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Abstract Instabilities associated with 2:1 and 4:1 res-
onances of two models for the parametric forcing of
a strictly nonlinear oscillator are analyzed. The first
model involves a nonlinear Mathieu equation and the
second one is described by a 2 degree of freedom
Hamiltonian system in which the forcing is introduced
by the coupling. Using averaging with elliptic func-
tions, the threshold of the overlapping phenomenon
between the resonance bands 2:1 and 4:1 (Chirikov’s
overlap criterion) is determined for both models, of-
fering an approximation for the transition from local
to global chaos. The analytical results are compared
to numerical simulations obtained by examining the
Poincaré section of the two systems.
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1 Introduction

In this paper, we compare two models for the parametric
forcing of a strictly nonlinear oscillator. The unforced
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oscillator is of the form

d2x
dt2

+ x3 = 0 (1)

The first model, which may be described as a nonlinear
Mathieu equation, is of the form

d2x
dt2

+ x3(1 + ε cos t) = 0 (2)

The second model consists of a 2 degree of freedom
Hamiltonian system:

d2x
dt2

+ x3(1 + εy) = 0 (3)

d2 y
dt2

+ y = −ε
x4

4
(4)

Note that Equation (3) is analogous to Equation (2)
if we identify y(t) with the forcing function cos t of
(2). However, in the first model (2), the forcing func-
tion has constant frequency and constant amplitude,
while in the second model (3), (4), the forcing is ac-
complished by coupling the unforced oscillator (1) to a
second oscillator (the “motor”). This takes into account
the load on the motor, so that in the second model the
forcing function does not have constant frequency or
amplitude.

In both models, we will be interested in comparing
the instabilities associated with 2:1 and 4:1 resonances.
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In particular, this will involve the overlapping phe-
nomenon of the associated resonance bands. To this
end, we apply the averaging method to first order in the
small parameter ε involving Jacobian elliptic functions,
and we use Chirikov’s overlap criterion [1], which
offers an approximation for the transition from local
to global chaos. The critical value of ε at which the
two resonance bands overlap corresponds to the col-
lision between the separatrices of the two resonance
regions emanating from the corresponding hyperbolic
fixed points of the Poincaré map.

This collision idea has been implemented to obtain
analytical criterion of homoclinic bifurcation in planar
and three-dimensional autonomous systems [2, 3]. The
objects involved in the collision here are a hyperbolic
fixed point and a limit cycle.

In recent paper, Zounes and Rand applied Chirikov’s
overlap criterion to investigate the interaction of sub-
harmonic resonances in a quasi-periodic Mathieu equa-
tion [4]. They used Lie transform perturbation theory
with elliptic functions and derived analytical expres-
sions on parameters at which subharmonic bands in a
Poincaré section of action space overlap.

Similar systems to (2), (3), and (4) have been studied,
in the case in which the unforced oscillator (1) is linear,
and comparisons of the corresponding Poincaré maps
have been presented [5].

It is to be noted that the present treatment involves
Hamiltonian systems, i.e., systems that have no damp-
ing. Although the effect of damping is known to gener-
ally reduce resonance response [6], we have not inves-
tigated the effect of damping on the Chirikov overlap
criterion.

2 Nonlinear Mathieu equation

In this section, we use the method of averaging to in-
vestigate instabilities in Equation (2) due to 2:1 and
4:1 resonances. The exact solution to (2) involves the
Jacobian elliptic function cn [7]:

x(t) = A cn(At, k) (5)

where k = 1/
√

2 and A is the amplitude. The period
of x(t) in t is 4K (k)/A, where K (k) is the complete
integral of the first kind. As shown in [8, 9], variation
of parameters for the equation

d2x
dt2

+ x3 = ε f (6)

takes the form

dA
dt

= ε f
cn′

A
(7)

dφ

dt
= A

4K
− ε f

cn

4K A2
(8)

Here f = −x3ε cos t , cn′ = ∂cn(u, k)/∂u where u =
4Kφ, and φ = At/4K . Hence, the solution of
Equation (2) can be written in the form

x = A cn(4Kφ, k) (9)

Using the Fourier expansion for cn given by Byrd and
Friedman [7], we obtain

cn

(
2K
π

q
)

