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Abstract A van der Pol type system with delayed
feedback is explored by employing the two vari-
able expansion perturbation method. The perturbation
scheme is based on choosing a critical value for the de-
lay corresponding to a Hopf bifurcation in the unper-
turbed ε = 0 system. The resulting amplitude–delay
relation predicts two Hopf bifurcation curves, such
that in the region between these two curves oscilla-
tions will be quenched. The perturbation results are
verified by comparison with numerical integration.

Keywords Differential-delay equations · Hopf
bifurcation · Perturbation methods

1 Introduction

This paper concerns the effect of delay on the steady
state behavior of systems described by differential
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equations. The resulting equations, called differential-
delay equations (DDEs), may exhibit a diversity of
steady state behaviors including stable equilibria and
stable periodic motions. As an example, consider
the following DDE which we investigate in this pa-
per:

ẍ + x − εγ ẋ + εαx2ẋ

= βẋ(t − T ) + δx(t − T ) (1)

This equation may be described as a version of van der
Pol’s equation with delay feedback. In what follows
we will need to distinguish between delay amplitude
and delay lag. The delay amplitudes associated with
each of the terms on the right hand side of (1) are β

for the velocity feedback and δ for the position feed-
back. The delay lag is T for both terms. We will show
that a change in the steady state behavior may occur
in response to a change in the delay amplitudes, the
delay lag, and the other parameters of (1). In particu-
lar, periodic motions may appear or disappear due to
Hopf bifurcations. Knowledge of such critical para-
meters can be used to quench or eliminate undesirable
vibrations.

We begin with a review of some related literature.
Considerable work has been done by other investiga-
tors on both single and coupled oscillators under de-
layed feedback. The literature is rich, with authors
considering a wide variety of combinations of delay
amplitudes and delay lags, and employing a range of
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perturbation techniques. The choice of which pertur-
bation method to use is often related to the magni-
tude of the delay amplitude being considered. When
the delay amplitude appears as O(ε), the method of
averaging is a natural choice. Such was the approach
taken in [1–3]. Atay [1] considered a van der Pol sys-
tem under delayed position feedback, with both de-
lay amplitude and delay lag taken as O(ε). The de-
lay lag however need not be considered small in or-
der to employ averaging, as Morrison and Rand [2]
and Wirkus and Rand [3] both considered O(1) de-
lay lag in their work. Morrison and Rand [2] con-
sidered a delayed Mathieu equation, and Wirkus and
Rand [3] considered two van der Pol oscillators with
delay coupling. A system with delay amplitude of
O(ε) and very large delay lag of O(1/ε) was in-
vestigated by Das and Chatterjee [4] using multi-
ple time scales instead of averaging. Systems where
the delay amplitude is O(1) have been considered
by [5–8]. Numerous techniques have been employed
in this case with Rand and Verdugo [5] using Lindt-
stedt’s method, Maccari [6] using asymptotic pertur-
bation, Nayfeh [7] using a center manifold reduction
and finally Das and Chatterjee [8] using multiple time
scales. Again, in considering O(1) delay amplitude
these authors have considered both O(1) and O(ε) de-
lay lag.

In this paper Hopf bifurcations in (1) are ex-
plored by using the two variable expansion method.
The fixed points of the resulting slow flow give an
expression for the limit cycle amplitude as a func-
tion of the delay and system parameters. From the
slow flow equations we determine the stability of
the limit cycle created in the Hopf bifurcation. We
show that in a certain range of parameters, the de-
lay lag may be chosen so as to quench the limit cy-
cle via a Hopf bifurcation. In particular, the result-
ing amplitude–delay relation predicts two Hopf bifur-
cation curves, such that in the region between these
two curves oscillations will be quenched. A simi-
lar system where both the delay amplitude and de-
lay lag were O(ε) has been considered previously by
Atay [1], who used the method of averaging. In com-
parison with our results, the results of [1] show a sin-
gle Hopf bifurcation curve which corresponds to one
of the two obtained by us. We compare our results
with those of Atay [1] and with numerical integra-
tion.

