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ABSTRACT: We investigate the nonlinear mechanics of a
bimetallic, optically absorbing SiN−Nb nanowire in the
presence of incident laser light and a reflecting Si mirror.
Situated in a standing wave of optical intensity and subject to
photothermal forces, the nanowire undergoes self-induced
oscillations at low incident light thresholds of <1 μW due to
engineered strong temperature-position (T−z) coupling.
Along with inducing self-oscillation, laser light causes large
changes to the mechanical resonant frequency ω0 and
equilibrium position z0 that cannot be neglected. We present
experimental results and a theoretical model for the motion under laser illumination. In the model, we solve the governing
nonlinear differential equations by perturbative means to show that self-oscillation amplitude is set by the competing effects of
direct T−z coupling and 2ω0 parametric excitation due to T−ω0 coupling. We then study the linearized equations of motion to
show that the optimal thermal time constant τ for photothermal feedback is τ → ∞ rather than the previously reported ω0 τ = 1.
Lastly, we demonstrate photothermal quality factor (Q) enhancement of driven motion as a means to counteract air damping.
Understanding photothermal effects on nano- and micromechanical devices, as well as nonlinear aspects of optics-based motion
detection, can enable new device applications as oscillators or other electronic elements with smaller device footprints and less
stringent ambient vacuum requirements.
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Micro- and nanomechanical resonators are widely studied
for applications including electromechanical circuit

elements and sensing of ultraweak forces,1 masses,2 and
displacements.3 An integral part of these systems is the
detection method employed to readout motion, which must
itself be extremely sensitive and inevitably imparts its own force
on the resonator, influencing the dynamics. The phase relation
between mechanical motion and the resulting detector back-
action determines whether this interaction will serve to dampen
vibrations or amplify them, potentially leading to self-oscillation
if the detector supplies enough energy per cycle to overcome
mechanical damping.
Feedback due to external amplifiers has been used to

generate self-oscillation of micromechanical resonators;4−8 in
such systems the oscillation amplitude R is set either by
nonlinearity of the amplifier or of the resonator. Similarly,
systems in which mechanical motion influences the amount of
laser light circulating in an optical cavity9−12 or magnetic flux
through a Superconducting QUantum Interference Device13,14

(SQUID) have also been shown to self-oscillate under the right
experimental conditions. In these systems, R is set largely by the
periodicity of the detection scheme, either R ≈ λ/4 where λ is
the laser wavelength or R ≈ Φ0/2 where Φ0 is the displacement
needed to change the SQUID flux by one flux quantum. In the
case of a mechanical resonator coupled to an optical cavity,
back-action can arise either from radiation pressure or
photothermal force, that is, thermally induced deflection caused

by optical absorption. The effects of these two forces are
identical if the cavity resonance (with frequency Ωc and width
κ) is sufficiently broad;11,12,15−19 however if κ is much smaller
than the mechanical vibration frequency ωm the optomechan-
ical system is said to be in the “sideband-resolved regime,” and
radiation-pressure effects are greatly enhanced at laser
frequencies of Ωc ± ωm.

20,21 Radiation-pressure-based feedback
with red detuning (Ωc − ωm) is currently one of the most
promising experimental techniques for suppressing thermal
motion and thereby accessing quantum behavior in mechanical
systems.22 Such low-κ optical systems can, however, be difficult
to attain and miniaturize.
Photothermal feedback places less stringent requirements on

the optical system (as we show in this work), and has been
explored in a broad range of mechanical device geometries
through experiment,9,10,12,18,23−26 simulation,27,28 and theoreti-
cal studies.10,23,29 While these works provide many insights into
the underlying physics, some neglect the thermally induced
change in resonator equilibrium position z0, while others
neglect the change in resonant frequency ω0. In this work, we
have developed bimetallic nanowires that are designed to be
especially susceptible to the photothermal force−devices in
which optically induced changes to z0 and ω0 cannot be
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neglected. Temperature-position coupling dz/dT is provided by
supporting bimetallic cantilevers at either end of the nanowire
(shown in Figure 1a) and induces self-oscillation as well as
changes in z0. Differential thermal contraction within the
cantilevers after metal deposition results in a permanent
displacement of the nanowire above its original plane of

fabrication; this displacement changes if the nanowire tension is
altered (e.g., by heating). Temperature−frequency coupling
dω0/dT, also due to changing tension, produces an overall shift
in ω0 (Figure 1c) and modifies motion through 2ω0 parametric
excitation of the resonant frequency. We adapt the perturbation
theory first discussed in ref 10 and present our results for a