= 0.955 cos(q) + 0.043 cos(3q) + · · ·

(10)

where K = K (1/
√

2) � 1.854.
Equation (10) can be replaced by the following ap-

proximation

cn

(
2K
π

q
)

� cos(q) (11)

Using the approximation (11), Equation (9) becomes

x = A cos θ where θ = 2πφ (12)

and Equations (7) and (8) become

dA
dt

= −ε f
sin θ

Aμ
(13)

dφ

dt
= A

μ
− ε f

cos θ

A2μ
(14)

where μ = 2K/π � 1.18. Substituting the expression
of f into (13) and (14) via (12), we obtain the following
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slow flow

dA
dt

= A2ε sin(t + 4θ )

16μ
+ A2ε sin(t + 2θ )

8μ

− A2ε sin(t − 2θ )

8μ
− A2ε sin(t − 4θ )

16μ
, (15)

dθ

dt
= Aε cos(t + 4θ )

16μ
+ Aε cos(t + 2θ )

4μ

+ Aε cos(t − 2θ )

4μ
+ Aε cos(t − 4θ )

16μ

+ 3Aε cos t
8μ

+ A
μ

(16)

Next, we apply the method of averaging (see [10]).
We posit a near-identity transformation for each of the
variables A, θ as follows

A = Ā + εW1( Ā, θ̄ , t) + O(ε2) (17)

θ = θ̄ + εW2( Ā, θ̄ , t) + O(ε2) (18)

where W1 and W2 are the generating functions which
will be chosen so as to simplify the resulting slow flow
as much as possible. Differentiating (17) and (18), we
obtain

dA
dt

= d Ā
dt

+ ε

(
∂W1

∂θ̄

dθ̄

dt
+ ∂W1

∂ Ā
d Ā
dt

+ ∂W1

∂t

)
+O(ε2)

(19)

dθ

dt

= dθ̄

dt
+ ε

(
∂W2

∂θ̄

dθ̄

dt
+ ∂W2

∂ Ā
d Ā
dt

+∂W2

∂t

)
+O(ε2)

(20)

By inspection of Equations (13) and (14), we see that
Equations (19) and (20) become, neglecting terms of
O(ε2),

d A
dt

= d Ā
dt

+ ε

(
∂W1

∂θ̄

Ā
μ

+ ∂W1

∂t

)
(21)

dθ

dt
= dθ̄

dt
+ ε

(
∂W2

∂θ̄

Ā
μ

+ ∂W2

∂t

)
(22)

Now substitute (21) and (22) into Equations (15) and
(16) and choose W1 and W2 to eliminate as many terms
as possible. To eliminate all terms from the right-hand
sides of the Equations (15) and (16), we choose W1 and
W2 as

W1( Ā, θ̄ , t) = − Ā2

16(4 Ā + μ)
cos(t + 4θ )

− Ā2

8(2 Ā + μ)
cos(t + 2θ )

− Ā2

8(2 Ā − μ)
cos(t − 2θ )

− Ā2

16(4 Ā − μ)
cos(t − 4θ ) (23)

and

W2( Ā, θ̄ , t) = − (4 − μ) Ā2 + μ Ā
16(4 Ā + μ)2

cos(t + 4θ )

− (4 − μ) Ā2 + 2μ Ā
8(2 Ā + μ)2

cos(t + 2θ )

− (4 − μ) Ā2 + 2μ Ā
8(2 Ā − μ)2

cos(t − 2θ )

− (4 − μ) Ā2 + μ Ā
16(4 Ā − μ)2

cos(t − 4θ ) (24)

The resulting (non-resonant) slow flow is given by

d Ā
dt

= 0 (25)

dθ̄

dt
= Ā

μ
(26)

Note that Equations (23) and (24) have vanishing de-
nominators when A = μ/2 or A = μ/4, which means
that the terms with sin / cos(t − 2θ ) and sin / cos(t −
4θ ) are resonant. We investigate these cases next.

