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Abstract. We investigate the damped cubic nonlinear quasiperiodic Mathieu equation

d2x

dt2
+ (δ + ε cos t + εμ cos ωt)x + εμc

dx

dt
+ εμγ x3 = 0

in the vicinity of the principal 2:2:1 resonance. By using a double perturbation method which assumes that both ε and μ are small,

we approximate analytical conditions for the existence and bifurcation of nonlinear quasiperiodic motions in the neighborhood

of the middle of the principal instability region associated with 2:2:1 resonance. The effect of damping and nonlinearity on the

resonant quasiperiodic motions of the quasiperiodic Mathieu equation is also provided. We show that the existence of quasiperiodic

solutions does not depend upon the nonlinearity coefficient γ , whereas the amplitude of the associated quasiperiodic motion does

depend on γ .
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1. Introduction

In this paper, we study the effect of damping and cubic nonlinearity on the dynamics of the linear

quasiperiodic (QP) Mathieu equation

d2x

dt2
+ (δ + ε cos t + εμ cos ωt)x = 0. (1)

in the vicinity of 2:2:1 resonance. The stability and transition curves for this linear undamped QP

Mathieu Equation (1) were first studied by Rand and coworkers [1, 2] in the case μ = 1. Various tech-

niques were used successfully to confirm the validity of the obtained transition curves to Equation (1).

Figure 1a illustrates these curves in the case ε = 0.1. In order to understand this complicated figure

through analytical treatment, Rand et al. [3] applied a double perturbation procedure, which consists of

applying two successive perturbation methods, and determined the transition curves of the QP Mathieu

Equation (1) in the vicinity of 2:2:1 resonance.

In Rand et al. [3], Equation (1) was studied in the form

d2x

dt2
+

(
1

4
+ δ1ε + ε cos t + εμ cos(1 + ε�)t

)
x = 0. (2)

where δ = 1/4 + δ1ε and ω = 1 + ε�. When ε is small, both drivers in Equation (2) have frequency 1

or close to 1, while the unforced equation has natural frequency 1/2. This represents the 2:2:1 resonance
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Figure 1. Top (a): Stability of Equation (1) for ε = 0.1, μ = 1, obtained by numerical integration, from [2]. Black: stable, white:

unstable. Bottom (b): Perturbation approximation for transition curves separating stable and unstable regions near δ = 0.25,

ω = 1 (2:2:1 resonance) from [3].

case. Analytic expressions for the transitions curves separating stable and unstable regions were obtained

in Rand et al. [3] by using a double perturbation method valid for small ε and μ. In particular, the analytic

approximation of the transition curves bounding the largest of the local instability regions near δ = 0.25

and ω = 1 in Equation (1) were obtained in the form

ω = 1 + ε

(
S ± μ

(
1

2
+ δ1

S

))
+ O(ε2) (3)
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where

δ = 1

4
+ δ1ε and S =

√
4δ2

1 − 1 (4)

In Figure 1b, we show these curves for ε = 0.1 and μ = 1.

In the present work, we study the nonlinear damped version of the QP Mathieu Equation (2) in the

form

d2x

dt2
+ (δ + ε cos t + εμ cos ωt)x + εμc

dx

dt
+ εμγ x3 = 0. (5)

where c and γ represent damping and nonlinear component, respectively. Equation (5) can serve, for

instance, as a nonlinear damped one-mode model to study convective QP parametric instability in a

heated fluid layer vertically forced and thermally driven or to study convective QP gravity modulation

instability of a heated fluid layer. For the case of periodic gravity modulation, see [4] and for the

periodic thermally driven case, see [5]. The goal here is to investigate the effect of nonlinearity and

damping on the existence and bifurcation of QP motions in the vicinity of the principal resonance

2:2:1. In recent works, a similar equation to (5) has been studied. Zounes and Rand [8] investigated

the interaction of subharmonic resonance bands and transition from local to global chaos in a cubic

undamped nonlinear QP Mathieu equation using Chirikov’s overlap criterion [7, 8]. Belhaq et al. [9,

12] developed approaches for generating approximations to solutions of a damped cubic nonlinear QP

Mathieu equation. The method of multiple scales was applied twice in order to produce a doubly reduced

system whose stationary solutions correspond to QP motions of the original system. More precisely,