Figure 1. Optomechanical system and experimental setup. (a) False-color scanning electron micrograph of our suspended device; blue, the SiN/Nb
bilayer. Arrows indicate the competing tensile force and bimetallic “torque” that provide dz/dT coupling. Inset: magnified top-down image of the
nanowire. (b) The experimental setup: nanowire absorption modulates the reflected laser power, which is recorded by a high-speed photodetector.
(c) Nanowire resonance at laser powers below the threshold for self-oscillation, driven inertially by a piezo actuator and sampled at 10 Hz; solid lines
are Lorentzian fits. Considerable frequency softening dω0/dT and Q-enhancement can be seen as P increases. (d) The optical intensity profile g(z)
versus distance z + ϕ to the Si mirror. Because the nanowire is much narrower than the incident laser beam, only ∼3% of laser light interacts with the
nanowire; of this 3%, the nanowire absorbs ∼70%. Self-oscillation occurs if the static nanowire is located in a shaded region and the power P is
sufficiently high. A dashed line indicates the Taylor-series approximation for g(z) used in the perturbation theory.

Figure 2. Photothermal self-oscillation. (a) Measured photodetector signal during nanowire self-oscillation (circles), and its decomposition into
Fourier components (solid lines). Although the nanowire motion is a near-pure sinusoid, the nonlinear optical readout results in detected harmonics
at integer multiples of the oscillation frequency. (b) Phase portraits of undriven nanowire motion as measured in the frequency domain by a
multichannel lock-in amplifier centered about the resonant frequency. X and Y denote cosine and sine components of motion. The critical power
needed for self-oscillation is Pcrit = 22 μW. Data below this power (lowest row) is a combination of thermal motion and detector noise, while data
above this power (upper rows) has a well-defined nonzero amplitude. Right-most panels are histograms along the Y axis. (c) Data points: amplitudes
of the self-oscillation signals shown in (b) versus laser power P. Solid lines are a best fit based on the IPT model described in the text.
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general optical intensity profile g(z). We then linearize the
governing coupled z,T equations to study nanowire behavior at
laser powers below the threshold for self-oscillation.
Our optomechanical system is depicted in Figure 1a,b. The

nanowire consists of a 40 μm × 55 nm × 25 nm (length ×
width × thickness) layer of high-stress Si3N4 onto which 20 nm
of Nb was deposited by sputtering. Low pressure chemical
vapor deposition (LPCVD) Si3N4 was chosen for its high Q
factors30 and ease of processing, and Nb was chosen for future
low-temperature experiments in which its superconductivity
will be utilized; for the present experiment, any optically
absorptive material will suffice. The extremely high aspect ratio
(∼1000:1, length/cross-section) of the nanowire enable it to
easily achieve out-of-plane deflections on length scales
comparable to our laser wavelength while also maintaining a
low thermal mass, and thus achieving higher temperatures for a
given laser power. By etching the underlying bulk Si to a depth
of 8 μm in a timed KOH bath, the nanowire is suspended above
a reflecting back-plane. Incident laser light (1/e2 beam diameter
dL ≈ 2.5 μm) is focused near the wire center and reflects off of
the underlying Si to form a standing wave of optical intensity;
our one-mirror optical system thus functions similarly to a very
low-finesse two-mirror cavity. Focusing is performed using a
10× microscope objective with 34 mm working distance and
NA = 0.28 (Mitutoyo M Plan objective). The total optical
power (or more precisely, the electric field energy density
|E⃗(z)|2) in a plane parallel to the mirror at a distance z is given
by Pg(z), where g(z) is the dimensionless intensity profile and
P is the incident beam power; all P values given throughout this
work signify this total beam power. Because the nanowire is
extremely narrow, it covers only a small fraction f ≈ 3% of the
incident beam by area and can therefore be assumed not to
influence g(z). It does, however, absorb a small portion of the
local power Pabs = af Pg(z) (where a is its absorption
coefficient), and nanowire motion generates fluctuations in
the reflected laser beam that can be measured using a high-
speed photodetector. If we denote by Ploss the power lost due to
absorption by the Si mirror, the signal measured by our
photodetector is proportional to P−Ploss−Pabs, as shown in
Figure 1d. This detection method has the benefit of utilizing
the same light that induces self-oscillation and is highly
nonlinear for oscillation amplitudes R ≳ λ/8, where λ = 640 nm
is the laser wavelength used. If the optical field profile g(z) is
known, this detector nonlinearity can be used to deduce the
absolute size of mechanical motion.
Self-oscillation of the nanowire is shown in Figure 2.