2.1 The 2:1 resonance

In order to investigate what happens close to the 2:1
resonance, that is, when A ≈ μ/2 = 0.59, we omit re-
moving the terms which cause the resonance. Writing
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ψ = 2θ − t , Equations (23) and (24) become

dA
dt

= εA2 sin(ψ)

8μ
, (27)

dψ

dt
= −−εA cos(ψ) + 2μ − 4A

2μ
(28)

Equilibria of the slow flow (27) and (28) correspond
to periodic motions in the original Equation (2). The
condition for equilibrium is (dA)/(dt) = (dψ)/(dt) =
0, which gives from Equation (27)

ψ = 0 or ψ = π (29)

Substituting (29) into the right-hand side of (28) and
solving for A, we obtain

(
ψ0 = 0, A21− = 2μ

ε + 4

)
and(

ψπ = π, A21+ = 2μ

4 − ε

)
(30)

Next we investigate the stability of these slow flow
equilibria. The Jacobian matrix of the slow flow (27)
and (28) gives tr(J ) = 0 and det(J ) < 0 for (A21−, 0)
which is therefore a saddle and tr(J ) = 0 and det(J ) >

0 for (A21+, π ) which is a center.
In order to determine the equation of the separatrix,

we divide Equation (27) by Equation (28)

dA
dψ

= − εA2 sin(ψ)

4 (−εA cos(ψ) + 2μ − 4A)
(31)

and integrate Equation (31). Using the condition that
the separatrix passes through the saddle point to evalu-
ate the constant of integration, we obtain the following
equation

A4(3ε cos(ψ) + 12) − 8A3μ

3
μ = − 16μ4

3(ε + 4)3
(32)

To determine the thickness of the 2:1 resonance band,
we consider a point A∗ which is located at ψ = π ,
being a vertical distance r21 from the center:

A∗ = A21+ + r21 (33)

where A21+ is given by (30). Introducing (33) into (32)
and solving for r21, we obtain

2r21 = μ
√

ε

2
(34)

where μ = 1.18. This gives the value of the thickness
2r21 of the 2 : 1 resonance band as a function of ε.

2.2 The 4:1 resonance

Following the same analysis as was done for the 2:1
resonance, we now omit removing terms which cause
the 4:1 resonance in the slow flow (15) and (16), which
gives

dA
dt

= εA2 sin(ψ)

16μ
, (35)

dψ

dt
= −−εA cos(ψ) + 4μ − 16A

4μ
(36)

Equilibria of the slow flow (35) and (36) again corre-
spond to periodic motions in the original Equation (2),
and are now given by(

ψ0 = 0, A41− = 4μ

ε + 16

)
and(

ψπ = π, A41+ = 4μ

16 − ε

)
(37)

where (A41−, 0) is a saddle and (A41+, π ) is a center.
In order to determine the equation of the separatrix,

we divide Equation (35) by Equation (36)

dA
dψ

= − εA2 sin(ψ)

4 (−εA cos(ψ) + 4μ − 16A)
(38)

and we integrate Equation (38). Again using the condi-
tion that the separatrix passes through the saddle point,
we obtain

A4(3ε cos(ψ) + 48) − 16A3μ

3
= − 256μ4

3(ε + 16)3
(39)

The thickness of the 4:1 resonance band is obtained
by considering a point A∗ which is located at ψ = π ,
being a vertical distance r41 from the center:

A∗ = A41+ + r41 (40)
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where A41+ is given by (37). Introducing (40) into (39)
and solving for r41, we obtain

2r41 = μ
√

ε

8
(41)

where μ = 1.18. This gives the value of the thickness
2r41 of the 4:1 resonance band as a function of ε.

2.3 Overlap criterion

In this section, we apply Chirikov’s overlap criterion
[1] to derive a value for ε at which the two primary sub-
harmonic resonance bands (2:1 and 4:1) first overlap.
As ε is increased, the two zones will first overlap when
the minimum A for the 2:1 resonance band reaches the
maximum A for the 4:1 resonance band

A21+ − r21 = A41+ + r41 (42)

From (30), (34), (37), and (41), we obtain the following
equation on ε

2μ

4 − ε
− μ

√
ε

4
= 4μ

16 − ε
+ μ

√
ε

16
(43)

By neglecting terms of O(ε) and solving (43) for ε,
we obtain an approximation for εc, which is the critical
value of ε corresponding to a transition from local to
global chaos:

εc = 0.64 (44)

In Fig. 1, we show the 2 : 1 and 4 : 1 resonance bands
in the (θ, A) phase space given by Equations (32) and
(39). Figure 2 displays the growth of these resonance
bands as ε increases.

