunction of ∆ with eigenvalue λ arising from initial eigenvalue

λm0 . Then we say that λ is a 2-series (resp., 5-series or 6-series) eigenvalue if λm0 = 2
(resp., λm0 = 5 or 6).

With a fixed generation of birth m0 and initial function f , we can extend the function
level-by-level. We can first fix a sequence {εm}∞m=1 of ±, with only finitely many −, and
then let λm = ψεm−m0

(λm−1) for m > m0 inductively. Then the function is extended to
be an eigenfunction of ∆, with the corresponding eigenvalue

λ :=
3

2
lim
m→∞

5mλm.

In fact, all the eigenfunctions with a given generation of birth and initial function can
be generated by the above recipe. Also, if the initial eigenvalue is 6, we can only choose
ε1 = +1, as ψ−(6) = 2 is a forbidden eigenvalue.

Now, suppose we fix a generation of birth m0, fix an initial function on Vm0 , and let

E = {e = {ej}Nj=1 : N ∈ N and ej ∈ {+,−}, e1 = +} ∪ ∅,

where ∅ denotes the empty sequence. Define ψe = ψe1ψe2 · · ·ψe|e| , where |e| is the length

of e. In particular, ψ∅(x) = x.
Let Ψ(x) = 3

2
liml→∞ 5lψl−(x). Then, we can deduce the following possibilities:
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1. If λm0 = 2 or 5, then all the possible eigenvalues of ∆ having generation of birth m0

are given by

λe =
3

2
lim
l→∞

5|e|+l+m0ψl−ψe(λm0)

= 5|e|+m0Ψ(ψe(λm0)), e ∈ E.

2. If λm0 = 6, then all the possible eigenvalues of ∆ having generation of birth m0 are
given by

λe =
3

2
lim
l→∞

5|e|+l+m0+1ψl−ψe(ψ+(6))

= 5|e|+m0+1Ψ(ψe(3)), e ∈ E.

Here we remark that when we use the notation λe, we always assume that we have a fixed
generation of birth m0 and initial eigenvalue λm0 .

There is a method, given by [5], in which to arrange in increasing order the set of
eigenvalues arising a fixed generation of birth and initial eigenvalue. The idea is to
translate each finite sequence in E into a binary number. The process is as follows.

Given e ∈ E of length |e|= n, let d(e) be the integer with binary (base-2) expansion
d(e) =

∑n
i=1 2n−idi(e), where

di(e) =


1, if i = 1,

1− di−1(e), if i 6= 1 and ei = +,

di−1(e), if i 6= 1 and ei = −.

In addition, we set d(∅) = 0. Then λe is the (d(e)+1)-th smallest eigenvalue. For example,
if e = (e1, e2, e3, e4, e5, e6, e7) = (+,−,+,+,+,−,−), then d(e) = d(+,−,+,+,+,−,−) =
11010002 = 104, where 11010002 is written in base-2. Thus, λe corresponding to the se-
quence e is the 105th smallest eigenvalue. Also, note that, in particular, λe=∅ is the
smallest eigenvalue, λe=(+) is the 2nd smallest eigenvalue, and λe=(+,+) is the 3rd smallest
eigenvalue. We can, of course, reverse this process so that, given an in integer d we can
find the e ∈ E corresponding to the d-th smallest eigenvalue.

Another fact is that the sequence of eigenvalues {λn,m0}∞n=1, where λ1,m0 < λ2,m0 <
λ3,m0 < λ4,m0 < ..., corresponding to a fixed generation of birth m0 and a fixed initial
eigenfunction grow according to the power law nlog 5/log 2. In addition, if we define the
eigenvalue counting function ρm0 : R+ → N to be

ρm0(x) = #{e ∈ E : λe,m0 ≤ x},

then we have the following proposition concerning the asymptotic behavior of ρm0 .

Proposition 5.3. For a fixed generation of birth m0 and fixed initial function on Vm0,
there exists a log 5-periodic continuous function g(t) such that

lim
x→∞

(
ρm0(x)

xlog 2/log 5
− g(log x)

)
= 0.

Proof. To avoid the high multiplicity of eigenfunctions corresponding to a same eigen-
value, we fix an initial eigenfunction instead of just fixing an initial eigenvalue. In our
setting, the eigenfunction is unique for each eigenvalue, so we only need to count the
number of eigenvalues.
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For convenience, we prove the proposition for generation of birth m0 and initial eigen-
value 5. For initial eigenvalue 2 and 6, the arguments are essentially the same. We will

show that
ρm0 (5nx)

2nxlog 2/log 5 converges to g(log x) uniformly on some interval [ec, 5ec) as n→∞.
First, we have the following observations.

Observation 1: For eigenvalues of generation of birth m0 and initial eigenvalue 5, if n
is fixed then we have

5−|e|λe ∈ ∪|e′|=n+1,e′∈E5m0Ψψe′([0, 5]) = ∪l∈{−,+}n5m0Ψψ+ψl([0, 5]),

for all |e|> n where ψl = ψl1 ◦ ψl2 · · ·ψln for each word l = (l1, l2, · · · , ln) ∈ {−,+}n =
{l = {lj}nj=1 : lj = + or − }.

