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Dynamics of a nonlinear parametrically excited partial differential equation
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We investigate a parametrically excited nonlinear Mathieu equation with damping and limited
spatial dependence, using both perturbation theory and numerical integration. The perturbation
results predict that, for parameters which lie near the 2:1 resonance tongue of instability
corresponding to a single mode of shape regsthe resonant mode achieves a stable periodic
motion, while all the other modes are predicted to decay to zero. By numerically integrating the
p.d.e. as well as a 3-mode o.d.e. truncation, the predictions of perturbation theory are shown to
represent an oversimplified picture of the dynamics. In particular it is shown that steady states exist
which involve many modes. The dependence of steady state behavior on parameter values and

initial conditions is investigated numerically.
[S1054-150(10900601-1

We consider a large(or infinite degree of freedom) non-
linear problem, with its origin in laboratory experiments,
that constitutes the physical realization of an ideal situa-
tion usually described by the sine-Gordon equation and
the formation of a soliton. Owing to the presence of
physical dissipation, we must introduce energy into the
problem to compensate for frictional losses, and this al-
ters the character of the underlying problem, rendering it
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Our study is motivated by two experiments performed
by Bruce C. Denardo which were part of his dissertation at
UCLA,*2 completed in 1990 and which motivated subse-
quent investigations:’ (i) a line of coupled pendula with
vertical forcing, andii) surface waves in a vertically forced

nonintegrable. Nevertheless, the observed behavior ap- channel of water. Equationd.1) and(1.2) represent an ap-
pears to be very simple, describable by a very low degree proximate continuum model of the pendulum lattice, and
of freedom system. The mechanical driver employed to also exhibit behavior similar to the surface wave system.

sustain the problem introduces the potential for paramet-
ric resonance, and this in turn produces a form of stable
periodic motion analogous to (yet very different from)
that predicted by sine-Gordon theory. We develop a low-
order truncated mode perturbation theory for this prob-
lem, and compare its predictions with very accurate
simulations of the underlying laboratory experiment. We
perform extensive numerical experiments to identify de-
partures of the theory from experiment. While the per-
turbation theory is often useful, we observe in some situ-
ations that perturbation theory provides an
oversimplified picture of the true dynamics.

I. INTRODUCTION

This work concerns the dynamical behavior of the fol-

lowing partial differential equation,

Fu au 5
—C —2+e,85+[5+ eycostlu=eau

2 ax (1.9

with the boundary conditions
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Coherent localized structures were observed which led the
experimenters to interpret these as being the physical realiza-
tion of solitons. However, the formal definition of a
solitorf~*2requires that the underlying equation is integrable,
i.e., contains an infinite number of conservation laws. The
formal lack of integrability, due to the dissipation and forc-
ing, suggested to us that an explanation might be rooted in
the nonlinear dynamical interaction of modes. The purpose
of the present paper is to compare a truncated-mode pertur-
bation treatment of these equatigralid for smalle), with a
direct numerical integration of the p.d.e. The predictions of
the model were in qualitative agreement with the experimen-
tal results reported above.

The experimenters observed the formation of coherent
localized structures in a situation similar to one described by
the sine-Gorddhequation. The sine-Gordon equation sup-
ports soliton behavidrand is integrabfé'!via the Backlid
transformation and the inverse scattering transformafion.
Since the wave amplitudes were small, the sinusoidal term
could be approximated by a cubic expansion. However, as
the physical environment was dissipative, it was essential
that the experiment contain a forcing mechanism so that the
system could develop some kind of stationary behavior. With
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the simplification of the sine term to a cubic expansion and, €

especially, with the introduction of a physical damping and

forcing term, the formal integrability properties of the equa-

tion were eliminated. Owing to the truncation of the sine

term in our problem, we also have lost the periodicity im- >

plicit to the sine-Gordon problem. Thus, we might expect to

see behavior in our problem that is more symptomatic of the S

nonlinear Schrdinger equation due to this symmetry break- >3

ing. Nevertheless, the experimental system did exhibit some 1/4

Iocallzeq coherent-structu.res or nqnllnear standing Wave.'ﬁ_, G. 1. Tongue of instability1.4) for Egs.(1.3) and (1.5 for parameters

depending upon the starting conditions and the degree ear the 2:1 resonance 8t 1/4, e=0. Displayed are schematic represen-

damping and forcing present. tations of typical Poincarenaps in theu—u plane for Eq.(1.5) as obtained
Bishopet al'*'*have considered a closely related prob-by perturbation theory.