Figure 3 illustrates the Poincaré section of
Equation (2) for ε = 0.1, displayed in the (x, ẋ) plane
and obtained by numerical integration of Equation (2).
Figures 4 and 5 show comparable Poincaré sections for
ε = 0.3, 0.4, 0.5, and 0.6. From these figures, we can
see the growth of 2:1 and 4:1 resonance bands as ε in-
creases. In Fig. 4, we see local chaos appearing near the
saddles. Figure 5 shows the mechanism of overlapping
between the 2:1 and 4:1 resonance bands.

0 2 4 6

θ

0.2

0.4

0.6

0.8

A

2 : 1 Resonance band

4 : 1 Resonance band

ε = 0.1

aaaaa

Fig. 1 The 2:1 and 4:1 resonance bands in the (θ, A) plane given
by Equation (32), with ψ = 2θ , and Equation (39), with ψ = 4θ ,
for ε = 0.1

θ

aaaaa

ε = 0.6
ε = 0.3

ε = 0.1

0.4

0.4

A

0.4
2 4 60

Fig. 2 The 2:1 and 4:1 resonance bands in the (θ, A) plane given
by Equation (32), with ψ = 2θ , and Equation (39), with ψ = 4θ ,
for various values of ε

3 Two coupled nonlinear oscillators

In this section, we use averaging to investigate in-
stabilities in Equations (3) and (4) due to 2:1 and
4:1 resonances. Note that Equations (3) and (4) are
a Hamiltonian system. For such systems KAM theory
[11] tells us that local chaos exists in the neighbor-
hood of resonances. As ε is increased, the KAM pic-
ture of local pockets of chaos separated by invariant tori
becomes inapplicable and is replaced by global chaos.
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Fig. 3 Poincaré section in
the (x, ẋ) plane obtained by
numerically integrating
Equation (2) with ε = 0.1.
Note the presence of the
large 2:1 resonance band
(characterized by two
saddles and two centers)
and the small 4:1 resonance
band (characterized by four
saddles and four centers). In
between these two can be
seen part of a 3:1 resonance
band (not treated in this
paper)

The Hamiltonian of the system (3) and (4) has the form

H = ẋ2

2
+ ẏ2

2
+ x4

4
+ y2

2
+ ε

x4

4
y (45)

For the unperturbed system (ε = 0), Equations (3) and
(4) become

d2x
dt2

+ x3 = 0 (46)

d2 y
dt2

+ y = 0 (47)

and the Hamiltonian becomes

H = ẋ2

2
+ ẏ2

2
+ x4

4
+ y2

2
(48)

The exact solutions to Equations (46) and (47) are given
by

x = A cn(At, k), k = 1/
√

2 (49)

y = R cos ψ (50)

Substituting Equations (49) and (50) into Equation
(48), we obtain

H = R2

2
+ A4

4
(51)

As shown earlier, Equation (49) may be approximated
by

x = A cos θ (52)

Here θ = 2πφ and φ = At/4K , μ = 2K/π where
K = K (k) � 1.854 is the elliptic integral of the first
kind.

As shown in [9], variation of parameters for the
equations

d2x
dt2

+ x3 = ε f (53)

d2 y
dt2

+ y = εg (54)

takes the form

dA
dt

= −ε f
sin θ

Aμ
(55)

dθ

dt
= A

μ
− ε f

cos θ

A2μ
(56)

dR
dt

= −εg sin ψ (57)

dψ

dt
= 1 − εg

cos ψ

R
(58)
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Fig. 4 Poincaré section in
the (x, ẋ) plane obtained by
numerically integrating
Equation (2) with ε = 0.3
(top) and ε = 0.4 (bottom).
Note the growth of the 2 : 1
and 4 : 1 resonance bands
and the appearance of local
chaos near the saddles