2 Perturbation analysis

2.1 Simple harmonic oscillator with delayed
feedback

This work considers a van der Pol type oscillator under
delayed feedback:

ẍ + x − εγ ẋ + εαx2ẋ = βẋd + δxd (2)

The subscript d denotes a delayed quantity, for exam-
ple xd = x(t − T ). We take the parameters ε, γ , α, β

and δ to be positive. When ε = 0, (2) becomes a linear
oscillator with delayed feedback:

ẍ + x = βẋd + δxd (3)

Observe that when δ ≥ 1 in (3), we no longer have a
harmonic oscillator for the case of zero delay lag. As
the delay lag is increased from zero, the origin remains
unstable and oscillations continue to be impossible.
We therefore restrict δ < 1 in what follows. We intro-
duce the parameter T0, which will be the critical value
of delay lag necessary for periodic solutions to (3) to
exist.

ẍ + x = βẋ(t − T0) + δx(t − T0) (4)

Looking for periodic solutions we assume solutions of
the form,

x = A cos(ωt) (5)

Substituting this assumed form into (4) yields a set of
expressions that the system parameters must satisfy,

sin(ωT0) = − βω

ω2 − 1
(6)

cos(ωT0) = − δ

ω2 − 1
(7)

Squaring and adding (6) and (7) gives another form of
these expressions,

1 = (ω2 − 1)2

β2 ω2 + δ2
⇒ ω4 − (

β2 +2
)
ω2 +1−δ2 = 0

(8)

Alternatively, dividing (6) by (7) yields,

tan(ω T0) = β ω

δ
(9)
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We can express ω2 in terms of β and δ from (8).

ω2 = β2 + 2

2
±

√(
β2 + 2

2

)2

− (
1 − δ2

)
(10)

which can also be expressed as,

ω2 = β2

2
+ 1 ±

√(
β2

2

)2

+ β2 + δ2 (11)

Since we consider δ < 1, both roots of ω2 will be posi-
tive and the assumed periodic solutions, (5), will exist.
This can be seen from (10) by noting that the second
term under the radical, 1 − δ2, will always be posi-
tive when δ < 1. This leads us to conclude the radical
will always be less than the term preceding the radical.
From (11) we observe that one root of ω will be less
than 1 and the other greater than 1. This is important
as the quantity ω2 − 1 will play a role in determining
the stability of the limit cycle through the slow flow
equations.

The vanishing denominator in (6), (7) does not rep-
resent a singularity. This may be seen by noting that
from (8), for ω to approach unity, both β and δ must
approach zero. The numerator and denominator of
both (6), (7) thus simultaneously vanish. To show that
the limit exists, one may use L’Hospital’s Rule: Sub-
stituting ω from (10) into (6), (7) and taking the limit
as β goes to zero, where δ = c β for some constant c,
turns out to give a nonsingular result.

In the next section we will perturb off of this solu-
tion to the ε = 0 system in order to find approximate
solutions to (2) when ε �= 0.

2.2 Two variable expansion method

Returning to our original DDE, (2), we now perform a
two variable expansion perturbation. Two variable ex-
pansion will produce slow flow equations which will
capture the approach to the limit cycle, allowing us to
determine its stability. Solving for the fixed points of
the slow flow will give an amplitude–delay relation.
For two variable expansion we define two time scales,
a slow time scale, η, and a stretched time scale, ξ . The
slower time scale will capture the approach to the pe-
riodic motion.

ξ = Ωt, η = εt (12)

Since we are only working to O(ε), without loss of
generality [9], we set the time stretch to be the fre-
quency of the ε = 0 equation,

Ω = ω + O
(
ε2) (13)

In terms of ξ and η our original DDE, (2), becomes,

Ω2 ∂2x

∂ξ2
+ 2Ωε

∂2x

∂ξ∂η
+ ε2 ∂2x

∂η2

+ x + (−εγ + εαx2)
(

Ω
∂x

∂ξ
+ ε

∂x

∂η

)

= β

(
Ω

∂xd

∂ξ
+ ε

∂xd

∂η

)
+ δxd (14)

Next we expand x, xd in power series,

x(ξ, η)=x0(ξ, η)+ εx1(ξ, η)+ ε2x2(ξ, η)+ · · · (15)

xd(ξ, η) = x(ξd, ηd)

= x0(ξd, ηd) + εx1(ξd, ηd)

+ ε2x2(ξd, ηd) + · · · (16)

