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Dynamics of a nonlinear parametrically excited partial differential equation
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We investigate a parametrically excited nonlinear Mathieu equation with damping and limited
spatial dependence, using both perturbation theory and numerical integration. The perturbation
results predict that, for parameters which lie near the 2:1 resonance tongue of instability
corresponding to a single mode of shape cosnx, the resonant mode achieves a stable periodic
motion, while all the other modes are predicted to decay to zero. By numerically integrating the
p.d.e. as well as a 3-mode o.d.e. truncation, the predictions of perturbation theory are shown to
represent an oversimplified picture of the dynamics. In particular it is shown that steady states exist
which involve many modes. The dependence of steady state behavior on parameter values and
initial conditions is investigated numerically. ©1999 American Institute of Physics.
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We consider a large„or infinite degree of freedom… non-
linear problem, with its origin in laboratory experiments,
that constitutes the physical realization of an ideal situa-
tion usually described by the sine-Gordon equation and
the formation of a soliton. Owing to the presence of
physical dissipation, we must introduce energy into the
problem to compensate for frictional losses, and this al-
ters the character of the underlying problem, rendering it
nonintegrable. Nevertheless, the observed behavior ap
pears to be very simple, describable by a very low degree
of freedom system. The mechanical driver employed to
sustain the problem introduces the potential for paramet-
ric resonance, and this in turn produces a form of stable
periodic motion analogous to „yet very different from …

that predicted by sine-Gordon theory. We develop a low-
order truncated mode perturbation theory for this prob-
lem, and compare its predictions with very accurate
simulations of the underlying laboratory experiment. We
perform extensive numerical experiments to identify de-
partures of the theory from experiment. While the per-
turbation theory is often useful, we observe in some situ-
ations that perturbation theory provides an
oversimplified picture of the true dynamics.

I. INTRODUCTION

This work concerns the dynamical behavior of the f
lowing partial differential equation,

]2u

]t2 2c2
]2u

]x2 1eb
]u

]t
1@d1eg cost#u5eau3 ~1.1!

with the boundary conditions
2421054-1500/99/9(1)/242/12/$15.00
]u

]x
50 at x50 and x5p. ~1.2!

Our study is motivated by two experiments perform
by Bruce C. Denardo which were part of his dissertation
UCLA,1,2 completed in 1990 and which motivated subs
quent investigations:3–7 ~i! a line of coupled pendula with
vertical forcing, and~ii ! surface waves in a vertically force
channel of water. Equations~1.1! and ~1.2! represent an ap
proximate continuum model of the pendulum lattice, a
also exhibit behavior similar to the surface wave syste
Coherent localized structures were observed which led
experimenters to interpret these as being the physical rea
tion of solitons. However, the formal definition of
soliton8–12requires that the underlying equation is integrab
i.e., contains an infinite number of conservation laws. T
formal lack of integrability, due to the dissipation and for
ing, suggested to us that an explanation might be roote
the nonlinear dynamical interaction of modes. The purp
of the present paper is to compare a truncated-mode pe
bation treatment of these equations~valid for smalle!, with a
direct numerical integration of the p.d.e. The predictions
the model were in qualitative agreement with the experim
tal results reported above.

The experimenters observed the formation of coher
localized structures in a situation similar to one described
the sine-Gordon8 equation. The sine-Gordon equation su
ports soliton behavior9 and is integrable10,11via the Backlu¨nd
transformation and the inverse scattering transformatio12

Since the wave amplitudes were small, the sinusoidal te
could be approximated by a cubic expansion. However,
the physical environment was dissipative, it was essen
that the experiment contain a forcing mechanism so that
system could develop some kind of stationary behavior. W
© 1999 American Institute of Physics
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the simplification of the sine term to a cubic expansion a
especially, with the introduction of a physical damping a
forcing term, the formal integrability properties of the equ
tion were eliminated. Owing to the truncation of the si
term in our problem, we also have lost the periodicity im
plicit to the sine-Gordon problem. Thus, we might expect
see behavior in our problem that is more symptomatic of
nonlinear Schro¨dinger equation due to this symmetry brea
ing. Nevertheless, the experimental system did exhibit so
localized coherent-structures or nonlinear standing wa
depending upon the starting conditions and the degree
damping and forcing present.

Bishopet al.13,14have considered a closely related pro
lem ~where the sine was not approximated by a cubic po
nomial! in the context of how chaotic properties might man
fest. Ercolaniet al.15 employed the integrability properties o
the sine-Gordon equation in developing a variation of para
eters approach to modal expansions. Unlike these other
pers, the physical system we have selected is susceptib
parametric resonance effects. P.D.E. methods w
employed16 to explore a problem related to the one at ha
in the sense that they too were concerned with the effect
parametric excitation. A Karhunen–Loe´ve expansion was
employed to identify the dominant modes in the simula
p.d.e. evolution, as well as other soliton-related methods
contrast with these earlier works—investigations that w
predicated upon p.d.e. and soliton theory—our approach
explore our problem by means of o.d.e. methods and
truncation of a natural basis set as well as to explore
hypothesis that there exists an attractor for this system c
sisting of only a few modes.