Now we take f = −x3 y and g = −x4/4 and
substitute for x and y their expressions given
in (49) and (50), then expand and reduce the
trig terms, whereupon Equations (55) through (58)
become

dA
dt

= εR A2 sin(ψ + 4θ )

16μ

+εR A2 sin(ψ + 2θ )

8μ
− εR A2 sin(ψ − 2θ )

8μ

−εR A2 sin(ψ − 4θ )

16μ
(59)

dθ

dt
= εR A cos(ψ + 4θ )

16μ
+ εR A cos(ψ + 2θ )

4μ

+ εR A cos(ψ − 2θ )

4μ
+ εR A cos(ψ − 4θ )

16μ

+ 3εAR cos(ψ)

8μ
+ A

μ
(60)

dR
dt

= εA4 sin(ψ + 4θ )

64μ
+ εA4 sin(ψ + 2θ )

16μ

+ εA4 sin(ψ − 2θ )

16μ
+ εA4 sin(ψ − 4θ )

64μ

+ 3εA4 sin(ψ)

32
(61)
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Fig. 5 Poincaré section in
the (x, ẋ) plane obtained by
numerically integrating
Equation (2) with ε = 0.5
(top) and ε = 0.6 (bottom).
Note that the 2 : 1 and 4 : 1
resonance bands begin to
touch at ε = 0.5 and
become globally chaotic at
ε = 0.6

dψ

dt
= εA4 cos(ψ + 4θ )

64R
+ εA4 cos(ψ + 2θ )

16R

+ εA4 cos(ψ − 2θ )

16R
+ εA4 cos(ψ − 4θ )

64R

+ 3εA4 cos(ψ)

32R
+ 1 (62)

3.1 The 2:1 resonance

As in the case of the first model presented earlier, we ap-
ply the method of averaging to these equations. Specif-
ically, we posit a near identity transformation for each
of the variables R, A, ψ , and θ , and we choose the gen-
erating functions to remove all the terms except those

Springer



Nonlinear Dyn (2007) 50:147–160 155

which represent a resonance. We begin with the 2 : 1
resonance and write the Equations (59) and (62) in the
form

dA
dt

= −εR A2 sin v

8μ
(63)

dR
dt

= εA4 sin v

16
(64)

dv

dt
= −εAR cos v

2μ
+ εA4 cos v

16R
− 2A

μ
+ 1 (65)

where v = 2θ − ψ .
This three-dimensional system can be simplified by

dividing Equation (64) by Equation (63), giving

dR
dA

= −μA2

2R
(66)

Integrating Equation (66), we obtain the first integral

R2

2
+ μA3

6
= k1 = constant (67)

A second first integral is

8R2 + 4A4 + εA4 R cos v = k2 = constant (68)

Equilibria of the slow flow Equations (63)–
(65) correspond to periodic motions in the original
Equations (3) and (4). In order to obtain expressions
for the slow flow equilibria and to investigate their sta-
bility, we proceed as follows: we solve Equation (67)
for R and substitute the resulting expression in Equa-
tions (63) and (65) to obtain two equations in A and v

of the form

dA
dt

= −ε
√

2k1 − μA3/3 A2 sin v

8μ
(69)

dv

dt
= −εA

√
2k1 − μA3/3 cos v

2μ

+ εA4 cos v

16
√

2k1 − μA3/3
− 2A

μ
+ 1 (70)

Equilibria in Equations (69) an (70) may be obtained
by setting the right-hand sides equal to zero, giving

v = 0 or v = π (71)

In the case of the 2:1 resonance, we set

A = μ

2
+ εu (72)

We substitute (72) into the right-hand side of (70), and
we solve for u, giving

for v = 0,

u = −
√

48k1 − μ4(11
√

6μ5 − 384
√

6k1μ)

768μ4 − 36864k1
, (73)

for v = π,

u =
√

48k1 − μ4(11
√

6μ5 − 384
√

6k1μ)

768μ4 − 36864k1
. (74)

Linearizing in the neighborhood of these equilibria,
we find that v = 0 is a saddle while v = π is a center. To
determine the equation of the separatrix, we eliminate
R from Equation (68) using Equation (67) to find

A4ε
√

2k1 − A3μ/3 cos v + 8(2k1 − A3μ/3)