[9, 12] focused on the approximation of periodic solutions near the generating (principal) resonance

point 1:2 to the undamped nonlinear Mathieu equation (unperturbed slow flow). In addition, these

approximations were constructed in the vicinity of a stationary solution to the unperturbed autonomous

slow flow. This approach provides a local study to QP solutions near a resonant point. In contrast to

[9, 12], the contribution of the current paper focuses on the investigation of the effect of nonlinearity

and damping on the existence and bifurcation of QP motions in the vicinity of the middle of the largest

instability region to the QP Mathieu equation, namely near the principal resonance 2:2:1 corresponding

to δ = 0.25 and ω = 1 in Equation (1); see dashed curves in Figure 2. This treatment yields a global

analysis for the existence and bifurcation of QP motions near the resonant curve lying in the largest

instability region. Note that in Rand et al. [3], analytical approximations to this largest instability region

near 2:2:1 resonance were obtained for the linear QP Mathieu Equation (2).

2. Perturbations

We will study Equation (5) in the small ε limit by using the two-variable expansion perturbation

method [10] (also known as multiple scales [11]). We replace the independent variable t with two new

independent variables, ξ = t and η = εt (“slow time”). This results in the following expressions for

the derivatives of x

dx

dt
= ∂x

∂ξ
+ ε

∂x

∂η
and

d2x

dt2
= ∂x2

∂ξ 2
+ 2ε

∂x2

∂ξ∂η
+ ε2 ∂x2

∂η2
(6)
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Figure 2. The resonance condition (17) is displayed as a pair of dashed curves which lie in the middle of the instability region

shown in Figure 1b. Here ε = 0.1 and μ = 1.

We expand x in a power series in ε

x = x0 + εx1 + O(ε2) (7)

and substitute into Equation (5). Then, we collect terms

∂2x0

∂ξ 2
+ 1

4
x0 = 0 (8)

∂2x1

∂ξ 2
+ 1

4
x1 = −2

∂2x0

∂ξ∂η
− δ1x0 − x0 cos ξ − x0μ cos(ξ + �η) − cμ

∂x0

∂ξ
− γμx3

0 (9)

The solution of Equation (8) is given by

x0 = A(η) cos
ξ

2
+ B(η) sin

ξ

2
(10)

Substituting Equation (10) into (9) and removing secular terms gives the following parametric slow

flow system

d A

dη
= −μc

2
A +

(
δ1 − 1

2

)
B − μ

2
[A sin(�η) + B cos(�η)] + 3

4
γμ(A2 + B2)B (11)

d B

dη
= −μc

2
B −

(
δ1 + 1

2

)
A − μ

2
[A cos(�η) − B sin(�η)] − 3

4
γμ(A2 + B2)A (12)

Following [3], we study the slow flow (11), (12) for small μ by using a second perturbation expansion.

We expand A = A0 +μA1 +O(μ2) and B = B0 +μB1 +O(μ2). Substituting these into Equations (11),
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(12) and collecting terms, we get

d A0

dη
= B0δ1 − B0

2
(13)

d B0

dη
= −A0δ1 − A0

2
(14)

d A1

dη
= B1δ1 − B1

2
− d A0

dζ
+ 3B3

0γ

4
+ 3A2

0 B0γ

4
− A0 sin (�η)

2
− B0 cos (�η)

2
− A0c

2
(15)

d B1

dη
= −A1δ1 − A1

2
− d B0

dζ
− 3A0 B2

0γ

4
− 3A3

0γ

4
+ B0 sin (�η)

2
− A0 cos (�η)

2
− B0c

2

(16)

A0 and B0 in Equations (13) and (14) have frequency
√

δ2
1 − 1/4. The sin �η and cos �η terms in (15),

(16) will be resonant if � = 2
√

δ2
1 − 1/4. We consider this case and set

� = 2

√
δ2

1 − 1/4 or equivalently, δ1 = s

√
1 + �2

2
(17)

where s = ±1.

Equation (17) represents a pair of curves in the δ–ω parameter plane which lie in the middle of the

instability region shown in Figure 1b. See Figure 2. Note that in Equation (17), s = 1 corresponds to

the right branch of the dashed curves in Figure 2, while s = −1 corresponds to the left branch. Both

branches are included when Equation (17) is written in the form:

�2 = 4δ2
1 − 1 (18)

In what follows we shall be concerned with the dynamics of Equation (5) in the neighborhood of these

curves.