Measured in the time domain (Figure 2a), purely sinusoidal
motion with R ≈ λ/4 results in a detected signal that saturates
as z traverses the extremes of g(z). This results in detected
harmonics of the vibration frequency that can readily be
measured in the frequency domain. Figure 2b shows the
nanowire motion as measured by a multichannel lock-in
amplifier whose reference frequency is centered at the resonant
frequency ω0 ≈ 2π × 3 MHz with a 10 kHz bandwidth for
three different laser powers; the three harmonics shown (ω0,
2ω0, 3ω0) were measured simultaneously. The reference
frequency was adjusted at each power to follow the resonance.
Nanowire motion is plotted as X and Y quadratures, or in-phase
and π/2 out-of-phase components relative to a fixed phase. The
lower panel displays nanowire motion just below the critical
power (Pcrit = 22 μW), which is a combination of thermal
motion and electrical noise about the origin; this has the
expected Gaussian distribution. As P is increased above Pcrit, all

three harmonics demonstrate sharply defined nonzero
amplitudes. This optically induced motion has a phase that
randomly cycles through all possible angles at a rate much
faster than the data acquisition rate of ∼50 ms per point. All
plots show 1000 data points except for the lower panels that
each contain 2000 points. Figure 2c shows the amplitude of

these harmonics ( +X Y2 2 ) for many values of P. Solid lines
are a best fit (with a total of four free parameters) based on the
model described below. Deviation of the fit at high powers
could be due to aberrations of the standing wave g(z) caused by
the nanowire, which has been studied previously by refs 25 and
31. For the sake of simplicity, our fitting model neglects any
influence of the nanowire on g(z). All measured signals are
normalized by P, the incident laser power.
The governing differential equations for the position and

temperature of our photothermal system10 are

γ ω̈ + ̇ + + − =z z CT z DT(1 )( ) 0i0
2

(1)

τ
̇ + =T T PAg z

1
( )

(2)

Here z is the deflection of the nanowire midpoint (with z > 0
corresponding to motion away from the mirror), and ω0i and γ
are its intrinsic resonant frequency and mechanical damping at
P = T = 0. T denotes the nanowire temperature above ambient
and C, D are the changes in (squared) resonant frequency and
position per unit temperature, respectively; the resonant
frequency of this system thus depends on temperature as ω0

2

= ω0i
2 (1 + CT). The second equation above is Newton’s law of

cooling, where τ denotes the thermal diffusion time constant,
and the right-hand-side describes the heat input from the
incident laser. The parameter A = af/μ contains the nanowire’s
optical absorption a, thermal mass μ, and fractional laser
coverage f. Although the temperature will vary along the length
of the nanowire, we assume T to represent the temperature at
its center and calculate the thermal parameters A, C, and D
accordingly; detailed calculations of the parameters in eqs 1 and
2 are presented in Section S6 of the Supporting Information
(SI).
If the nanowire does not interact appreciably with the

incident laser, we can approximate the local optical field as

α β π ϕ
λ

= − +⎛
⎝⎜

⎞
⎠⎟g z

z
( ) sin

4 ( )
(3)

where α ≥ β ≥ 0 so that g(z) ≥ 0, and ϕ is the P = 0 nanowire
position within the standing wave. Note that we have expressed
g(z) such that the self-oscillation region (with dg/dz < 0, shown
in Figure 1d) is centered about z + ϕ = 0. If the incident light is
approximated as a plane wave, we have α = 1 + r and β = 2√r
where r is the reflection coefficient of the mirror. If instead an
incident Gaussian laser beam is assumed, the parameters α, β,
and ϕ become functions of z which depend on the mirror
reflectivity, the focused laser waist diameter, and the waist-
mirror distance, among other parameters (see Figure S5 of the
SI.). Throughout this work, in order to minimize the
complexity of our data modeling we use the former (plane
wave) assumption with r ≈ 0.35 corresponding to single-crystal
Si. This assumption of constant α, β, and ϕ is valid for the small
deflections z < λ/2 studied.
In other device geometries, large mechanical resonators can