We are particularly interested in the latter physical ma
festation of the experiments—the emergence of nonlin
standing waves. Although visually complex, the observati
appeared to be describable by a small set of spatially in
acting modes, coupled only through the nonlinearity in~1.1!.
It is this hypothesis, which allows us to approximate t
partial differential equation~1.1! by a set of ordinary differ-
ential equations, that is the subject of this paper.

Equation~1.1! may be thought of as a generalization
the Mathieu equation,

d2u

dt2
1@d1e cost#u50 ~1.3!

to which nonlinear (eau3) and damping (eb]u/]t) terms,
as well as spatially-dependent (c2]2u/]x2) terms have been
added. Equation~1.3! has been studied by many authors. F
example, Stoker17 presents a perturbation approach valid
smalle to discuss the dynamics of Eq.~1.3! in the neighbor-
hood of 2:1 resonance,d51/41O(e), i.e., when the forcing
frequency (51) is nearly twice the natural frequency
(5Ad'1/2). The well-known result is that the rest solutio
u[0 is unstable for

Ud2
1

4U< e

2
1O~e2! ~1.4!

and stable for all other parameters near the 2:1 reson
~see Fig. 1!.
,
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A version of Eq.~1.1! in which spatially-dependent an
damping terms have been omitted has been previously s
ied by Nayfeh and Mook,18 Holmes and Rand,19 and Month
and Rand,20 namely,

d2u

dt2
1@d1e cost#u5eau3. ~1.5!

These authors used perturbation methods valid for smae
and restricted to a neighborhood of 2:1 resonance,d51/4
1O(e), to discuss the effect of the nonlinear termeau3 on
Mathieu’s Eq.~1.3!. It was found that fora.0, 0,e!1,
there are 0, 1, or 2 periodic solutions in addition to the triv
solutionu[0, depending on the values ofd ande ;

d2
1

4
<2

e

2
0 periodic solutions

2
e

2
,d2

1

4
,

e

2
1 periodic solution~stable!

e

2
<d2

1

4
2 periodic solutions

~1 stable, 1 unstable!.

~1.6!

See Fig. 1, where the Poincare´ map associated with a surfac
of section (:t50 mod 2p is displayed for each of thes
three cases. The effect of the nonlinear termeau3 may be
described in words as follows: The region of instability
Eq. ~1.4! associated with the linear Mathieu Eq.~1.3! per-
sists, but the unbounded growth which occurs in~1.3! is
replaced by a finite amplitude periodic motion. The nonl
earity gives rise to an amplitude-dependent shift in freque
of the unforced system which may be thought of as bala
ing the parametric resonance. The effect of including
damping termeb du/dt is to break the saddle connections
Fig. 1, and to change the centers into sinks.

The foregoing discussion summarizes the perturba
results for the o.d.e. version of Eq.~1.1!, i.e., Eq.~1.1! when
c50 or whenu(x,t) is a function of time alone. In the res
of this paper we shall be interested in the effects of includ
a spatially dependent termc2 ]2u/]x2. In the next section we
develop a perturbation solution to Eq.~1.1! comparable to
the perturbation approaches obtained previously for
o.d.e. version of Eq.~1.1!. Then we compare the prediction

FIG. 1. Tongue of instability~1.4! for Eqs. ~1.3! and ~1.5! for parameters
near the 2:1 resonance atd51/4, e50. Displayed are schematic represe
tations of typical Poincare´ maps in theu– u̇ plane for Eq.~1.5! as obtained
by perturbation theory.
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of the perturbation method with direct numerical integrati
of the p.d.e.~1.1! and of systems of o.d.e. truncations
~1.1!.

II. PERTURBATION METHOD

In order to satisfy the boundary conditions~1.2!, we as-
sume a solution in the form of an infinite series

u5 f 0~ t !1 f 1~ t !cosx1 f 2~ t !cos 2x1¯. ~2.1!

Substituting~2.1! into ~1.1! and simplifying the trigonomet-
ric terms inu3 gives

f̈ n1vn
2f n1e~b ḟ n1g f n cost !5eagn , ~2.2!

wherevn
25d1n2c2 and wheregn is a cubic in all thef i ’s.

For example, the expression forg0 obtained by using
MACSYMA after truncating terms beyondf 6 is

g05 3
2 f 0f 6

21 3
2 f 1f 5f 61 3

2 f 2f 4f 61 3
4 f 3

2f 61 3
2 f 0f 5

2

1 3
2 f 1f 4f 51 3

2 f 2f 3f 51 3
2 f 0f 4

21 3
2 f 1f 3f 41 3

4 f 2
2f 4

1 3
2 f 0f 3

21 3
2 f 1f 2f 31 3

2 f 0f 2
21 3

4 f 1
2f 21 3

2 f 0f 1
21 f 0

31¯.

For convenience in what follows, we write~2.2! in the ab-
breviated form

f̈ n1vn
2f n5eQn , ~2.3!

whereQn52b ḟ n2g f n cost1agn .
Whene50, the solution to~2.3! may be written

f n5Rn cos~vnt1cn!, ~2.4!

whereRn and cn are constants. Whene.0, we look for a
solution to~2.3! in the form ~2.4! with Rn and cn as func-
tions of t ~variation of parameters!.