The delayed variables ξd and ηd are defined as,

ξd = Ω(t − T ) (17)

ηd = ε(t − T ) (18)

Recall that T0 is the critical delay lag necessary for the
ε = 0 system to undergo a Hopf bifurcation. Compar-
ing the ε �= 0 system with the previous ε = 0 system,
we see there is an additional linear term, εγ ẋ. Due to
this additional linear term the critical value of delay
lag necessary for a Hopf bifurcation in the ε = 0 sys-
tem will be different than T0. We anticipate that this
additional linear term will cause only a small shift in
the critical delay lag and accordingly choose to define
the delay lag as,

T = T0 + ε μ + O
(
ε2) (19)

With this definition of T , (17) and (18) become,

ξd = ξ − Ω
(
T0 + εμ + O

(
ε2)) (20)

ηd = η − ε
(
T0 + εμ + O

(
ε2)) (21)

Substituting (13) and neglecting terms of O(ε2)

ξd = ξ − ωT0 − ε ωμ + · · · (22)
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ηd = η − εT0 + · · · (23)

We can now express xd in terms of ξ − ωT0 and η by
expanding it in a Taylor series about ε = 0. We neglect
terms of O(ε2).

xd(ξ, η) = x(ξd, ηd)

= x̃ − ε

(
ωμ

∂x̃

∂ξ
+ T0

∂x̃

∂η

)
(24)

Where in this expression we have introduced x̃ for no-
tational convenience, with x̃ defined by

x̃ = x̃(ξ, η) = x(ξ − ωT0, η) (25)

Substituting the power series expression for xd , (16),
into (24), and again neglecting terms of O(ε2) we ob-
tain a final expression for xd .

xd(ξ, η) = x̃0 + ε

(
x̃1 − ωμ

∂x̃0

∂ξ
− T0

∂x̃0

∂η

)
(26)

Substituting this final expression for xd , (26), and x,
(15), into the governing equation, (14), and collecting
terms of O(1) we recover a DDE similar to (4),

ω2 ∂2x0

∂ξ2
+ x0 − δx̃0 − ωβ

∂x̃0

dξ
= 0 (27)

We define the left hand side of (27) to be L(x0).

L(x0) = ω2 ∂2x0

∂ξ2
+ x0 − δx̃0 − ωβ

∂x̃0

dξ
(28)

We take the general solution of (27) to be of the form

x0(ξ, η) = A(η) cos(ξ) + B(η) sin(ξ) (29)

Substituting this general solution into the O(1) DDE,
(27), yields a set of expressions that ω and T0 must
satisfy for given parameters β and δ.

sin(ωT0) = − βω

ω2 − 1
(30)

cos(ωT0) = − δ

ω2 − 1
(31)

These expressions are the same as those found in the
previous section, cf. (6), (7). Again, these expressions
can alternatively be expressed as (8), (9).

Returning to the step of substituting x and xd into
the governing equation (14), we now collect terms

of O(ε).

L(x1)

= −2ω
∂2x0

∂ξ∂η
− ω

(
αx2

0 − γ
)∂x0

∂ξ
− ω2 β μ

∂2x̃0

∂ξ2

− ωβT0
∂2x̃0

∂ξ∂η
− δωμ

∂x̃0

∂ξ
+ (β − δT0)

∂x̃0

∂η

(32)

Next we substitute (29) for x0 into (32) and elimi-
nate resonance by equating to zero the coefficients of
cos(ξ) and sin(ξ). Doing so yields the slow flow equa-
tions on coefficients A and B of the general solution
(29).

dA

dη
= G

F
(33)

dB

dη
= H

F
(34)

where

G = −ω0
(
B β2 ω2

0 T0 + B δ2 T0 − 2Aω3
0

+ Aβ2 ω0 + 2Aω0 − B β δ
)

× (
4ω2

0 γ − 4γ + 4β2 μω2
0 − α B2 ω2

0

− A2 α ω2
0 + 4 δ2 μ + α B2 + A2 α

)
(35)

H = ω0
(
Aβ2 ω2

0 T0 + Aδ2 T0 + 2B ω3
0

− B β2 ω0 − 2B ω0 − Aβ δ
)

× (
4ω2

0 γ − 4γ + 4β2 μω2
0 − α B2 ω2

0

− A2 α ω2
0 + 4 δ2 μ + α B2 + A2 α

)
(36)