generate significant internal and external optical reflections,
producing a Fabry−Perot interference effect which results in
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g(z) having sharper peaks and wider valleys or skewing its peaks
left or right. For this reason, we present our theoretical results
for a general intensity profile g(z). In all cases, however, g(z) is
periodic in λ/2.
During self-oscillation, our resonator displacement is well

modeled by z(t) = z0 + R cos(ωt) where R, ω are the oscillation
amplitude and frequency, respectively, and z0 is the temper-
ature-dependent equilibrium position. This last value can be
estimated by solving eqs 1 and 2 for the case of a static
nanowire, which give the implicit equation z0 = τDPAg(z0).
Near P = 0 this formula has only one solution for z0, but more
solutions emerge as P increases. For high enough P values,
solutions nearest z = 0 can cease to be valid; this suggests that
the static wire exhibits discontinuous jumps in z0 as P is
increased quasi-statically. The static solution to eqs 1 and 2 is
studied further in SI Section S2. While the static solution for z0
(and the corresponding temperature T0 = z0/D) is a useful
starting point for analyzing the self-oscillating nanowire, in what
follows we will show that typical oscillation amplitudes R
produce sizable changes to T0 (and z0).
Although eqs 1−3 are nonlinear and cannot be solved

exactly, perturbative methods can be applied. Here we employ
the Poincare-́Lindstedt method, which requires scaling γ, C, and
D in eq 1 by a small dimensionless parameter ε ≪ 1. Equations
1 and 2 can then be solved for z(t), T(t), and ω (the self-
oscillation frequency) to any desired order in ε. The method
also requires approximating g(z) by the first few terms of its
Taylor series. We thus expand g(z) about z + ϕ = 0 and keep
enough terms such that the optical field is accurately modeled
over an entire period |z + ϕ| < λ/4

ϕ ϕ ϕ ϕ≈ + + + + + + + +g z k k z k z k z k z( ) ( ) ( ) ( ) ( )0 1 3
3

5
5

7
7

(4)

where k0 = α, k1 = −4πβ, k3 = (32/3)π3β, k5 = −(128/15)π5β,
and k7 = (1024/315)π7β. A comparison of this approximation
with the exact g(z) is shown in Figure 1d. The perturbation
theory is presented in its entirety in SI Section S1, but the main
results are given below.
Using eq 4 and solving eqs 1 and 2 to order ε1 gives the

following equation for R
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Here we have introduced ω1
2 = ω0i

2(1 + CT0) as the new
resonant frequency and gz0

(n) as the nth derivative of g(z)
evaluated at z = z0. This result is hereafter referred to as the first
order perturbation theory (FOPT) solution. The number of
terms in eq 5 increases if more terms are kept in the Taylor

expansion eq 4 (following the clear pattern in c0...c3), however
the terms shown are sufficient to accurately model our
experimental data. We note that this equation assumes the
resonator is in the self-oscillation regime and thus is only valid
for laser powers at or above the critical threshold Pcrit.
Furthermore, despite eq 5 being a cubic function of R2 (and
thus having three complex solutions) with the Taylor expansion
chosen (eq 4) only one solution for R will be purely real; if
more terms are included in the expansion such that multiple
periods of g(z) are retained, multiple real solutions can exist,
each of which describes a possible state of the system.
As shown in the derivation provided in the SI, the nanowire

oscillation z(t) = z0 + R cos(ωt) results in temperature
fluctuations in the form of a Fourier series T(t) = T0 + ∑n = 1

∞

Tnω cos(nωt + θn). Of this series, the two components T1ω and
T2ω prove to be the most consequential. T1ω leads to the terms
in D in eq 5, while T2ω leads to the terms in C. The effect of C
is thus equivalent to parametric 2ω modulation of the resonant
frequency, while the effect of D is more direct. Equation 5 also
suggests that as z0 changes, C terms dominate near points of
g(z0) with even symmetry (extrema) while D terms dominate
near points of odd symmetry (inflection points). However, a
careful examination of the Lyapunov stability of this system
(given in SI Section S4) shows that the nanowire will not self-
oscillate in the case D = 0, C ≠ 0. We therefore conclude that D
initiates self-oscillation, while C only modifies it. Unlike other
mechanical systems in which 2ω parametric modulation can
induce oscillation,32,33 C here is incapable of doing so because
of the dependence of T2ω on R; see the SI for more details. The
onset of self-oscillation occurs when R = 0 in eq 5; this leads to
c0 = 0 and gives a critical laser power of