Notice that 5−|e|λe ∈ 5m0Ψ◦ψe([0, 5]), and the fact ψ−([0, 5]) ⊂ [0, 5], ψ+([0, 5]) ⊂ [0, 5],
we have 5−|e|λe ∈ 5m0Ψ ◦ ψe1e2···en+1([0, 5]). The observation follows.

For each l ∈
⋃∞
n=0{−,+}n, we denote the endpoints of 5m0Ψψ+ψl([0, 5]) by al and

bl, i.e., 5m0Ψψ+ψl([0, 5]) = [al, bl]. By some easy computation, we can get the following
observation.

Observation 2: Assume l = (l1, l2, · · · , ln). Then

ρm0(5
kbl) = 2k−1 + 2k−n−1(1 + d(+l)− 2n) = 2k−n−1(1 + d(+l)), if k > n.

To show observation 2, we need to consider two cases. First, for any e with |e|≤ k− 1,
we have λe < 5kbl, which counts for 2k−1 eigenvalues. Second, we have 2k−n−1 eigenvalues
λe in each interval of the form 5k5m0Ψψ+ψl′([0, 5]), where l′ ∈ {+,−}n. In fact, for |e|= k,
λe ∈ 5k5m0Ψψ+ψl′([0, 5]) if and only if (e1, e2, · · · , en+1) = (+, l′1, l

′
2, · · · , l′n), and we have

2 free choices for each ej, n + 2 ≤ j ≤ k. There are d(+l) + 1 − 2n intervals in [0, bl],
noticing that bl′ ≤ bl if and only if d(+l′) ≤ d(+l). Combining the above facts, we get
the second term 2k−n−1(1 + d(+l)− 2n).

Now, fix n and consider l ∈ {−,+}n. It is easy to see that
ρm0 (5kbl)

2kb
log 2/log 5
l

converges as

k →∞, since it is a constant for k ≥ n+ 1. We denote the limit g(log bl).
Next, we look at general x. Note that we can find some constant c such that

log(5m0Ψ(ψ+([0, 5]))) ⊂ [c, c+ log 5),

since 5m0−1Ψψ+(5) < 5m0Ψψ+(0). We want to show that
ρm0 (5nx)

2nxlog 2/log 5 converges to some
function g(log x) uniformly on c ≤ log x ≤ c+ log 5 as n→∞.

In fact, if we fix n and look at bl ≤ x ≤ bl′ for some l, l′ ∈ {+,−}n such that d(+l′) =
d(+l) + 1, we have

g(log bl)

(
bl
x

)log 2/log 5

=
ρ(5kbl)

2kbl
log 2/log 5

·
(
bl
x

)log 2/log 5

=
ρ(5kbl)

2kxlog 2/log 5

≤ ρ(5kx)

2kxlog 2/log 5
≤ ρ(5kbl) + 2k−n−1

2kxlog 2/log 5
= g(log bl)

(
bl
x

)log 2/log 5

+ x− log 2/log 52−n−1,

for any k ≥ n+ 1. In addition, if ec ≤ x ≤ minl∈{+,−}n al, we have

ρm0(5
kx)

2kxlog 2/log 5
=
ρm0(5

k−1bl)

2kxlog 2/log 5
=

1

2
g(log bl)

(
bl
x

)log 2/log 5

,

where l = (−,−,−, · · ·) · · · ∈ {+,−}n. Similarly, we have for maxl∈{+,−}n bl ≤ x ≤ 5ec,

ρm0(5
kx)

2kxlog 2/log 5
=

ρm0(5
kbl)

2kxlog 2/log 5
= g(log bl)

(
bl
x

)log 2/log 5

,
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where l = (+,−,−, · · ·) ∈ {+,−}n.

The above discussions shows that
ρm0 (5nx)

2nxlog 2/log 5 converges to some function g(log x) uni-
formly on c ≤ log x ≤ c + log 5 as n → ∞. Also we can easily see that g is continusous
with g(c) = g(log 5) from the estimates. In fact, for each x, we can find a small neigh-

bourhood such that for n > k and any y in the neighborhood,
∣∣∣ ρ(5ky)

2kylog 2/log 5 − ρ(5kx)

2kxlog 2/log 5

∣∣∣ <
2−nx− log 2/log 5. The estimate obviously holds for the limit function.

We can extend g to be periodic on R, and the theorem follows immediately. �

5.4. Infinite Sierpinski Gasket. In the last part of this section, we introduce the
infinite Sierpinski gasket (SG∞). It is a particular example of fractal blow-ups introduced
in [24] by R. S. Strichartz.

Recall that the Sierpinski gasket is defined by the self-similar identity, SG =
⋃2
i=0 Fi(SG),

where each Fi is a contraction mapping R2 → R2 of contraction ratio 1
2

for i = 0, 1, 2, as
defined earlier in this section. The infinite Sierpinski gasket is constructed as follows.