lem (where the sine was not approximated by a cubic poly-

nomial) in the context of how chaotic properties might mani-

fest. Ercolankiet al.> employed the integrability properties of A version of Eq.(1.1) in which spatially-dependent and

the sine-Gordon equation in developing a variation of paramaamping terms have been omitted has been previously stud-

eters approach to modal expansions. Unlike these other PAq by Nayfeh and Mook® Holmes and Ran& and Month
pers, the physical system we have selected is susceptible é%d Rand?® ' '

parametric resonance effects. P.D.E. methods were  namely,

employed® to explore a problem related to the one at hand, g2

in the sense that they too were concerned with the effects of 5z +[5+ecostju= eau®. (1.9
parametric excitation. A Karhunen-Lee expansion was

employed to identify the dominant modes in the simulatedrhese authors used perturbation methods valid for small
p.d.e. evolution, as well as other soliton-related methods. Iand restricted to a neighborhood of 2:1 resonarzel/4
contrast with these earlier works—investigations that weret O(¢), to discuss the effect of the nonlinear teemu® on
predicated upon p.d.e. and soliton theory—our approach is tfathieu’s Eq.(1.3). It was found that fora>0, 0<e<1,

explore our problem by means of o.d.e. methods and thghere are 0, 1, or 2 periodic solutions in addition to the trivial
truncation of a natural basis set as well as to explore thgolutionu=0, depending on the values éfande;

hypothesis that there exists an attractor for this system con-
sisting of only a few modes.

We are particularly interested in the latter physical mani-
festation of the experiments—the emergence of nonlinear

. . . € 1l € - .

standing waves. Although visually complex, the observations — _<s—-<— 1 periodic solution(stablg
appeared to be describable by a small set of spatially inter- 4 2
acting modes, coupled only through the nonlinearitylirl). € 1
It is this hypothesis, which allows us to approximate the §<5_Z
partial differential equatioiil.1) by a set of ordinary differ-
ential equations, that is the subject of this paper.

Equation(1.1) may be thought of as a generalization of gee Fig. 1, where the Poinéarep associated with a surface
the Mathieu equation, of sectionX>:t=0 mod 27 is displayed for each of these

1
o— Zs — 0 periodic solutions

N[ m

(1.6
2 periodic solutions

(1 stable, 1 unstable

d2u three cases. The effect of the nonlinear terau® may be
W+[5+ecost]u:o 1.3 described in words as follows: The region of instability in

Eqg. (1.4) associated with the linear Mathieu E@..3) per-
to which nonlinear éau®) and damping éB8du/dt) terms, ~ SiStS, but the unbounded growth which occurs(in3) is
as well as spatially-dependert?(2u/9x?) terms have been rep!aceq by a finite amplltl_,lde periodic motion. The nonlin-
added. Equatiofil.3) has been studied by many authors. For€arity gives rise to an ampllj[ude-dependent shift in frequency
example, Stokéf presents a perturbation approach valid for©f the unforced system which may be thought of as balanc-

small e to discuss the dynamics of E€L.3) in the neighbor- N9 the parametric resonance. The effect of including a
hood of 2:1 resonancé=1/4+ O(e), i.e., when the forcing damping termeB du/dt is to break the saddle connections in

frequency E1) is nearly twice the natural frequency Fi9- 1, and to change the centers into sinks.

(=6~1/2). The well-known result is that the rest solution ' "€ foregoing discussion summarizes the perturbation
u=0 is unstable for results for the o.d.e. version of EQ..1), i.e., Eq.(1.1) when
c=0 or whenu(x,t) is a function of time alone. In the rest
1 € ) of this paper we shall be interested in the effects of including
‘ 6= 71=510(€) (1.4 g spatially dependent tera? 9%u/ax2. In the next section we
develop a perturbation solution to E(lL.1) comparable to
and stable for all other parameters near the 2:1 resonandke perturbation approaches obtained previously for the
(see Fig. 1 o.d.e. version of Eq(1.1). Then we compare the predictions
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of the perturbation method with direct numerical integration
of the p.d.e.(1.1]) and of systems of o.d.e. truncations of

(1.D.