Equations (13) and (14) give

A0 = A01(ζ ) cos(�η/2) + A02(ζ ) sin(�η/2) (19)

B0 = �

2δ1 − 1
(A02(ζ ) cos(�η/2) − A01(ζ ) sin(�η/2)) (20)

Here A01(ζ ) and A02(ζ ) are functions of ζ = μη. Since η = εt is slow time, and since we have

assumed μ to be small, we shall refer to ζ as “slow slow time”, or “s.s. time” for brevity. Substituting

(19) and (20) into (15) and (16), and removing secular terms gives the following autonomous s.s. flow

system on A01 and A02

d A01

dζ
= − c

2
A01 −

[√
�2 + 1s

4�
+ 1

4

]
A02 + E

(
A2

01 + A2
02

)
A02, (21)

d A02

dζ
= − c

2
A02 −

[√
�2 + 1s

4�
+ 1

4

]
A01 − E

(
A2

01 + A2
02

)
A01. (22)
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where s = ±1 as in Equation (17) and where

E = − 3γ

8�3
(2�2 + 3)(s

√
�2 + 1 + 1) (23)

Equations (21) and (22) may be simplified by transforming to polar coordinates, A01 = r cos θ, A02 =
r sin θ . This leads to

dr

dζ
= − c

2
r −

[√
�2 + 1s

4�
+ 1

4

]
r sin 2θ (24)

dθ

dζ
= −

[√
�2 + 1s

4�
+ 1

4

]
cos 2θ + Er2 (25)

Equilibria in the s.s. flow (24), (25) will correspond to quasiperiodic motions in the original

Equation (5). Solving the RHS of (24) for sin 2θ , we obtain

sin 2θ = − 2c�√
�2 + 1s + �

(26)

Bifurcation cases correspond to sin 2θ = ±1. Using Equation (17) the bifurcation cases may be

written:

2c� = ±(2δ1 + �) or equivalently, � =
(

2

±2c − 1

)
δ1 (27)

The last equation in (27) plots as two straight lines through the origin in the δ1-� plane. The corre-

sponding bifurcation points (call them P) correspond to the intersection of these lines with the resonance

curves (18) which are depicted as dashed curves in Figure 2. The associated bifurcations are pitchforks

of s.s. flow equilibria. In the portions of the resonance curves (18) which lie between the bifurcation

points P there exists a pair of nontrivial s.s. flow equilibria, both stable since the origin from which

they bifurcate is unstable. See Figure 3 where we show points on the resonance curves (18) which cor-

respond to systems with quasiperiodic motions (nontrivial slow flow equilibria) versus systems whose

steady state is only the origin. Note that there is a qualitative difference between c ≤ 1 versus c > 1.

When the damping coefficient c > 1, only a finite portion of the resonance curve (17) corresponds to

nontrivial slow flow equilibria, whereas when c ≤ 1, the corresponding portion of the resonance curve

is infinite. This result is obtained by substituting the last equation in (27) into the resonance curves

Equation (18), giving:

�2 =
(

2

±2c − 1

)2

δ2
1 = 4δ2

1 − 1 (28)

Solving for δ2
1, we obtain:

δ2
1 = (±2c − 1)2

16c(c ± 1)
(29)

For a real value of δ1, the RHS of (29) must be nonnegative. In the case of the upper sign in (29)

there is no restriction on the damping coefficient c (which is assumed to be positive). However, in the

case of the lower sign, we must require c > 1.
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Figure 3. The resonance curves (18) and the straight lines (27) plotted in the δ1–� plane for c > 1 (top) and c ≤ 1 (bottom).

The intersection points P mark the location of pitchfork bifurcations. Quasiperiodic motions (s.s. flow equilibria) exist only on

those portions of the resonance curves that are drawn solid. The origin is unstable on the solid portions of the resonance curves,

and stable on the dashed portions.

We may further examine the effect of damping c on the existence of s.s. flow equilibria by solving

sin 2θ = ±1 in Equation (26) for �:

� = s

2
√

c
√

c − 1
and � = − s

2
√

c
√

c + 1
(30)
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Figure 4. Bifurcation curves in the c–� plane of s.s. (slow slow) flow (21)–(22) for s = 1 (top) and s = −1 (bottom). Here, as

in Equation (17), s = 1 corresponds to the right branch of the dashed curves in Figure 2, while s = −1 corresponds to the left

branch. In the region I, in both figures, there exists only a stable trivial solution. In region II, the trivial solution becomes unstable

and coexists with two nontrivial stable fixed points. A pitchfork bifurcation occurs by crossing region I to region II.