As we show in Appendix A,Rn andcn satisfy the dif-
ferential equations

Ṙn52e
Qn

vn
sin~vnt1cn!, ~2.5!

Rnċn52e
Qn

vn
cos~vnt1cn!. ~2.6!

Next we use the method of averaging to replace Eqs.~2.5!
and ~2.6! by simpler, though approximate equations, a p
cedure which is valid for smalle. See Appendix B for the
details of the computation, which involves replacing t
right-hand sides of~2.5! and ~2.6! with their average values
~averaged int, holdingRn andcn fixed!.

For general~nonresonant! values of the parameters, E
~2.5! on Rn averages to

Ṙn52e
b

2
Rn . ~2.7!

All solutions to~2.7! decay to zero. We thus come to the fir
conclusion, namely thatunless we are in the neighborhoo
of a resonance~to be discussed next!, all motions are pre-
dicted to damp out.

If, however,vn51/2, then there will be an extra term i
the averaged Eq.~2.7!, namely,
-

Ṙn52e
b

2
Rn1e

g

2
Rn sin 2cn . ~2.8!

Sincevn
25d1n2c2, such a resonance relation can exist f

only a single value ofn ~for fixed values ofd andc). Thus
in the case of such a resonance, all modes except the r
nant mode will have averaged equations of the form~2.7!,
i.e., they will decay to zero.

In order to find out what happens to the resonant mo
we have to examine the averaged version of Eq.~2.6! on cn .
Before doing so, we generalize the discussion to allow
detuning from resonance, that is

vn
25 1

41De, ~2.9!

whereD is a detuning coefficient.
In computing the averaged version of Eq.~2.6! on the

resonant modecn ~see Appendix B!, we use the fact that the
amplitudesRi of all the nonresonant modes decay to ze
and we restrict attention to the long-time behavior. In doi
so we obtain simplified equations forcn , which are valid
after the transients associated with the decay of the nonr
nant modes die out, namely,

ċn5eD1e
g

2
cos 2cn2

9

16
eaRn

2 , n.0, ~2.10!

ċ05eD1e
g

2
cos 2c02

3

4
eaR0

2 , n50. ~2.11!

III. STEADY STATE RESONANCE

The averaged equations governing resonance are
~2.8!, ~2.10!, and~2.11!. At steady state these slow flows wi
approach their stable equilibria, each equilibrium cor
sponding to a periodic motion of the original system. The
will satisfy the equations,

b5g sin 2cn , ~3.1!

D1
g

2
cos 2cn2

9

16
aRn

250, n.0, ~3.2!

D1
g

2
cos 2c02

3

4
aR0

250, n50. ~3.3!

From ~3.1! we see that sin 2cn5b/g. Substituting this into
~3.2! and ~3.3!, we obtain the steady state amplitudes

Rn
25

16

9a FD6
1

2
Ag22b2G , n.0, ~3.4!

R0
25

4

3a FD6
1

2
Ag22b2G , n50. ~3.5!

As an example, take the case where the dampingb is zero,
and wheren.0. Then

Rn
25

16

9aFD6
1

2
gG , n.0. ~3.6!

But Rn
2 must be non-negative. As a result, there will be 0,

or 2 solutions~in addition to the trivial solutionRn50),
depending onD, hence
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D,2g/2→0 periodic solutions, ~3.7!

D.2g/2 but D,g/2→1 periodic solution, ~3.8!

D.g/2→2 periodic solutions. ~3.9!

It turns out that these changes in the number of perio
solutions coincide with changes in stability of the trivial s
lution Rn50 ~as may be shown by considering the slow flo
linearized nearRn50). In cases~3.7! and ~3.9!, the trivial
solution is stable, while it is unstable in the case of~3.8!. In
~3.8!, the nontrivial periodic solution is stable, while in~3.9!
one of the nontrivial periodic solutions is stable, and one
unstable. In cases~3.8! and ~3.9!, the stable motion corre
sponds to the1 sign in Eqs.~3.4! and ~3.5!.

If there is small damping, the results are similar, exc
the stable equilibria of the slow flow change from centers
sinks. These stable periodic solutions are the uni
asymptotic state for given values of the parameters, indep
dent of initial conditions, except if two stable states coex
@as in ~3.9!, where the rest solutionu[0 is also stable#.

Now suppose that we fix the values of the parame
a,b,g, ande, and ask how the steady state dynamics of E
~1.1!, ~1.2! change asd andc are varied. We refer the reade
to Fig. 2 which shows the resonances

vn
25d1n2c25 1

4 ~3.10!

for n50,1,2,3,4 plotted in thed –c plane. The perturbation
analysis is valid in the neighborhood of each of these curv
and predicts that a stable periodic motion of the form

u~x,t !5Rn cos~vnt1cn!cosnx, ~3.11!

where Rn and cn are constants@cf. Eqs. ~3.4! and ~3.5!#,
exists on these curves.

In the case of detuning, cf. Eq.~2.9!, each resonance
curve has a region in its neighborhood in which the r
solution u[0 is unstable~see Fig. 3!. The boundaries of
these instability regions~or Arnold tongues! are given by
D56g/2, cf. ~3.7!–~3.9!, or by

d1n2c25
1

4
6

g

2
e1O~e2!. ~3.12!