Definition 5.4. Suppose a sequence K = {kn}n≥1, kn ∈ {0, 1, 2}, is fixed. Define SGM =
F−1
K,MSG, where FK,M = Fk1Fk2 · · ·FkM . Then the infinite Sierpinski Gasket SG∞ is

defined by SG∞ = ∪M≥1SGM .

The Laplacian ∆∞ on SG∞ can be defined locally with graph approximation in a same
way as on SG. In [27], a Sierpinski lattice was introduced to describe the infinite graphs
that approximate SG∞. Define

V(m) :=
∞⋃

M=1

F−1
K,MVM+m,

and say x ∼(m) y if FK,M(x) ∼m+M FK,M(y) for some M . Then the resulting infinite
graph is called a Sierpinski lattice. We can still define the discrete Laplacian on the
lattices by

∆(m)u(x) :=
∑

y∼(m)x

(u(y)− u(x)), x ∈ V(m).

Then the continuous Laplacian ∆ is defined by

∆∞u(x) =
3

2
lim
m→∞

5m∆(m)u(x), ∀x ∈ V∗ \ V0.

One of the most important results on SG∞ was A. Teplyaev’s theorem (see [27]) below
showing that the Laplacian ∆∞ on SG∞ has pure point spectrum, which means the
eigenfunctions of the Laplacian form a complete set.

Theorem 5.5 (A. Teplyaev). The Laplacian ∆∞ is self-adjoint in L2(SG∞, µ), where µ is
the Hausdoff measure on SG∞. The spectrum of ∆∞ is pure point (i.e., the eigenfunctions
of ∆∞ form a basis of L2(SG∞, µ)) and each eigenvalue has infinite multiplicity. The set
of eigenfunctions with compact support is complete in L2(SG∞, µ).

As a result of the theorem, spectral decimation still works on SG∞. Each of the
eigenfunctions of ∆∞ is an extension of an eigenfunction of ∆(m0) with eigenvalue 5 or 6
by spectral decimation. The only difference here is that the generation of birth m0 takes
values in Z instead of N. All the results concerning eigenvalues from a same generation
of birth and initial function in the previous section, including Proposition 5.3, still hold
on SG∞.
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6. Extending the Mathieu Differential Equation to Infinite Fractafolds

Now we are ready to discuss how we will define the Mathieu differential equation on
an infinite fractafold.

6.1. Defining the Fractal MDE. Recall that the MDE, defined on the real line, is
given by

d2u

dt2
+ (δ + ε cos t)u = 0,

where u is a function from R to R.
The first questions we wish to address are “What should the fractal space be that

replaces the line?” and “what should ‘periodic function’ mean?”. We choose to consider
the infinite Sierpinski gasket SG∞ to be our domain. By “periodic function,” we mean a
function on SG∞ which is identical on all the copies of SG of the same size. In particular,
if we are given a function u on SG with the boundary conditions{

∂nu(ql) = 0 for l = 0, 1, 2

u(q0) = u(q1) = u(q2),
(6.1)

we can get a periodic function on SG∞ by translating the function to other copies.
But what about the differential equation? The first step in finding a fractal analog of

the MDE defined on the line is to replace d2

dt2
with the fractal Laplacian ∆, since ∆ is the

analog of the second-derivative operator.
Now, what to do with the ε (cosx)u term? Recall from Theorem 5.1 above that the

multiplication of two nonconstant functions in dom∆ may result in a function which is
not in dom∆. Thus, we cannot simply replace cosx by a function in dom∆, and so we
must figure out a suitable analog of multiplication by cosine.

Recall that, in the line case, we sought solutions u in the form of a Fourier expansion
in terms of cosines and sines. Note, however, that cosines and sines on the line are
Neumann and Dirichlet eigenfunctions, respectively, of d2

dt2
. Hence, we will adopt a form

of Mathieu’s equation which is compatible with functions u that can be written as a linear
combination of Neumann eigenfunctions, motivated by Equation (6.1).

We choose to only consider functions which have Neumann eigenfunction expansions
of the form

u(x) =
∞∑
j=0

cjϕj(x) (6.2)

where each ϕj is a Neumann eigenfunction function defined as follows. Fix a generation of
birth, a series (5-series or 6-series), and an initial eigenfunction ϕ such that ∆m0ϕ(x) =
λm0ϕ(x) for all x ∈ Vm0 and ϕ(q0) = ϕ(q1) = ϕ(q2). With the spectral decimation
algorithm introduced in Section 5.3, we obtain a set of Neumann eigenfunctions ϕi of ∆
extended from ϕ, and we write λi for the eigenvalue corresponding to ϕi. We still take
the order λ1 < λ2 < λ3 < · · · as in Section 5.3. Readers can also find more details on
Neumann eigenfunctions on SG in [22]. The reason we fix a common initial Neumann
eigenfunction is that, if we do not fix such an initial eigenfunction and instead consider
the set of all Neumann eigenfunctions of ∆, then we cannot order their eigenvalues in a
discrete way as above.