Equations in (30) plot as curves in the c–� parameter plane, see Figure 4. For a given value of c, the

plots in Figure 4 give the values of �, or equivalently, of ω = 1 + ε�, for which the nontrivial pair

of s.s. flow equilibria exist. Here again we see that when the damping coefficient c > 1, only a finite

portion of the resonance curve (17) corresponds to nontrivial slow flow equilibria, whereas when c ≤ 1,

the corresponding portion of the resonance curve is infinite. Cf. Figures 3 and 4.
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Now solving the RHS of Equation (25) for the amplitude r , and considering Equation (26), we obtain:

r =
√

2|�| [(� − 2c� + 2δ1)(� + 2c� + 2δ1)]1/4[
3(2�2 + 3)|γ (2δ1 + 1)|]1/2

(31)

where δ1 is given by Equation (17). For a real solution r in Equation (31) we must have

(� − 2c� + 2δ1)(� + 2c� + 2δ1) > 0 (32)

Note that this inequality is related to Equation (27), i.e., the nontrivial s.s. flow equilibria must lie in

region II of Figure 4.

In Figure 5, we show the amplitude r as given by Equation (31) as a function of the detuning � for

both cases c ≤ 1 and c > 1 and for left and right branches of the resonance curve (17), s = −1 and

s = 1, respectively. It is interesting to note that although the two branches of the resonance curve (17)

are point symmetric in the parameter plane with respect to the point (δ = 0.25, ω = 1) (Figure 2), that

is, to (δ1 = 0, � = 0), the nonlinear behavior along these curves does not share this symmetry. This

may be seen directly from Equations (11) and (12) by noticing that these equations are invariant under

the transforation

� �→ −�, δ1 �→ −δ1, A �→ B, B �→ A, γ �→ −γ (33)

Thus, the left (s = −1) branch of the resonance curve (17) in a system with parameter γ will exhibit

the same dynamical behavior as the right branch (s = 1) would using parameter −γ . Only in the case

of γ = 0 (no nonlinear terms in Equation (5)) will the left and right branches have the same behavior

dynamical behavior.

3. Conclusions

In this paper, we have studied the existence and bifurcation of QP solutions in the vicinity of the principal

resonance 2:2:1 in the damped nonlinear QP Mathieu equation. We have used the two-variable expansion

perturbation method, in the small ε limit, and derived the first slow flow parametric system. In a second

step, we have performed a second perturbation expansion, for small μ, on the slow flow to investigate

QP solutions in the neighborhood of the resonant curve lying in the middle of the stability region of

the linear QP Mathieu equation (see Figure 2). The equilibria of the resulting s.s. (slow slow) flow

autonomous system corresponding to quasiperiodic motion of the original equation were studied and

the effect of damping on the existence of these QP motions near the resonant curve was discussed.

Our investigation focused on the middle of the principal instability region associated with 2:2:1 reso-

nance [3], as shown in Figure 2. Figure 4 shows that the increase of the damping in Equation (5) restricts

the zone of instability of the origin as seen in Figure 3. A pitchfork bifurcation in s.s. flow equilibria

occurs as we move from region I to region II in Figure 4. The stable trivial solution, which is the only

steady state in region I in Figure 4, becomes unstable and two stable spirals are born as we enter region II.

We note that the conditions (25) for the existence of quasiperiodic motions do not depend upon

the nonlinearity coefficient γ . This may be explained by the fact that the pair of s.s. flow equilibria

corresponding to these quasiperiodic motions only exist when the s.s. flow equilibrium at the origin

is unstable. But the stability of the origin depends only on local conditions near the origin and thus
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Figure 5. The amplitude r of the quasiperiodic motion, as given by Equation (31), plotted as function of the detuning parameter

�. Solid line is c = 0.9, dashed line is c = 1.2. Here γ = 1.

does not depend on the nonlinearity coefficient. On the other hand, the amplitude r of the associated

quasiperiodic motion does depend on γ , see Equation (31).
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