FIG. 2. The resonance curves of Eq.~3.10! for n50,1,2,3,4.
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For points inside these regions, a stable periodic motion
the form ~3.11! is predicted to exist. Fora.0, points lying
outside a region~3.12!, but on its right-hand side, are pre
dicted to involve two stable states~a periodic solution of
known amplitude, and the trivial solution!. For points outside
of ~3.12! on its left-hand side, however, only the trivial so
lution is stable. In the case where two stable solutions ex
the question of which one occurs depends on the initial c
ditions.

Note that while the resonance curves~3.10! intersect
only atd51/4,c50, the associated instability regions~3.12!
overlap. At points in the overlap regions, we may expect t
periodic motions of the form~3.11! exist for each of the
values ofn corresponding to each of the overlapping regio
In this region, multiple resonances are expected to be imp
tant.

The foregoing perturbation theory gives a charming
simple picture of the steady state dynamics of Eqs.~1.1! and
~1.2!, at least for smalle and in the neighborhood of 2:1
resonance. The rest of this paper consists of a compar
between the perturbation theory predictions and the ac
behavior of the p.d.e.~1.1! as obtained by numerical integra
tion.

IV. NUMERICAL INTEGRATION OF THE P.D.E.

The simulation of hyperbolic p.d.e.’s is often a daunti
task, particularly since their long-time evolution is margi
ally stable.21 It is essential, for our purpose, that the metho
ology employed introduce no significant dissipation and
capable of preserving the precise character of the solu
over hundreds of oscillation periods. Consequently, we fe
would be inappropriate to use conventional second-or
methodologies, i.e., those whose truncation error
O(Dx2,Dt2). We applied methods that were at least fou
order in both space and time. The first class of methods
considered were of spectral22 or Galerkin23 type. A natural
expansion emerges from the cosine function over the inte
(0,p), i.e., cosnx for n50,1,. . . , since this defines a com
plete basis set whose derivatives vanish at the end po
~Conceptually, this spectral or Galerkin scheme is a natu

FIG. 3. The instability regions of Eq.~3.12! and the resonance curves of E
~3.10! for g51, e50.1, andn50,1,2. The pointsA, B, C, D refer to
example systems discussed in the text.
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extension of the truncated basis set that we employ in
analytic calculations. The use of this methodology also p
vided a quantitative confirmation of our ansatz that a l
order truncated mode expansion, i.e., 3 modes, was s
cient.!

We employed a basis set with 128 terms, so that
could exploit the computational efficacy of the Fast Four
Transform. Formally, the nonlinearities present in the spa
operator required that we employ a ‘‘pseudospec
method’’23 to accurately and rapidly approximate the righ
hand side of the partial differential equation. Pseudospec
methods convert partial differential equations into ordina
differential equations, thereby reducing their computatio
complexity. The resulting set of ordinary differential equ
tions can be solved using a fourth order integration sche
We employed a standard fourth order Runge–Kutta24 for this
purpose. Although this method is not computationally op
mal, it is extremely simple to implement and requires
special starting procedure. Extensive testing of this pro
dure, particularly in the limit where we can analytically e
tablish the exact solution, showed that it was reliable a
accurate to five significant figures over hundreds of osci
tion periods. However, this accuracy was obtained at the
pense of computation time and the overhead associated
the repeated performance of FFT’s. To overcome the h
cost of this otherwise desirable approach, we considered
ternatives to our method for evaluating the spatial opera

We selected the so-called ‘‘method of lines.’’25 The ba-
sic feature of this method is that the derivatives with resp
to one of the independent variables~i.e., time! remain con-
tinuous, while derivatives with respect to the other indep
dent variables are replaced by finite-difference approxim
tions. The method of lines is essentially a technique
replacing a system of partial differential equations by a s
tem of ordinary differential equations, like pseudospec
methods, using local Taylor series~in contrast with Fourier
series! to develop the expansion. Recently, Holt26 and
Schiesser27 have explored this methodology. In our situatio
the boundary conditions are relatively simple since, it can
shown,ux5uxxx50 at each boundary. Hence, we can defi
two ‘‘image’’ points on the other side of each bounda
which turn out to be mirror images of the respective poi
inside the boundary. A five-point central difference opera
can therefore be used over the entire interval to estimate
spatial operator or, equivalently, the right-hand side of
partial differential equation with an error ofO(Dx2). Em-
ploying a computational grid for the method of lines with t
same resolution as that employed in the 128 point ps
dospectral expansion produced results which were iden
over four significant figures over 100 oscillation periods
the system. Remarkably, however, the simplicity of the fiv
point finite difference operator in contrast with the FFT, pr
vided nearly an order of magnitude improvement of the co
putational speed with no significant diminution of accura

We generally chose our initial conditions in the form

u~x,0!5a01a1 cosx1a2 cos 2x, ut~x,0!50, ~4.1!
ur
-

fi-

e
r
l
l
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where we specified the initial Fourier componentsa0 , a1 ,
anda2 . We numerically integrated the system~1.1! and~1.2!
for 800 time units or greater, at which point steady state w
approximately achieved. Then we Fourier expanded inx the
numerical solution to obtain

u~x,t !5 f 0~ t !1 f 1~ t !cosx1 f 2~ t !cos 2x1¯

1 f 20~ t !cos 20x, ~4.2!

where f n(t) is the Fourier component with wave numbern.
In order to restrict the complexity of the problem, all o

the numerical experiments which we report here corresp
to the parameter values

a51, b5 1
2, g51, e50.1. ~4.3!