To this end, suppose we have a function u on SG which can be written as a linear
combination of Neumann eigenfunctions as in Equation 6.2, where the ϕj (j ≥ 0) sat-
isfy the definition in the previous paragraph. Then, for any ϕj with j ≥ 2 we define
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multiplication by cosine as follows:

(cost)ϕj :=
1

2
ϕj−1 +

1

2
ϕj+1.

The motivation for this definition comes from the fact that, for the line case, the Neumann
eigenfunction cos(jt) obeys the following trigonometric property when multiplied by cos t:

cos t cos (jt) =
1

2
cos(j − 1)t+

1

2
cos(j + 1)t.

As for j ≥ 1 we consider two possibilities, each of which will be described in Section
6.2. In addition, we will consider another two variant versions in the following subsection.

Before moving onto Section 6.2, we talk about one particular case, in which{
(cos t)ϕ0 = ϕ1

(cos t)ϕ1 = 1
2
ϕ0 + 1

2
ϕ2.

(6.3)

Here, ϕ0 and ϕ1 play an analogous role to cos(0t) and cos(1t), respectively, in the line
case, since

{
(cos t) cos(0j) = (cos t) · 1 = cos t = cos(1t)

(cos t) cos(1t) = (cos t)(cos t) = cos2 t = 1
2

+ 1
2

cos(2t) = 1
2

cos(0t) + 1
2

cos(2t).
(6.4)

Using our developments thus far, the fractal Mathieu differential equation would say

(δc0 +
1

2
εc1)+(−λ1c1 +εc0 +δc1 +

1

2
εc2)ϕ1 +

∑
j ≥2

(
−λjcj +

1

2
εcj−1 +δcj +

1

2
εcj+1

)
ϕj = 0,

where λj is the eigenvalue of ∆ corresponding to eigenfunction ϕj. Since the set {ϕj} of
eigenfunctions is linearly independent, we must have

δc0 + 1
2
εc1 = 0

−λ1c1 + εc0 + δc1 + 1
2
εc2 = 0

−λjcj + 1
2
εcj−1 + δcj + 1

2
εcj+1, j ≥ 2.

(6.5)

Putting these equations into matrix form we obtain
δ ε

2

ε δ − λ1
ε
2

ε
2

δ − λ2
ε
2

ε
2

δ − λ3
ε
2

. . . . . . . . .




c0

c1

c2

c3
...

 =


0
0
0
0
...

 . (6.6)

Note that this matrix takes the form of Equation 3.1, which reproduce below:
δ − λ1 − γε α1ε

β1ε δ − λ2 α2ε
β2ε δ − λ3 α3ε

β3ε δ − λ4
. . .

. . . . . .

 .
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6.2. Variants of the Mathieu Differential Equation on the Line. We will consider
4 different ‘versions’, M1, M2, M3, and M4, of the coefficient matrix for the fractal MDE
Mix = 0 (i = 1, 2, 3, 4):

• Version 1:

M1 :=


δ − λ0

1
2
ε

ε δ − λ1
1
2
ε

1
2
ε δ − λ2

1
2
ε

1
2
ε δ − λ3

. . .
. . . . . .

 .

This matrix is reminiscent of the cosine matrices for the line case. Note that the
first term in the second row is ε, not 1

2
ε.

The recursion relation for the coefficients cj becomes
(δ − λ0)c0 + 1

2
εc1 = 0,

εc0 + (δ − λ1)c1 + 1
2
εc2 = 0

1
2
εcj−1 + (δ − λj)cj + 1

2
εcj+1 = 0, (j ≥ 2).

(6.7)

• Version 2:

M2 :=


δ − λ1

1
2
ε

1
2
ε δ − λ2

1
2
ε

1
2
ε δ − λ3

1
2
ε

1
2
ε δ − λ4

. . .
. . . . . .

 .

This matrix is reminiscent of the sine matrices for the line case. Note that the
eigenvalues start from λ1 instead of λ0.

The recursion relation for the coefficients cj becomes{
(δ − λ1)c1 + 1

2
εc2 = 0,

1
2
εcj−1 + (δ − λj)cj + 1

2
εcj+1 = 0 (j ≥ 2).

(6.8)

• Versions 3 and 4:

For Version 3 and for Version 4 we take the following approach.

We now consider a variant of the Mathieu differential equation, given by

∆u+ (δ + εA)u = 0,

where A is the operator analogous to multiplication by cosine. For j ≥ 2, define
A · ϕj := αj−1ϕj−1 + βjϕj+1, with αj and βj satisfying{

αj−1 + βj = 1,

αj−1

√
λj−1 + βj

√
λj+1 =

√
λj,

(6.9)
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for j ≥ 1. One can solve system 6.9 to find the solutions of αj and βj
αj =

√
λj+2−

√
λj+1√

λj+2−
√
λj
, (j ≥ 0),

βj =

√
λj−
√
λj−1√

λj+1−
√
λj−1

, (j ≥ 1).

(6.10)

Note that 0 < αj < 1 and 0 < βj < 1 for all j, and hence the sequences {αj}
and {βj} are each uniformly bounded.