F = 4
(
T 2

0

(
ω2 − 1

)4 + (
ω2 − 1

)2(4ω2 + β2

− 2β δ T0
) − 4β2ω2(ω2 − 1)

)
(37)

Transforming to polar coordinates R and ψ , where
A = R cosψ and B = R sinψ , we obtain the follow-
ing simplified slow flow equations,

x0(ξ, η) = R(η) cos
(
ξ − ψ(η)

)
(38)

dR

dη
= D

F
(39)

dψ

dη
= E

F
(40)
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where

D = Rω2(ω2 − 1
)(

2
(
ω2 − 1

) − β2)

× (
4γ + 4μ

(
ω2 − 1

) − α R2) (41)

E = 4T0 μω
(
ω2 − 1

)4 + T0
(
ω2 − 1

)3(4γω − αR2)

− 4β δ μω
(
ω2 − 1

)2

+ βω
(
ω2 − 1

)(
αR2δ − 4δγ

)
(42)

A fixed point in the slow flow corresponds to a pe-
riodic motion in the original system. Solving for the
fixed points of dR

dη
in (39) we obtain the amplitude of

the periodic motion.

R2
0 = 4

α

(
γ + μ

(
ω2 − 1

))
(43)

Plugging this amplitude expression into dψ
dη

, (40), for

R2 we find that the fixed point solutions to dR
dη

, (39),

identically satisfy dψ
dη

meaning

dψ

dη
= 0 (44)

and integration yields

ψ = ψ0 (45)

This gives the final expression for the approximation
to the periodic solution as

x = x0 + O(ε) = R0 cos
(
ωt − ψ0 + O

(
ε2)) (46)

2.3 Stability of the limit cycle

In addition to producing an approximation to the peri-
odic solution, the slow flow equation on R, (39), can
be used to determine the stability of the limit cycle.
We begin by rewriting (39) in the form

dR

dη
= C1 R

(
4C2 − αR2) (47)

where

C1 = ω2(2(ω2 − 1) − β2)

4(T 2
cr (ω

2 − 1)3 + (ω2 − 1)(4ω2 + β2 − 2β δ Tcr ) − 4β2ω2)
(48)

C2 = γ + μ
(
ω2 − 1

)
(49)

Equation (47) represents a slow flow on the positive
R-line (R > 0). It has two equilibrium points, R = 0
and R = √

4C2/α, the latter of which corresponds to
the limit cycle, cf. (43). The stability of limit cycle
will therefore be opposite to that of the origin. In order
for the limit cycle to exist, C2/α > 0, and assuming
α > 0, we must have C2 > 0. The origin R = 0 will be
unstable if the product C1C2 > 0, and since C2 > 0,
the origin will be unstable (and the limit cycle will be
stable) if C1 > 0. Equation (48) can be rewritten in the
form

C1 = ω2(2 − β2

Δ
)

4(T 2
cr β2 ω2 + 4ω2(1 − β2

Δ
) + (β − δ Tcr )2)

(50)

where to get C1 in this form, we have used (8) and have
introduced the notation Δ = ω2 − 1 for convenience.

We ask under what parameter conditions will C1 > 0,
which corresponds to a stable limit cycle. Note that the
denominator is a sum of squares except for the (1 −
β2

Δ
) term. Also note that if (1− β2

Δ
) is positive then the

numerator is also positive. Thus we may conclude that
a sufficient condition for a stable limit cycle is

β2

Δ
≤ 1 (51)

For every possible β , δ pair, where 0 < β , 0 < δ < 1,
(8) will return two values of ω. One value will be less
than 1, while the other will be greater than 1. For the
case of ω < 1, Δ will be negative and inequality (51)
is satisfied. For the case of ω > 1, Δ is positive and
(51) is no longer immediately satisfied and additional
work must be done to show that (51) still holds. From
(30) we can write the following inequality,

β2 ω2

Δ2
≤ 1 (52)
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We can multiply this inequality, (52), by Δ without
a sign change in the inequality. Multiplying (52) by
Δ/ω2 puts it in a form comparable to the inequality
(51):

β2

Δ
≤ Δ

ω2
(53)

Expanding the right hand side of this inequality,

β2

Δ
≤ 1 − 1

ω2
(54)

Since ω > 1 we can conclude,

β2

Δ
≤ 1 − 1

ω2
< 1 (55)

This is the inequality (51) which we set out to show
was true and therefore when ω > 1 we see that C1

is positive. In summary we have shown that for both
ω roots, C1 will be positive which then implies that
the limit cycle occurs when the origin is unstable and
hence the limit cycle produced in the Hopf bifurcation
will be attracting for all values of β and δ.