For these fixed parameter values, we varyd andc as well as
the initial conditions~4.1!.

A comparison of the predictions of the perturbation a
proach with the results of numerical integration may be
lustrated with some examples. We present results for f
typical points labeledA, B, C, D in Fig. 3. In each case
initial conditions~4.1! are taken in the form

u~x,0!50.110.1 cosx10.1 cos 2x, ut~x,0!50. ~4.4!

For point A: (d,c)5(0.25,0.5), numerical integration
produced a periodic motion with allf n(t)[0 exceptf 0(t),
which had amplitude 0.77. To compare this result with p
turbation theory, we note that sinced50.25, the detuningD
of v0

25d50.25 in Eq. ~2.9! is zero, so that the predicte
amplitudeR0 of the n50 mode in Eq.~3.5! is given byR0

50.76.
For point B: (d,c)5(0.15,0.15), numerical integratio

produced a periodic motion with allf n(t)[0 exceptf 2(t),
which had amplitude 0.78. This time the detuning ofv2

2

5d14c250.24 is given byD520.1, yielding predicted
amplitudeR250.77 in Eq.~3.4!.

For point C: (d,c)5(0.15,0.3), numerical integration
produced a periodic motion with all even modesf 2n(t)[0,
while f 1(t) had amplitude 0.78,f 3(t) had amplitude 0.01
and the other odd modes had amplitude<0.001. This time
the detuning ofv1

25d1c250.24 is given byD520.1,
yielding predicted amplitudeR150.77 in Eq.~3.4!.

Thus there is excellent agreement between perturba
theory and numerical integration for pointsA, B, andC. Not
so for pointD, however.

For point D: (d,c)5(0.19,0.3), numerical integration
produced a quasiperiodic motion with all modes present~see
Fig. 4!. The approximate amplitudes off 0(t), f 1(t), f 2(t)
are, respectively, given by 0.3, 0.9, 0.3, although these
ues vary slightly from cycle to cycle since the motion is n
periodic. The corresponding amplitudes of the higher mo
areall<0.03. We shall refer to this steady state as a mu
mode response. The frequencies of the modesn50,1,2
~which also vary from cycle to cycle! are approximately
found to bev050.33,v150.5, v250.67, and hence repre
sent a resonance in the ratio

v0 :v1 :v2 :vd ::2:3:4:6, ~4.5!
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wherevd51 is the frequency of the driver cost. In this case
the perturbation result is completely wrong; the detuning
v1

25d1c250.28 is given byD50.3, yielding the predicted
amplitude of a lone periodicn51 mode ofR151.14 in Eq.
~3.4!. No such lonen51 mode is observed.

Another feature which is present in the dynamics of
p.d.e., but which is missing from the perturbation theory
the possibility of unbounded growth. The presence of

FIG. 4. Numerical integration of the p.d.e.~1.1! and ~1.2!. The functions
f n(t) are the Fourier components of Eq.~4.2!. Parameters correspond t
point D in Fig. 3, cf. Eqs.~4.3!, ~4.4!. Note the multimode behavior of the
steady state.
f

e
s
e

nonlinearity in the formeau3 is responsible for this phe
nomenon, in contrast to a more realistic nonlinearity of t
form sinu. The absence of unbounded growth from the p
turbation theory may be due to the scaling by smalle, which
localizes the dynamics around the originu[0.

V. THREE-MODE TRUNCATION

Another feature observed in our numerical experime
is that, generally speaking, the steady state is dependen
the initial conditions. This phenomenon is well known

FIG. 5. Numerical integration of the three-mode o.d.e. truncation~5.1!–
~5.3!. Parameters and initial conditions are the same as for Fig. 4.
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FIG. 6. Results of numerical integration of the thre
mode o.d.e. truncation for parameters~4.3!, for initial
conditions (f 0(0)50.1, f 1(0)50.1, f 2(0)50.1), and
for zero initial velocities. See~5.4! for the meaning of
symbols.
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finite dimensional problems, i.e., in systems of o.d.e.’s.
familiar example is a 2p-periodically forced single degree o
freedom oscillator, where the dependency of steady stat
initial conditions may be displayed by giving the boundar
of the basins of attraction on a Poincare´ section with cut at
t50 mod 2p ~see Ref. 28, for example!. The present situa
tion is much more complicated, however, because of the
finite dimensional nature of the dynamics, i.e., we may th
of the p.d.e.~1.1! as a system of an infinite number o
coupled oscillators, each corresponding to a single m
cosnx.

In order to investigate the dependency of steady state
initial conditions in an efficient manner, we consider a thr
mode o.d.e. truncation of the infinite system~2.2!,

f̈ 01v0
2f 01e~b ḟ 01g f 0 cost !