The motivation for the setup above is that, if we plug in λj = j2, which corre-
sponds to the eigenvalues on the line, Equation 6.10 yields αj = βj = 1

2
. For

j = 0 and j = 1, we still consider two cases, which give us Version 3 and Version
4 as follows.

We let Version 3 be

M3 :=


δ − λ0 α0ε
ε δ − λ1 α1ε

β1ε δ − λ2 α2ε

β2ε δ − λ3
. . .

. . . . . .


where αj and βj are as given in Equation 6.10.

This matrix is reminiscent of the cosine matrices for the line case. Note that the
first term in the second row has an extra factor of 2.

The recursion relation for the coefficients cj becomes
(δ − λ0)c0 + α0εc1 = 0,

εc0 + (δ − λ1)c1 + α1εc2 = 0

βj−1εcj−1 + (δ − λj)cj + αjεcj+1 = 0, (j ≥ 2).

(6.11)

We let Version 4 be

M4 :=


δ − λ1 α1ε
β1ε δ − λ2 α2ε

β2ε δ − λ3 α3ε

β3ε δ − λ4
. . .

. . . . . .


where αj and βj are as given in Equation 6.10.

This matrix is reminiscent of the sine matrices for the line case. Again, note that
the eigenvalues start from λ1 instead of λ0.

The recursion relation for the coefficients cj becomes{
(δ − λ1)c1 + α1εc2 = 0,

βj−1εcj−1 + (δ − λj)cj + αjεcj+1 = 0, (j ≥ 2).
(6.12)
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7. Ovservations and Analysis for the Fractal Mathieu Differential
Equation

In this section we parallel our results presented in Section 4 by giving a discussion
of the asymptotic behavior of the transition curves (defined below) for the fractal MDE
and of the convergence of solutions. We also describe a phenomenon wherein the SG∞
transition curves form a prominent ‘diamond’ pattern.

7.1. The δ-ε Plot. In Section 6, we introduced 4 different Versions Mix = 0, (i =
1, 2, 3, 4) of the fractal MDE in matrix form on SG∞. If one fixes one of the four Versions
of the MDE as above, then the points (δ, ε) in the δ-ε plane for which the Mix = 0 has a
nontrivial solution in `2 make up the transition curves for that Version of the MDE. In
Figures 7.1-7.8, we show the transition curves for each of the four Versions.

Figure 7.1. Transition curves for version 1, 5 series. The left picture
shows transition curves of a single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).

Figure 7.2. Transition curves for version 1, 6 series. The left picture
shows transition curves of a single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).

Figure 7.3. Transition curves for version 2, 5 series. The left picture
shows transition curves of single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).
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Figure 7.4. Transition curves for version 2, 6 series. The left picture
shows transition curves of single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).

Figure 7.5. Transition curves for version 3, 5 series. The left picture
shows transition curves of single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).

Figure 7.6. Transition curves for version 3, 6 series. The left picture
shows transition curves of single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).

Figure 7.7. Transition curves for version 4, 5 series. The left picture
shows transition curves of single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).
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Figure 7.8. Transition curves for version 4, 6 series. The left picture
shows transition curves of single matrix corresponding to generation of
birth 0. The right picture shows transition curves of generation of birth 0
(red), -1 (blue), -2 (green), -3 (orange), -4 (black).

As can be viewed from Figures 7.1-7.8, in each plot there is a ‘diamond’ pattern formed
between adjacent transition curves. That is, the curves seem to ‘bounce’ off each other
before parting in separate directions. This pattern does not appear in the transition
curves for the Mathieu differential equation on the line. This is one way in which the
transition curves for SG∞ are different than those for the line.

We give a short proof here concerning the asymptotic behavior of the transition curves
for Versions 1 and 2.

Proposition 7.1. For version 1 and version 2, fix one transition curve. The ratio δ
ε

converges to −1 if ε→∞. The ratio δ
ε

converge to 1 if ε→ −∞.

Proof. In fact, M1 and M2 are of the form A+ ε ·B, where A is a diagonal matrix, and
B has one of the following two forms,

B =


0 1

2
1
2

0 1
2

1
2

0 1
2

. . . . . .

 , or B =


0 1

2

1 0 1
2

1
2

0 1
2

. . . . . .

 .
The first matrix is real symmetric with continuous spectrum [−1, 1]. To see this, we
only need observe that B = U · cos t · U−1, where U : `2 → L2([0, π]) is defined as
Uc =

∑∞
n=1 cn sinnt. The second one is not symmetric, but we can study the matrix

κ−1(A − εḂ)κ = A − κ−1Bκ where κ is a diagonal matrix, we did in the proof for
theorem 4. After the transformation, we have

κ−1Bκ =


0 1√

2
1√
2

0 1
2

1
2

0 1
2

. . . . . .

 ,
which is also a real symmetric matrix with continuous spectrum [−1, 1]. Without loss of
generality, we just assume B is symmetric in the follows.

In the following proof, we only consider ε → +∞ case, and the other half is then
immediate by symmetry.