+ 4A4 = k2 (75)

We choose k2 so that the separatrix passes through the
saddle at v = 0. This gives the following value for k2

k2 = (192k1 − μ4)

12
+ ε

√
6
√

48k1 − μ4 μ4

192
+ O(ε2)

(76)

In order to determine the width of the separatrix at
v = π , we substitute Equation (76) into Equation (75),
then set v = π and A = μ/2 + √

εD21/2, where D21

represents the width of the separatrix to O(
√

ε). We
obtain

D21 =
(

μ2
√

48k1 − μ4

8
√

6

)1/2

(77)

3.2 The 4:1 resonance

Following the same analysis as for the 2 : 1 resonance,
the slow flow that describes the dynamics close to the
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4 : 1 resonance is given by

dA
dt

= −εR A2 sin v

16μ
(78)

dR
dt

= εA4 sin v

64
(79)

dv

dt
= −εAR cos v

4μ
+ εA4 cos v

64R
− 4A

μ
+ 1 (80)

where v = 4θ − ψ .
We simplify this three-dimensional system by divid-

ing Equation (79) by Equation (78) to obtain

dR
dA

= −μA2

2R
(81)

Integrating Equation (81) yields

R2

2
+ μA3

12
= k3 = constant (82)

A second first integral is

32R2 + 16A4 + εA4 R cos v = k4 = constant (83)

Equilibria of the slow flow equations (78)–(80) cor-
respond to periodic motions in the original Equations
(3) and (4). In order to obtain expressions for the slow
flow equilibria and to investigate their stability, we pro-
ceed as follows: we solve Equation (82) for R and sub-
stitute the resulting expression in Equations (78) and
(80) to obtain two equations on A and v.

The equilibria are similar to the 2:1 case: v = 0 is a
saddle and v = π is a center. Moreover, the variable u
is now defined by

A = μ

4
+ εu (84)

To determine the equation of the separatrix, we elim-
inate R from Equation (83) using Equation (82). This
leads to

A4ε
√

2k3 − A3μ/6 cos v + 32(2k3 − A3μ/6)

+ 16A4 = k4 (85)

We choose k4 so that the separatrix passes through the
saddle at v = 0, giving

k4 = (3072k3 − μ4)

48

+ ε

√
6
√

768k3 − μ4 μ4

12288
+ O(ε2) (86)

In order to determine the width of the separatrix at
v = π , we substitute Equation (86) into Equation (85),
then set v = π and A = μ/4 + √

εD41/2, where D41

is the width of the separatrix to O(
√

ε). We obtain

D41 =
(

μ2
√

768k3 − μ4

512
√

6

)1/2

(87)

3.3 Overlap criterion

Now we apply Chirikov’s overlap criterion to derive an
approximate value for ε at which the two primary sub-
harmonic resonance bands (2:1 and 4:1) first overlap.
Equating the minimum A for the 2:1 resonance band to
the maximum A for the 4 : 1 resonance band leads to

μ

2
− √

ε
D21

2
= μ

4
+ √

ε
D41

2
(88)

Substituting Equations (77) and (87) into Equation (88)
and solving in ε, we find the following expression
for εc

εc = 128
√

6

[(768k3 − μ4)1/4 + 8(48k1 − μ4)1/4]2
(89)

Note that the critical value of ε depends on the value
of the constants k1 and k3 which will correspond to
the energy h given by the Equation (51). Thus, from
Equations (51), (67), and (82) we have

k1 = h − A4

4
+ μA3

6
(90)

k3 = h − A4

4
+ μA3

12
(91)
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Next we set A = μ/2 in Equation (90), which is
valid close to the 2:1 resonance, and A = μ/4 in
Equation (91) which is valid close to the 4:1 resonance.
Equations (90) and (91) become

k1 = h + μ4

192
(92)

k3 = h + μ4

3072
(93)

Substituting Equations (92) and (93) into Equations
(89), we obtain

εc = 256
√

2

[
√

1024h − μ4 + 16(64h − μ4)1/4

(1024h − μ4)1/4 + 64
√

64h − μ4]

(94)

Figure 6 displays the critical parameter value εc ver-
sus h given by Equation (94). It shows that for small
values of ε, the system needs high energy to achieve
global chaos.