γ ω τ
ω τ

= −
+

P
DAg

(1 )

z
crit

1
2 2

1
2 2 (1)

0 (6)

This expression reveals the source of low critical power in our
nanowire: a combination of low thermal mass (and hence large
A), long thermal time constant ω1τ ≈ 400, and large coupling D
= 1.64 nm/K afforded by our cantilevers. Further, because γ, D,
and A are all positive, a negative optical gradient is needed for
self-oscillation. While the sensitivity of Pcrit on τ is rather weak
for ω1τ > 1, it is noteworthy that short time constants τ →0
inhibit self-oscillation. We revisit this later in the paper where
we discuss operation of the wires in the presence of N2 gas.
As mentioned above, FOPT predicts a change in the time-

averaged temperature of the nanowire due to self-oscillation.
This addition to T0 is

∑δ τ= − +
!=

T T PA
R g

n2 ( )n

n
z

n

n0 0
0

3 2 (2 )

2 2
0

(7)

The nanowire equilibrium position thus relocates to z0 = D(T0
+ δT0) during self-oscillation. Although one could proceed to
order ε2 in perturbation theory to account for this equilibrium
shift, the resulting algebraic expressions quickly become
cumbersome. An approach that is easier to implement and
was used to fit the data in Figure 2c is to recursively perform
FOPT while updating T0 and z0 with successive δT0 values.
Starting with the static nanowire solution (z0 = τDPAg(z0)), R
and δT0 are iteratively calculated until R converges on a fixed
value and δT0 converges on zero. This scheme is hereafter
referred to as iterated perturbation theory (IPT). We find in
practice that IPT converges most reliably if δT0 is multiplied by
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a small scaling factor (0.05 was used) before being added to T0;
convergence typically occurs within 20−100 iterations.
A comparison of FOPT, IPT, and numerical integration of

eqs 1−3 is shown in Figure 3a,b. The parameters used are
derived from the IPT fit to experimental data in Figure 2c; in
this fit, the only free parameters were ϕ, τ, dL, and an overall
vertical scaling factor. It should be noted that while IPT
reproduces the results of numerical integration almost exactly,
IPT requires significantly less computation time and makes
direct fitting of the experimental data possible; for numerical
integration, each data point required a time-trace of several
thousand cycles similar to that shown in Figure 3d. Figure 3c
shows the nanowire position as it moves through the optical
field. The deviation of z0 away from its static value due to δT0 is
clearly visible in Figure 3b. Interestingly, z0 trajectories from
numerical integration and static theory intersect at z0 + ϕ = 0,
that is, at the inflection point of g(z); here the odd symmetry of
g(z) results in δT0 = 0 in eq 7. The inflection point is crossed
by z0 at P ≈ 47 μW, while the maximum R value occurs at the
slightly higher power of P ≈ 56 μW.
As shown in the numerical integration results of Figure 3d,

self-oscillation requires roughly 104 oscillation cycles to reach
steady state at P = 60 μW. Qualitatively, we observe that this
“equilibration time” increases steadily for P values descending
toward Pcrit = 22 μW. Also shown in Figure 3d, the shift δz0 =
0.0251 λ due to self-oscillation exactly matches the observed
change in temperature δT0 = δz0/D = 10.1 K, where D = 1.64
nm/K for this system. The magnified region in the Figure 3d

inset shows that during self-oscillation z(t) is a nearly pure tone
at frequency ω1. Fourier analysis of this numerical data (not
shown) reveals that the next largest harmonic component is
2ω1, with 0.001% the amplitude of ω1 motion. It is the pureness
of this tone that leads to the excellent agreement between
numerical integration and IPT; after all, the perturbation theory
is predicated on the assumption z(t) = z0 + R cos(ω1t).
Numerical results for P > 60 μW reveal that higher harmonics
of the ω1 motion grow steadily as P increases, possibly
explaining the growing deviation from IPT seen in Figure 3a.
While higher harmonics of motion do not significantly affect
resonator dynamics for our present set of parameters, we note
that their effect on the dynamics of an optical-cavity-coupled
resonator are studied in detail in ref 34.
Perturbation theory can also be used to predict whether the

onset of self-oscillation will be exhibit hysteresis. Such behavior
is referred to as a subcritical Hopf bifurcation and would
manifest as a continuation of stable self-oscillation for some
range of powers as P is decreased below Pcrit. The distinction
between a hysteretic or nonhysteretic transition (subcritical or
supercritical bifurcation) depends upon whether c1 in eq 5 is
negative or positive. Therefore