On the k-th curve, we know that

δ = inf
Mk

sup
c∈Mk

cT (A+ εB)c

cTc
,
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where the infimum takes over all the k dimensional subspace Mk of domA. It is easy to
see the following lower bound of δ

δ ≥ inf
Mk

sup
x∈Mk

cTAc

cTc
+ inf

Mk

sup
c∈Mk

εcTBc

cTc
= inf

Mk

sup
x∈Mk

cTAc

cTc
− |ε|.

Next, we give an upper bound. For any l < 1, we can find a k dimensional subspace
Nk ⊂ domA, such that −1 < B|Nk

< l, which means

−1 <
cTBc

cTc
< l,∀c ∈ Nk.

In fact, observe that B has continuous spectrum [−1, 1], we can always find a k dimen-
sional subspace Ñk ⊂ `2 such that −1 < B|Ñk

< l. But Ñk is not necessarily in domA. So
we pick a large L, and define

Nk = {c = (c1, c2, · · · , cL, 0, 0, · · ·) : There exists c̃ ∈ Ñk such that cj = c̃j,∀1 ≤ j ≤ L}.

Obviously, Nk ⊂ domA, and −1 < B|Nk
< l as long as L is large enough.

Then we get the following upper bound

δ ≤ sup
c∈Nk

cTAc

cTc
+ sup

c∈Nk

εcTBc

cTc
< sup

c∈Nk

cTAc

cTc
+ lε, for ε > 0.

Combining the upper and lower bounds of δ, we get

−1 ≤ lim inf
ε→+∞

δ

ε
≤ lim sup

ε→+∞

δ

ε
≤ l.

for any l < 1. Thus limε→+∞
δ
ε

= −1. By symmetry, we also get limε→−∞
δ
ε

= 1. �

7.2. Solutions of the Mathieu Differential Equation. Now we investigate solutions
to the fractal MDE.

From Corollary 3.3 we deduce that, for ε 6= 0, a nontrivial solution c = (c1, c2, ...) ∈ `2

(or c = (c0, c1, c2, ...) ∈ `2) to any of the four systems Mix = 0 (i = 1, 2, 3, 4) in section

6.2 will decay with asymptotic behavior
cj
cj−1
∼ βj−1ε

λj−δ . Hence, a solution

u(x) =
∞∑
j=0

cjϕj(x)

to any of the four versions of the fractal MDE may be well-approximated by the sum of
just the first few terms in the series, and such an approximation will yield only a small
error to the actual infinite-series solution.

Recall that in Section 4 we investigated, for the MDE on the line, how properties of
solutions change if one fixes a transition curve and considers periodic solutions corre-
sponding to various (δ, ε) points along that transition curve. We will consider the same
question for the SG∞ transition curves for the fractal MDE as well.

We investigate this question by first studying the solutions plotted in Figures 7.10-
7.29. In constructing the solutions we choose eigenfunctions of generation of birth 2 and
of initial eigenvalue 5 or 6, arising from either of the initial functions shown in Figure 7.9,
Figures 7.10-7.15 correspond to solutions of Version 1, Figures 7.16-7.21 correspond to



Cao, Coniglio, Niu, Rand, and Strichartz 44

solutions of Version 2, Figures 7.22-7.25 correspond to solutions of Version 3, and Figures
7.26-7.29 correspond to solutions of Version 4. Each Figure includes two images. The
one on the left is a plot of three different solutions corresponding to different (δ, ε) pairs
along the first transition curve; the set of three solutions in each Figure corresponds to
either 5-series or 6-series, and each solution been normalized so that the maximum value
it attains is 1. The image on the right in each Figure shows an overlook of the three
solutions, where the color at each point indicates which solution takes on the biggest
value among the three. From the plots, it is evident that these normalized solutions seem
to converge as ε tends to infinity along the first transition curve.

The second way in which we investigate the question is by observing the behavior of the
location of relative maxima of solutions as ε traverses along a transition curve. Here we
still choose to study (δ, ε) pairs and corresponding solutions on the first transition curve
for each version. See Figure 7.30-7.37. This is analogous to our study of the relative
maxima of solutions to the MDE on the line in Section 4.2. Each of the Figures contains
two images indicating the position of relative maxima: the image on the left shows how
the positions of the maximas move as ε becomes larger, and the image on the right is an
overlook of the left one where we can clearly see the locations of the peaks. We make
several observations:

• The first thing we can see is that the movement of the peaks are not large, and
we do not observe the peaks converging to the boundary.

• The second observation is that the 5 and 6 series behave quite differently. We
can observe jumps of peaks in all the versions for 5 series, but the number of
peaks is usually 3. A special case is figure 7.36, where many peaks occur when ε
is quite large. However, for 6 series, we can observe many more peaks when ε is
very small, but most of them do not appear when ε is large. Until now, we do
not have explanation for these behaviors.