3 Hopf bifurcation

3.1 Predicted Hopf bifurcation surface

A supercritical Hopf bifurcation is characterized by a
stable limit cycle born with zero amplitude, growing in
size. The Hopf bifurcation occurs at the critical delay

lag where the limit cycle has zero amplitude. We can
use the amplitude-frequency perturbation result, (43),
to predict the critical delay lag at which a Hopf bi-
furcation occurs. Setting R0 = 0 we obtain the critical
value of μ at which the Hopf bifurcation occurs.

μcr = γ

(1 − ω2)
(56)

Recall that T0 is the delay lag at which a Hopf bifur-
cation occurs in the ε = 0 system. However, it turns
out that T0 will not be the delay lag necessary for a
Hopf bifurcation in the ε > 0 system. The critical de-
lay lag at which the ε > 0 system undergoes a Hopf
bifurcation is given by (19), where μ equals μcr :

Tcr = T0 + ε
γ

(1 − ω2)
+ O

(
ε2) (57)

While this relation appears simple, in order to evalu-
ate Tcr we must first solve for T0 and ω. Recall that ω

and T0 respectively have polynomial and transcenden-
tal dependence on β and δ, (8) and (9). A closed form
expression for Tcr in terms of β and δ is hence im-
possible. We can however create a Tcr surface plot in
Matlab for the delayed van der Pol case, (1). We also
look at the curves resulting from three different cuts of
this surface, β = 0, δ = 0 and β = δ.

Plotting ω vs. β and δ, verifies that there are two

Fig. 1 Surface plot of ω as
a function of β and δ, as
given by (8), with chosen
parameters γ = 1, α = 1
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Fig. 2 Surface plot of the
critical delay lag Tcr

necessary for a Hopf
bifurcation as a function of
β and δ, as given by (57),
with chosen parameters
γ = 1, α = 1, ε = 0.1

Fig. 3 Three different cuts
of the Hopf bifurcation
surface of Fig. 2, defined by
(57), where γ = 1, α = 1,
ε = 0.1. Figure (a) shows
the Hopf bifurcation curve
produced by cutting the
Hopf bifurcation surface at
β = 0. Similarly (b) and (c)
show the Hopf bifurcation
curves for δ = 0 and β = δ

respectively

ω roots, one less than 1 and the other greater than 1,
Fig. 1. These two roots are contained on two distinct
surfaces that meet in the single point ω = 1, as β and
δ are decreased to zero.

Figure 2 shows a plot of Tcr vs. ω and β , and con-
tains two surfaces, one surface for each of the two ω

roots. The two Tcr surfaces divide the parameter space
into three distinct regions. Since points on these sur-
faces correspond to the occurrence of Hopf bifurca-
tions, limit cycles are generically created or destroyed
as these surfaces are crossed.

Recall that as β and δ are decreased to zero ω

goes to one. The effect of ω → 1 in (57) is for
Tcr → ±∞. The lower Tcr surface in Fig. 2 goes to
∞ while the upper goes to −∞. This causes the two
surfaces to intersect at some values of β and δ both
larger than zero. The region beyond this intersection
has been removed from the presented figures as it
lies beyond the region of validity of the perturbation
method.