ω

ω τ

ω

ω τ+
<

+

Dg Cg

1

2

1 4
z i z1

2 (3)

1
2 2

0
2 (2)

1
2 2

0 0

(8)

is the necessary condition for hysteresis. Because C < 0 in this
experiment, we would expect hysteretic behavior when z0 is

Figure 3. Detailed behavior of the nanowire according to fits of the experimental data. (a,b) Comparison of the oscillation amplitude R and
equilibrium position z0 calculated by perturbation theory and numerical integration with ϕ/λ = −0.114. Note that z0 = 0 at P = 0. The shift in z0 due
to self-oscillation is clearly visible in (b). (c) Nanowire position within the optical field g(z) as P increases. Red circles (spaced every 1 μW) indicate
the changing z0 value, while horizontal lines indicate the extent of R. (d) Numerical integration results at P = 60 μW with the initial condition (z, z,̇
T) = (0, 0, 0); only the upper and lower envelopes of oscillation are shown. In the lower panel, a solid line signifies the peak−peak moving average,
which is an indication of z0. The shift in z0 after t = 5 × 103 closely follows the trend in T(t) shown in the upper panel. Inset: magnified image of
these results near t = 104, showing the harmonic content of z(t) and T(t).
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near a maximum of g(z). The width of the hysteresis region
(i.e., how low P can be while still maintaining self-oscillation) is
calculated in SI Section S3.
Lastly, we focus on the behavior of our nanowire for laser

powers P < Pcrit. Because the vibration amplitude in this case is
typically much smaller than λ/4, it suffices to approximate g(z)
by a linear expansion about z = z0 in eq 2: g(z) ≈ g(z0) + gz0

(1)(z
− z0). Furthermore, because T2ω is expected to be small, we can
neglect any time-dependent CT terms in eq 1. This then leads
to the linearized equations

γ ω̈ + ̇ + − = ωx x x Du f e( ) i t
1
2

d (9)

τ
̇ + =u u PAg x

1
z
(1)

0 (10)

where we have introduced the new variables x = z − z0, u = T −
T0 and added the driving term fd at frequency ω. In this
linearized system we can safely use the complex solutions x =
x ̃eiωt and u = u ̃eiωt. On the basis of eq 10, these are related by u
= x(τPAgz0

(1))/(1 + iωτ). Substituting this into eq 9 and
collecting real and imaginary terms, one can recast the
mechanical system as x ̈ + γeffx ̇ + ωeff

2 x = fde
iωt where the

effective resonant frequency ωeff and damping γeff are
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First, we note that the photothermal terms in ωeff constitute a
roughly 1 part in 106 correction for the experimental
parameters used in this work; thus to very good approximation
ωeff = ω1. Next, we should expect self-oscillation to occur when
γeff = 0. Substituting P = Pcrit from perturbation theory (eq 6)
and ω = ω1 indeed gives γeff = 0, showing compatibility of these
two models. Interestingly, the photothermal damping shift on

resonance is γ γ γΔ = | − | ∝ ω τ
ω τ+eff 1

2 2

2 2 , which increases monot-

onically as τ → ∞. Long time constants ω1τ ≫ 1 therefore
strengthen the photothermal effect. This can also be seen by

setting =
τ

01 in eq 10, which results in u ∝ ix. In that case, u is

perfectly out of phase with x, meaning it contributes entirely to
damping in eq 9.
These results appear to be counter to those of previous

theoretical studies which model the photothermal effect as a
time-delayed back-action force F(t) ∝ τ−1∫ −∞

t dt′ I(x(t′))exp-
[−(t − t′)/τ], where I(x) is the position-dependent absorbed
light intensity.12,23 Such a model produces the result

γΔ ∝ ωτ
ω τ+

F
x1

d
d2 2 , which is maximized (in magnitude) when ωτ

= 1 and vanishes as τ→∞. The discrepancy here lies in dF/dx,
which was previously treated as an unknown constant. Adapting
our eqs 9 and 10 to such a model reveals that the thermal force
magnitude (i.e., the asymptotic value of F after a change in x) is
F = kDu = kDτPAgz0