5ea@ f 0
31 3

2 f 0f 2
21 3

4 f 1
2f 21 3

2 f 0f 1
2#, ~5.1!

f̈ 11v1
2f 11e~b ḟ 11g f 1 cost !

5ea@3 f 0
2f 11 3

4 f 1
31 3

2 f 1f 2
213 f 0f 1f 2#, ~5.2!
on
s

-
k

e

n
e

f̈ 21v2
2f 21e~b ḟ 21g f 2 cost !

5ea@3 f 0
2f 21 3

4 f 2
31 3

2 f 1
2f 21 3

2 f 0f 1
2#, ~5.3!

wherev0
25d, v1

25d1c2 andv2
25d14c2.

Here we have selected 3 modes~rather than 2 or 4, say!
because the multimode response~4.5! observed in the p.d.e
chiefly involved 3 modes.

Numerical simulation of the truncated system~5.1!–
~5.3! by a fourth-order Runge–Kutta has shown that it giv
a good approximation of the p.d.e.~1.1! and ~1.2! for some
parameters and for initial conditions of the form~4.1!. For
example, see Fig. 5, which shows that the 3-mode trunca
exhibits the multimode behavior of Fig. 4.

We numerically integrated Eqs.~5.1!–~5.3! for a wide
range of parameter values, and for each of four sets of in
conditions (f 0(0),f 1(0),f 2(0))5~0.1,0.1,0.1!, ~1.0,0.1,0.1!,
(0.1,1.0,0.1), (0.1,0.1,1.0), the results of which are resp
tively displayed in Figs. 6, 7, 8, 9. All four of these figure
use the following symbols to denote the observed ste
state:
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FIG. 7. Results of numerical integration of the thre
mode o.d.e. truncation for parameters~4.3!, for initial
conditions (f 0(0)51.0, f 1(0)50.1, f 2(0)50.1), and
for zero initial velocities. See~5.4! for the meaning of
symbols.
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0: f 0 only, f 15 f 250,

1: f 1 only, f 05 f 250,

2: f 2 only, f 05 f 150,

2: trivial solution, f 05 f 15 f 250,

X: unbounded growth,

A: f 0 andf 1 only, f 250,

B: f 1 andf 2 only, f 050,

C: f 0 andf 2 only, f 150,

M: f 0 , f 1 andf 2 all present ~multimode!.

~5.4!

In all cases the initial velocities were taken as zero for s
plicity. We note that in addition to the trivial motion and t
the pure modes predicted by perturbation theory, a variet
mixed modes are observed, as well as unbounded gro
Comparison of these four figures shows that the dynamic
the truncated system~5.1!–~5.3! is very complicated, far
more complicated than the simple picture coming from
perturbation theory presented above. Although the dynam
of the truncated system is surely not exactly the same as
-

of
th.
of

e
cs
he

dynamics of the p.d.e.~1.1! and ~1.2!, it gives us an indica-
tion of the great complexity of the steady state structure
the p.d.e.

VI. DISCUSSION AND CONCLUSIONS

Inspection of Fig. 6, which corresponds to initial cond
tions which lie relatively close to the origin, clearly show
the regions of instability predicted by perturbation theory,
Fig. 3. Parameter values which lie outside these instab
regions are seen to correspond to the trivial steady state~dis-
played as the symbol ‘‘2’’ !, in agreement with perturbation
theory. Parameter values which lie inside the instability
gions are predicted by perturbation theory to lead to a lo
periodic resonant mode~displayed by one of the symbol
‘‘0,’’ ‘‘1’’ or ‘‘2’’ !. Although this prediction is fulfilled in
Fig. 6 for some points inside the instability regions, there
also observed a number of multimode steady states~dis-
played by one of the symbols ‘‘A, ’’ ‘‘ B, ’’ ‘‘ C’’ or ‘‘ M ’’ !. In
addition, some motions are observed to lead to unboun
growth ~displayed by the symbol ‘‘X’’ !.

In contrast to Fig. 6, Figs. 7, 8, and 9 correspond to
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FIG. 8. Results of numerical integration of the thre
mode o.d.e. truncation for parameters~4.3!, for initial
conditions (f 0(0)50.1, f 1(0)51.0, f 2(0)50.1), and
for zero initial velocities. See~5.4! for the meaning of
symbols.
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relatively large initial condition in one of the modal amp
tudes~respectivelyf 0 , f 1 , f 2), while the other two initial
conditions remain small. The resulting figures have less
common with the predictions of perturbation theory than t
exhibited by Fig. 6. At parameters lying outside of the
gions of instability predicted by perturbation theory, t
larger initial conditions of Figs. 7–9 have led to steady sta
other than the trivial solution. In addition, unbounded grow
is seen to occur for a wider range of parameter values. N
that in each of Figs. 7, 8, and 9, the mode which is given
larger initial condition~respectively 0, 1, and 2! occurs more
plentifully than in Fig. 6, especially to the right of the ass
ciated region of instability predicted by perturbation theo
This is to be expected since such an initial condition is lik
to lie in the interior of the basin of attraction of the respe
tive steady state. Note also that the steady states which
volve only two components~symbolized by ‘‘A, ’’ ‘‘ B’’ and
‘‘ C’’ ! often lie near the boundaries of the tongues associ
with their respective components. Evidently, these are m
tiple stable basins of attraction, in some cases correspon
both to single modes and to multiple modes. One could ar
that these observations offer some support for the notio
‘‘mode suppression.’’