In Fig. 3 we look at three different cuts of the Tcr

surface and confirm by numerical integration that the
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Fig. 4 Cut at β = 0 of
Hopf bifurcation surface,
Fig. 3(a), defined by (57).
The transition from a region
of oscillation (a), to no
oscillation (b), and back to
oscillation (c), as the Hopf
bifurcation curves are
crossed, for γ = 1, α = 1,
ε = 0.1 is shown. Displayed
is x versus t obtained by
numerical integration of (2)

Fig. 5 Cut at δ = 0 of Hopf
bifurcation surface,
Fig. 3(b), given by (57).
The transition from a region
of oscillation (a), to no
oscillation (b), and back to
oscillation (c), as the Hopf
bifurcation curves are
crossed, for γ = 1, α = 1,
ε = 0.1 is shown. Displayed
is x versus t obtained by
numerical integration of (2)

system transitions from oscillations to no oscillations
and then back to oscillations as the delay lag is in-
creased and the Hopf bifurcation curves are traversed.
In Figs. 4–6 these transitions are shown by moving
from point a to b to c. Each transition is accurately
predicted by the derived Hopf bifurcation curves. We
conclude that both small (O(ε)), and large, O(1) delay
lag may be used as a means to quench a limit cycle.

Additionally we can create a surface plot of Tcr as
a function of ε and one of the delay amplitudes, δ or
β , using (57). From (57) we see that Tcr is linear in
ε, with parameters T0 and ω varying only upon β and
δ. We consider and plot the case of β = δ = 0.5, γ =

α = 1. The grey region in Fig. 7 represents no oscil-
lations, and has been found using numerical integra-
tion. We can conclude that if ε is increased beyond
some critical value, εcr , the van der Pol terms become
large and the limit cycle oscillation can no longer be
quenched with delay.

3.2 Comparison with Atay [1]

Atay [1] considered the system,

ẍ + x − ε
(
1 − x2)ẋ = εkxd (58)
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Fig. 6 Cut at β = δ of
Hopf bifurcation surface,
Fig. 3(c), given by (57).
The transition from a region
of oscillation (a), to no
oscillation (b), and back to
oscillation (c), as the Hopf
bifurcation curves are
crossed, for γ = 1, δ = 1,
ε = 0.1 is shown. Displayed
is x versus t obtained by
numerical integration of (2)

Averaging is a natural choice for a system with O(ε)

delay amplitude terms. Atay [1] used the method of
averaging to obtain the following amplitude expres-
sion,

Amp2 = 4
(
1 − k sin (T )

)
(59)

Along with an O(ε) delay amplitude, Atay [1] also
considered the delay lag to be small (O(ε)). Our work
is instead valid for both small and large delay lag and
we considered the delay amplitudes to be O(1). We
compare the Hopf bifurcation curve predicted from
our results with that predicted by [1] and also numer-
ics. We expect our curve to be in better agreement with
numerics than [1] when the delay lag is large and/or
the delay amplitude is large. To compare our results
with [1] we again consider the case of van der Pol os-
cillator with delay, setting γ and α equal to one in
our system (2). Additionally we need to equate our
delay amplitudes with those of [1] implying, δ = εk

and β = 0. The Hopf bifurcation curves are plotted
over 0 < k < 1/ε. This range was chosen, recalling
that δ < 1 for oscillation.

In Fig. 8 it is seen our results for small delay lag
agree with Atay’s. For large delay lag however the re-
sults diverge. This divergence grows when the delay
lag is large and the delay amplitude k is increased to
also become large. As expected when Tcr is large or
when k is large our results are in better agreement with
numerics than the results in [1].

Fig. 7 Plot of Tcr vs. ε, as given by (57), where β = δ = 0.5.
The grey region represents no oscillation, as concluded by nu-
merical integration. Beyond εcr the oscillations may no longer
be quenched with delay

4 Conclusions

We have studied a van der Pol type system under de-
layed feedback, (1), with delay amplitudes of O(1)

and delay lags not necessarily small. The two vari-
able expansion perturbation scheme we used is based
on choosing a critical value for the delay corre-
sponding to a Hopf bifurcation in the unperturbed
ε = 0 system. The perturbation method yielded two
Hopf bifurcation curves, which were verified numer-
ically. These two Hopf bifurcation curves bound a
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Fig. 8 Comparison of our
Hopf bifurcation curve,
(43), vs. Atay’s [1], (59),
which is based on assuming
both small delay amplitude
and small delay lag. ×’s
represent numerical
integration of (2).
Parameters taken as γ = 1,
α = 1, β = 0, ε = 0.1

region of no oscillation, see Figs. 4–6. Oscillations
may be quenched by appropriately varying the de-
lay lag, so as to enter this region. We have there-
fore shown that delay may be used as a means to
control and quench undesirable limit cycle oscilla-
tions.
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