(1) x, where k is the mechanical spring

constant. This then leads to γΔ ∝ ω τ
ω τ+1

2 2

2 2 , which is in

agreement with our present result.
We have experimentally tested eqs 11 and 12 for several

values of γ as shown in Figure 4. In these measurements γ was
varied by introducing pure N2 gas into our sample test
chamber; doing so added drag to the nanowire motion,
resulting in higher intrinsic damping γ and lowered Q factors
(Figure 4c). All preceding measurements were performed with
pressure ≪10−3 Torr. The fits shown in Figure 4a,b were
constrained at the lowest two pressures to maintain consistent
thermal parameters with the fit in Figure 2c. At higher
pressures, τ was allowed to vary, as nanowire interaction with
ambient gas likely increases its thermal dissipation rate. The
laser spot diameter dL and initial optical field position ϕ were
also allowed to differ from Figure 2c as each change in pressure
required manual refocusing, and the roughness of the Si back-
plane led to changes in ϕ based on laser positioning. Here ϕ/λ
= 0.044 compared to the value of −0.114 in Figure 2c; dL = 2.5

Figure 4. Nanowire behavior for P < Pcrit under various N2 pressures. (a,b) Nanowire effective damping γeff and resonant frequency ωeff. These values
were obtained from Lorentzian fits to piezo-driven resonance peaks such as those shown in Figure 1c. Stars in (a) indicate the measured onset of self-
oscillation. Solid lines are fits to eqs 11 and 12. (c) Q factors at P = 0 extrapolated from fits in (a,b). (d) Thermal diffusion rate 1/τ versus gas
pressure. Solid lines in (c,d) are guides to the eye, and errorbars denote ±1σ (68%) uncertainty ranges from the fits.
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μm for the two highest pressures and dL = 2.0 μm for all lower
pressures.
Curvature in the γeff and ωeff fits is due to the changing

equilibrium position z0 as P increases, and the resulting change
in gz0

(1). Because of this curvature, the γeff trajectory for 2.0 Torr
is not expected to enter self-oscillation at higher P values. It is
however possible that if z0 can extend to the next negative
region of gz0

(1), near z + ϕ = λ/2, P would be large enough to
support self-oscillation. We note that for the four values of
pressure where self-oscillation is seen, the two lowest pressures
yield Pcrit and Q values consistent with no added N2 gas. For the
case of the two higher pressures, 0.4 and 1 Torr, the
introduction of gas increases the damping (higher γeff) and
shortens the τ, requiring an additional power to overcome
damping. Above this pressure, self-oscillation cannot be reached
in our present setup. Even so, the results of Figure 4
demonstrate the capability of photothermal feedback to
counteract air damping at low pressures. Such optical Q-
enhancement could lower the stringent vacuum requirements
of typical microelectro-mechanical device applications.
We have presented an experimental and theoretical study of

photothermal feedback in mechanical nanowires. While the
device tested self-oscillates under the illumination of a 22 μW
laser beam, only ∼3% of this beam is incident on the ultrafine
nanowire, suggesting that incident powers of <1 μW are
ultimately necessary to induce motion. This is significantly
lower than the 500 μW to few milliwatts required in previously
studied free-space photothermal structures10,35 and lower still
than the ∼10 μW reported for an optical-cavity-coupled
photothermal structure,12 where the two-mirror cavity produces
much higher optical gradients dg/dz. The low power needed in
our system is attributable to the low thermal mass of the
nanowire and large temperature-position coupling D afforded
by the supporting cantilevers. A simple beam-theory calculation
suggests that D scales with cantilever length L and width W as
L3/W (see SI Section S7), suggesting that even stronger
photothermal effects can readily be achieved. We have observed
that the equilibrium position z0 of this system is strongly
tunable with incident laser power and can drastically affect
nanowire dynamics. Self-oscillation in this system is due in part
to temperature oscillations at the vibration frequency ω and to
parametric 2ω oscillations of the resonant frequency. The
perturbation theory used here can readily be adapted for
systems in which micromechanical resonators are coupled to
magnetic SQUID circuits, optical cavities, or other periodic
external systems.
It is well established that a self-oscillating system can become

entrained if a sufficiently strong driving force is applied, that is,
the system will oscillate at the driver frequency rather than its
own natural frequency.9,36−39 Such a system is promising for a
number of electromechanical applications, including narrow
bandpass filters and related electrical signal processing devices.
Although we have observed such behavior in our nanowires
(not shown here), further work is needed to extend the
perturbation theory to predict the entrainment bandwidth as a
function of driver strength and laser power.
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