1 −1

1

−1 1

−1

11

1

−1 −1

−1

Figure 7.9. Initial values of the eigenfunctions with birth of generation
2 and initial eigenvalues 5 (left) and 6(right).
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Figure 7.10. Solutions on the first curve for choice 1, initial eigenvalue
5, with ε = 1000, 2000, 3000.

Figure 7.11. Solutions on the first curve for choice 1, initial eigenvalue
5, with ε = 10000, 11000, 12000.

Figure 7.12. Solutions on the first curve for choice 1, initial eigenvalue
5, with ε = 20000, 25000, 30000.
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Figure 7.13. Solutions on the first curve for choice 1, initial eigenvalue
6, initial eigenvalue 6, with ε = 1000, 2000, 3000.

Figure 7.14. Solutions on the first curve for choice 1, initial eigenvalue
6, initial eigenvalue 6, with, with ε = 10000, 11000, 12000.

Figure 7.15. Solutions on the first curve for choice 1, initial eigenvalue
6, initial eigenvalue 6, with ε = 20000, 25000, 30000.
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Figure 7.16. Solutions on the first curve for choice 2, initial eigenvalue
5, with ε = 1000, 2000, 3000

Figure 7.17. Solutions on the first curve for choice 2, initial eigenvalue
5, with ε = 10000, 11000, 12000

Figure 7.18. Solutions on the first curve for choice 2, initial eigenvalue
5, with ε = 20000, 25000, 30000
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Figure 7.19. Solutions on the first curve for choice 2, initial eigenvalue
6, with ε = 1000, 2000, 3000.

Figure 7.20. Solutions on the first curve for choice 2, initial eigenvalue
6, initial eigenvalue 6, with, with ε = 10000, 11000, 12000.

Figure 7.21. Solutions on the first curve for choice 2, initial eigenvalue
6, initial eigenvalue 6, with ε = 20000, 25000, 30000.
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Figure 7.22. Solutions on the first curve for choice 3, initial eigenvalue
5, with ε = 1000, 2000, 3000.

Figure 7.23. Solutions on the first curve for choice 3, initial eigenvalue
5, with ε = 20000, 25000, 30000.

Figure 7.24. Solutions on the first curve for choice 3, initial eigenvalue
6, with ε = 1000, 2000, 3000.
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Figure 7.25. Solutions on the first curve for choice 3, initial eigenvalue
6, with ε = 20000, 25000, 30000.

Figure 7.26. Solutions on the first curve for choice 4, initial eigenvalue
5, with ε = 1000, 2000, 3000.

Figure 7.27. Solutions on the first curve for choice 4, initial eigenvalue
5, with ε = 20000, 25000, 30000.
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Figure 7.28. Solutions on the first curve for choice 4, initial eigenvalue
6, with ε = 1000, 2000, 3000.

Figure 7.29. Solutions on the first curve for choice 4, initial eigenvalue
6, with ε = 20000, 25000, 30000.
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Figure 7.30. The position of peaks for version 1, 5 series.

Figure 7.31. The position of peaks for version 1, 6 series.

Figure 7.32. The position of peaks for version 2, 5 series.
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Figure 7.33. The position of peaks for version 2, 6 series.

-

Figure 7.34. The position of peaks for version 3, 5 series.

Figure 7.35. The position of peaks for version 3, 6 series.
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-

Figure 7.36. The position of peaks for version 4, 5 series.

Figure 7.37. The position of peaks for version 4, 6 series.

8. Further Research

Now we discuss further research questions that can be investigated in this area.

(i) Asymptotic behavior of SG∞ transition curves

One could further investigate the asymptotic behavior of the SG∞ transition
curves. For the line case, we have Theorem 4.2 due to W.S. Loud, stating that

δ = −ε+

(
k − 1

2

)√
2ε+O(ε1/2)

as ε→ +∞ on the k−th transition curve. We can investigate whether estimates
of a similar form hold on SG∞. This would include extending Proposition 7.1 to
Version 3 and Version 4 the MDE on SG∞.

(ii) Other modifications of MDE matrix

Further research could investigate different matrix versions of the fractal MDE,
aside from Versions 1-4 presented in Section 6.
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(iii) Other Fractal Domains

One could investigate how the Mathieu differential equation could be extended
to other infinite fractafolds. Such infinite fractafolds may or may not be based
on SG.

(iv) The Hill Equation

The Mathieu differential equation is actually a special case of the so-called Hill
differential equation. The Hill differential equation is given by

d2u

dt2
+ f(t)u = 0,

where f(t) is an arbitrary periodic function. Readers can read [21, 16, 17, 28] for
details. Further research could investigate ways in which to extend, for various
choices of f(x), the Hill differential equation to be defined on fractal domains.

9. Appendix

In this appendix we derive equations in matrix form for solutions to the MDE on the
line which have period 2Nπ, N ∈ N. We will use a similar procedure as in Section 2 and
will obtain tridiagonal matrices.