In this paper we have compared the predictions o
in
t
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-
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-
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of
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perturbation analysis of a parametrically excited p.d.e. w
numerical integration of the p.d.e. and of a three-term o.
truncation. The relationship between the all too simple p
ture presented by the perturbation method and the extrem
complicated behavior of the p.d.e. is itself complicated. T
tongues of instability predicted by the perturbation theory
present in the numerically observed dynamics, but we h
observed multimode steady states which are absent from
present perturbation results. These multimodes were also
served in a related two mode o.d.e. truncation.29

In the perturbation scheme presented in this work,
have taken account of the possibility of a single 2:1 re
nance between the driver cost and one of the modesf n cosnt
of Eq. ~2.1!. The appearance of the multimodes in the n
merical simulations, absent from the perturbation pred
tions, are conjectured to be due to multiple resonances.
has been showing in a limited way in a 2-mode analyti
study29 in which both then50 andn51 modes are close to
being in 2:1 resonance with the driver cost. The resulting
dynamical behavior is shown to include stable 2-model m
timodes in addition to the single-mode steady states,
tained in the present work.

The three-term o.d.e. truncation shares some of the c
plexity of the p.d.e. We may view the truncated approxim
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FIG. 9. Results of numerical integration of the thre
mode o.d.e. truncation for parameters~4.3!, for initial
conditions (f 0(0)50.1, f 1(0)50.1, f 2(0)51.0), and
for zero initial velocities. See~5.4! for the meaning of
symbols.
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tion as an autonomous system of four coupled o.d.e.’s~by
associating the cost forcing term with the output of a simple
harmonic oscillator!. Although we know of no general stud
of four coupled oscillators, Baesens, Guckenheimer, K
and MacKay30 have shown that the dynamics of thre
coupled oscillators is extremely complicated.

We view the present paper as a first step in understa
ing the behavior of the p.d.e.~1.1! and ~1.2!. We expect
additional work to be done on this system because it
numerous applications and it is a natural extension
Mathieu’s equation~1.3!, and thus represents a paradig
system for parametrically excited p.d.e.’s. In particular
hope for a perturbation analysis which yields the nature
bifurcation of the multimode steady states which we ha
observed numerically.
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APPENDIX A: DERIVATION OF „2.5… AND „2.6…

In this appendix we derive Eqs.~2.5! and ~2.6! on Rn

and cn . We begin by differentiating~2.4!, and using the
abbreviationss5sin(vnt1cn), c5cos(vnt1cn),

ḟ n52vnRns1Ṙnc2Rnċns. ~A1!

As usual in the variation of parameters method, we take

Ṙnc2Rnċns50 ~A2!

so that~A1! becomes

ḟ n52vnRns. ~A3!

Differentiating ~A3!, we find

f̈ n52vn
2Rnc2vnṘns2vnRnċnc. ~A4!

Substituting~A4! into ~8!, we obtain

2vnṘns2vnRnċnc5eQn . ~A5!

Now we solve~A2! and ~A5! simultaneously to get the de
sired Eqs.~2.5! and ~2.6! of the text.
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APPENDIX B: DERIVATION OF „2.7…–„2.11…

In this appendix we derive the averaged equations onRn

and cn , Eqs.~2.7!–~2.11!. We replace the right-hand side
of ~2.5! and ~2.6! with their average values~averaged int,
holding Rn and cn fixed!. This process may be legitimize
by using a near-identity transformation, but the result
O(e) is the same, so we take the simpler path.

Note from~2.3! thatQn consists of three terms, namel

Qn52b ḟ n2g f n cost1agn . ~B1!

Note also thatRn determines the amplitude of thenth mode,
while cn determines its phase. We consider Eq.~2.5! first.
The damping term2b ḟ n contributes to Eq.~2.5! the quan-
tity

2
e

vn
~2b!@2Rnvn sin~vnt1cn!#sin~vnt1cn!, ~B2!

where we have used Eq.~A3!. Equation~B2! averages to

2e
b

2
Rn . ~B3!

Next consider the contribution to~2.5! from the nonlinear
term agn . This looks like it will be difficult to compute,
sincegn itself is an infinite series. However, it can be do
easily, since all the terms ingn are cubic in thef i ’s, i.e., are
cubic in cos(vit1ci) for all possible choices ofi . Using
trigonometric identities, each of these cubic terms give
single cosine term of the form cos@(vi6vj6vk)t1ci6cj

6ck#, where i , j , k can take on any integer values. Th
contribution of each such term to Eq.~2.5! involves multi-
plying by sin(vnt1cn), which gives terms of the form
sin@(vi6vj6vk6vn)t1ci6cj6ck6cn#. Each such term ha
average value zero, no matter whati , j , k, n are involved.
Thus theagn term makes no contribution to averaged equ
tion on Ṙn .