In Figure 7, we show the 2 : 1 and 4 : 1 resonance
bands in the (θ, A) phase space given by Equations
(75) and (85). Figure 8 displays the growth of these
resonance bands as ε increases.

Fig. 6 εc versus h giving the transition curve (94) from quasi-
periodic motion and local chaos to global chaos

Fig. 7 The 2 : 1 and 4 : 1 resonance bands in the (θ, A) plane
given by Equation (75), with v = 2θ , and Equation (85), with
v = 4θ , for ε = 0.2

Fig. 8 The 2 : 1 and 4 : 1 resonance bands in the (θ, A) plane
given by Equation (75), with v = 2θ , and Equation (85), with
v = 4θ , for different values of ε

Figures 9–10 show the results of numerical inte-
gration of Equations (3) and (4). These figures show
the mechanism of overlapping between the 2:1 and 4:1
resonance bands in the Poincaré section when ε is var-
ied for fixed h = 0.53, for which Equation (94) gives
εc=0.636. This value of h was arrived at by comparing
Hamiltonians in the two models, and identifying y with
cos t . The Hamiltonian for the first model, Equation (2),
is given by:

H1 = ẋ2

2
+ x4

4
+ ε

x4

4
cos t (95)
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Fig. 9 The Poincaré section
of the system (3) and (4), in
the (x, ẋ) plane, displays the
growth of resonance bands
2 : 1 and 4 : 1 when ε

increases. Here ε = 0.2
(top) and ε = 0.4 (bottom)

The Hamiltonian for the second model, Equation (45),
is given by

H2 = ẋ2

2
+ ẏ2

2
+ x4

4
+ y2

2
+ ε

x4

4
y (96)

If we replace y in (96) by cos t , we see that H2 = H1 +
0.5. Now if we take H1 to correspond to the amplitude
A of 2:1 resonance, i.e., to A2:1 resonance � μ/2, then we
find that H1 � A4

2:1 resonance/4 = 0.030 and hence that
H2 = 0.53.
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Fig. 10 Overlap
phenomenon between the
two resonance bands 2 : 1
and 4 : 1 in the Poincaré
section when ε is varied for
fixed value of h. Here
ε = 0.5 (top) and ε = 0.6
(bottom)

4 Conclusions

In this work, we investigate the overlapping phe-
nomenon associated with 2:1 and 4:1 resonances for
two parametric forcing models. The first model is de-
scribed by a nonlinear Mathieu equation. The second
one consists of a 2 degree of freedom Hamiltonian

system analogous to the first model in the sense
that the forcing is due to the coupling. In both
models, we have focused our attention on the com-
parison of the critical value of ε at which the
two resonance bands 2:1 and 4:1 overlap result-
ing the transition from local to global chaos in the
systems.
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In the first system, ε corresponds to the amplitude of
the parametric excitation, while in the second system,
ε refers to the coupling coefficient. Increasing this pa-
rameter, in both models, increases the size of the reso-
nance bands in the Poincaré section.

Note that εc, the critical value of ε, in the second
model depends on energy h, whereas εc does not de-
pend on the energy in the first model. This is because the
amplitude of the forcing function in the second model
is not constant (as it is in the first model), but rather it
depends upon the amplitude of the response variable,
A, representing the load on the motor variable. This is
related to the fact that the resonance instabilities in the
first model are due to parametric excitation, whereas
in the second model they are due to autoparametric
excitation [12], that is, parametric excitation which is
caused by the system itself, rather than by an external
periodic driver.

If the analytically derived values for Chirikov’s ap-
proximation for the transition from local to global chaos
are compared with the results obtained by numerical in-
tegration of the original equations of motion, we find
that the analytic result is high. For example, in the case
of the first model, Equation (44) gave

εc = 0.64 (97)

whereas Fig. 5 shows that global chaos has already
occurred at ε = 0.6. This effect may be explained by
noting that there are many smaller resonances which
can help to make a chaos bridge between the 2:1 and
the 4:1 resonance regions. If our analysis were to take
such intermediate resonances into account, the result-
ing value of εc would be lower.
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