Let u be a solution with period 2Nπ. We can write the Fourier expansion of u as

u(t) =
∞∑
j=0

aj cos

(
j

N
t

)
+
∞∑
j=1

bj sin

(
j

N
t

)
. (9.1)

Plugging in this Fourier series for u into the Mathieu differential equation, we obtain
two infinite systems of linear homogeneous equations for the cosine and sine coefficients,
respectively, as follows:

cosine coefficients


δa0 + ε

2
aN = 0,

(δ − j2)aj + ε
2
(aN−j + aN+j) = 0 if 1 ≤ j ≤ N − 1,

(δ −N2)aN + ε
2
(2a0 + a2N) = 0,

(δ − j2)aj + ε
2
(aj−N + aj+N) = 0 if j ≥ N + 1,

and

sine coefficients


(δ − j2)bj + ε

2
(bN+j − bN−j) = 0 if 1 ≤ j ≤ N − 1,

(δ −N2)bN + ε
2
b2N = 0,

(δ − j2)bj + ε
2
(bj−N + bj+N) = 0 if j ≥ N + 1.

We can immediately write the equations in the matrix form, but the result is unwieldy.
So, we make further classifications of the coefficients, just as we did in Section 2.2, where
coefficients are separated into two classes—those with even indices and those with and
odd indexes.

A natural criterion is to have coefficients that appear in the same equation be in a
same class. For example, a0 and aN should be in a same class. Based on this idea, we
say that aj and aj′ (or bj and bj′) are in the ‘same class’ if and only if there is a finite
sequence

aj = aj0 , aj1 , aj2 , · · · , ajL = aj′ ,
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such that ajl and ajl+1
appear in a same equation for all 0 ≤ l ≤ L − 1. For example,

a0 and a3N are in the same class, since we a0 and aN are in the same equation, aN and
a2N are in the same equation, and a2N and a3N are in the same equation. It is easy to
check that the the property of being in the ‘same class’ is an equivalence relation on the
set {aj : j ≥ 0} and on the set {bj : j ≥ 1}. This partitions {aj : j ≥ 0} into [N

2
] + 1

different equivalence classes and partitions {bj : j ≥ 0} into [N
2

] + 1 different equivalence
classes. So we can write equations for different equivalence classes separately. Below, we
discuss all the possible cases. First we give a discussion for the cosine coefficients {aj}.
As we will see, the case for the sine coefficients {bj} is similar.

There are three possible forms that the matrix corresponding to any particular equiv-
alence class can take:

1). The first possible equivalence class is {a0, aN , a2N , · · ·}, with the corresponding
matrix equation


δ ε

2

ε δ − 1 ε
2

ε
2

δ − 22 ε
2

. . . . . . . . .




a0

aN
a2N

...

...

 =


0
0
0
...
...

 .

Note that this is just the equation Ax = 0 in Section 2.2. If there is a nontriv-
ial solution to the above equation, then the MDE has a 2π periodic solution, since
u(t) =

∑∞
l=0 alN cos(lt) solves the MDE.

2). The second form that an equivalence class can take is

{a|k−lN |}∞l=−∞ = {ak, ak+N , ak2N ,···} ∪ {aN−k, a2N−k, · · ·},

where 1 ≤ k < N
2

. The corresponding equations can be written in the form



. . . . . . . . .

δ −
(

2N−k
N

)2 ε
2

ε
2

δ −
(
N−k
N

)2 ε
2

ε
2

δ −
(
k
N

)2 ε
2

ε
2

δ −
(
N+k
N

)2 ε
2

. . . . . . . . .





...
a2N−k
aN−k
ak
ak+N

...


=



...
0
0
0
0
0
...


.

If there is a nontrivial solution to the above equation, then u(t) =
∑∞

l=−∞ ak+lN cos(k+lN
N

t)

is a 2Nπ

gcd(N,K)
-periodic solution to the MDE, where gcd(N, k) denotes the greatest common

divisor of the pair (N, k).
In particular, we get a 2Nπ-periodic solution to the MDE from the equation above if

and only if k and N are coprime. Thus, the matrices of the second form with k and N
coprime yield 2Nπ-periodic solutions.

3) The third form that an equivalence class can take is {aN
2
, a 3

2
N , a 5

2
N , · · ·}. This form

can only occur if N is even. The corresponding equations can be written in the form
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δ − 1

4
+ ε

2
ε
2

ε
2

δ − 32

4
ε
2

ε
2

δ − 52

4
ε
2

. . . . . . . . .





aN
2

a 3N
2

a 5N
2
...
...

 =


0
0
0
...
...

 .

The above matrix is exactly the matrix C in Section 2.2, which yield 4π-periodic solutions.

The matrix forms for sine coefficients are quite similar to those for the cosine coeffi-
cients. For solutions of period 2Nπ,N ≥ 3, the equations for sine coefficents have the
following form



. . . . . . . . .

δ − (2N−k
N

)2 ε
2

ε
2

δ − (N−k
N

)2 − ε
2

− ε
2

δ − ( k
N

)2 ε
2

ε
2

δ − (N+k
N

)2 ε
2

. . . . . . . . .





...
b2N−k
bN−k
bk
bk+N

...


=



...
0
0
0
0
0
...


,

where k can by any integer such that k and N are coprime.
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