Next we consider the contribution to~2.5! coming from
the term2g f n cost. This term involves the trigonometri
terms cos(vnt1cn)cost. When inserted into the right-han
side of Eq. ~2.5!, these terms get multiplied by sin(vnt
1cn), giving terms which may be trigonometrically simpl
fied to sin@(2vn61)t12cn#. For general~nonresonant! values
of the parameters, these terms have average value zero
so make no contribution to the averaged Eq. onṘn , which
becomes

Ṙn52e
b

2
Rn . ~B4!

The foregoing equation is no longer valid if the ter
sin@(2vn61)t12cn#, just discussed, does not average to ze
Such will be the case ifvn51/2, for then

sin@~2vn21!t12cn#5sin~2cn! ~B5!

which behaves like a constant under averaging. In suc
case, there will be an extra term in the averaged Eq.~2.7!,
namely

Ṙn52e
b

2
Rn1e

g

2
Rn sin 2cn . ~B6!
o

a

-

and

.

a

In order to find out what happens to the resonant mode,
have to examine the averaged version of Eq.~2.6! on cn .
Before doing so, we generalize the discussion to allow
detuning from resonance, hence,

vn
25 1

41De, ~B7!

whereD is a detuning coefficient. From Eq.~2.2!, this adds
an additional term toQn , namely,

Qn52b ḟ n2g f n cost1agn2D f n . ~B8!

Note that the additional term,2D f n , adds a term propor-
tional to cos(vnt1cn)3sin(vnt1cn) to the right-hand side of
~2.5!, which averages to zero since it is proportional
sin(2vnt12cn). So the resonant mode is still governed by E
~2.8! in the presence of detuning.

Now we are interested in finding the averaged version
Eq. ~2.6! for the resonant mode. We neglect terms ofO(e2),
so the factor 1/vn becomes simply 2. We consider each
the terms inQn separately. First, note that the damping te
2b ḟ n averages to zero. Next, note that the detuning te
2D f n produces the averaged contributioneDRn .

Next consider the contribution due to the forcing ter
2g f n cost. This term involves the trigonometric term
cos(t)cos(vnt1cn)5cos(t)cos(t/21cn), where we neglect
the detuning inside the cosine because it leads to a term
higher order ine. When inserted into the right-hand side
Eq. ~2.6!, these terms get multiplied by cos(t/21cn), giving
only one term which does not average to zero, nam
eg/2•Rn cos(2cn).

Finally we consider the contributions coming from th
nonlinear term inQn , agn . As discussed above, this term
composed of an infinite number of cubic terms, each
which can be put in the form cos@(vi6vj6vk)t1ci6cj

6ck#, and wherei , j , k can take on any integer values. Th
contribution of each such term to Eq.~2.6! involves multi-
plying by cos(vnt1cn), which gives terms of the form
cos@(vi6vj6vk6vn)t1ci6cj6ck6cn#. Now since vn

25d
1n2c2, the set ofvn’s may be assumed to be mutually in
commensurate, i.e., no resonance relation exists between
of them, e.g.,v1Þ2v0 , etc. Then, in order for the averag
of such a term to be nonzero, the argument inside the co
must be zero. The only way that can happen is if the ter
cancel each other, e.g., ifj 5 i andk5n and the term takes
the form cos@(vi2vi1vn2vn)t1ci2ci1cn2cn#5cos 051.
Such a term would have come from the cubicf i

2f n . If such a
term appeared ingn with the coefficientk, i.e., gn5k f i

2f n

1¯, then its contribution to the right-hand side of~2.6!
would be

22eakRi
2cos2~v i t1c i !Rncos2~vnt1cn!. ~B9!

The contribution of this term to the averaged version of E
~2.6! would be2eakRi

2Rn/2, except ifi 5n, in which case
it would be23eakRn

3/4. There will be an infinite number o
such terms for a given value ofn, one term for each intege
i . However, we have already shown that the amplitudesRi of
all the nonresonant modes decay to zero. So we may o
such terms from the averaged equation oncn , thereby re-
stricting attention to the long-time behavior, i.e., after t
transients associated with the decay of the nonreso
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modes die out. Thus the only term which contributes to
averaged equation corresponds to the casei 5n and has con-
tribution 23eakRn

3/4. Herek is the coefficient of thef n
3 term

in gn . The value ofk may be stated as follows: If we tak
just one mode foru ~the other nonresonant modes decay
to zero!, u5 f n cosnx, thenk is the coefficient of cosnx in
the nonlinear term cos3 nx. If n50, thenk51. Otherwise, the
identity

cos3 x5 3
4 cosx1 1

4 cos 3x ~B10!

showsk53/4. Thus we conclude that the contribution of t
agn term to the averaged version of Eq.~2.11! is
29eaRn

3/16 for n.0, and23eaR0
3/4 for n50.

Collecting all the preceding results together, we obt
the averaged equations

ċn5eD1e
g

2
cos 2cn2

9

16
eaRn

2 ,n.0, ~B11!

ċ05eD1e
g

2
cos 2c02

3

4
eaR0

2 ,n50. ~B12!
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