Il. PERTURBATION METHOD

In order to satisfy the boundary conditiofls2), we as-
sume a solution in the form of an infinite series

u="fy(t)+fi(t)cosx+f,(t)cos X+---. (2.1

Substituting(2.1) into (1.1) and simplifying the trigonomet-
ric terms inu® gives

fot 02f,+ e(Bf+ yf, cost) = eag,, (2.2

where w?= §+n?c? and whereg,, is a cubic in all thef;’s.
For example, the expression fay, obtained by using
MACSYMA after truncating terms beyonty; is

9o=3fof 5+ 3f1fste+ 3 of4fe+ 3F5F6+ 3fof2
+ 3,4 f 5+ 3o af s+ 5o+ 3F 1 faf 4+ 3151,
+3fof 3+ 31 fof g+ 3fof 5+ 3T+ 3fof T+ 5+

For convenience in what follows, we writ@.2) in the ab-
breviated form

fot 02f,=€Qy, 2.3

whereQ,= — Bf,— yf, cost+aqg,.
When €= 0, the solution tq2.3) may be written

fo=R,cog wpt+ ), (2.9

whereR,, and ¢, are constants. Whea>0, we look for a
solution to(2.3) in the form (2.4) with R,, and ¢,, as func-
tions oft (variation of parameteys

As we show in Appendix AR, and ¢, satisfy the dif-
ferential equations

Rn=—e%sin(wnt+ Un), (2.5

n

Rn¢n=—e%cos(wnt+ ). (2.6)

Next we use the method of averaging to replace E2$)

Newman, Rand, and Newman

: B 4
Rn:_GERn+E§

Ry, sin 24, . (2.9
Sincew?= 6+n?c?, such a resonance relation can exist for
only a single value oh (for fixed values ofs andc). Thus
in the case of such a resonance, all modes except the reso-
nant mode will have averaged equations of the f¢g),
i.e., they will decay to zero.

In order to find out what happens to the resonant mode,
we have to examine the averaged version of ) on ¢, .
Before doing so, we generalize the discussion to allow for
detuning from resonance, that is

wi=3%+Ae, (2.9

whereA is a detuning coefficient.

In computing the averaged version of EG.6) on the
resonant mode,, (see Appendix B we use the fact that the
amplitudesR; of all the nonresonant modes decay to zero,
and we restrict attention to the long-time behavior. In doing
so we obtain simplified equations faf,, which are valid
after the transients associated with the decay of the nonreso-
nant modes die out, namely,

. 9
1//n=eA+e%/0052¢n—1—66aRﬁ, n>0, (2.10
. 3

¢0=6A+e%c052¢0—zeaRg, n=0. (2.12

lll. STEADY STATE RESONANCE

The averaged equations governing resonance are Egs.
(2.9), (2.10, and(2.11). At steady state these slow flows will
approach their stable equilibria, each equilibrium corre-
sponding to a periodic motion of the original system. These
will satisfy the equations,

B=7ysin2y,, (3.
A+Zc0321/; 2 R2=0, n>0 (3.2
2 T e ’ :

Y 3
A+§c0521/;0—ZaR0=0, n=0. 3.3

and (2.6) by simpler, though approximate equations, a pro-From (3.1) we see that sing,=g/y. Substituting this into

cedure which is valid for smakk. See Appendix B for the

details of the computation, which involves replacing the

right-hand sides of2.5) and (2.6) with their average values
(averaged irt, holdingR,, and ¢, fixed).

For generalnonresonantvalues of the parameters, Eq.
(2.5 on R, averages to

an_GERn- (27)

All solutions to(2.7) decay to zero. We thus come to the first

conclusion, namely thainless we are in the neighborhood
of a resonancdto be discussed nextall motions are pre-
dicted to damp out

If, however,w,=1/2, then there will be an extra term in
the averaged Eq2.7), namely,

(3.2 and(3.3), we obtain the steady state amplitudes

16

1
R2 9—0[[Ai§\/72—,82, n>0, (3.9

4

1
2_ L= [2_n2
Ro 3a[A_2 -8
As an example, take the case where the damging zero,

and wheren>0. Then

A+1
_z’y

, n=0. (3.5

R2= . n>0. (3.6

9a

But R2 must be non-negative. As a result, there will be 0, 1,
or 2 solutions(in addition to the trivial solutionR,=0),
depending om\, hence
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FIG. 3. The instability regions of E¢3.12 and the resonance curves of Eq.
(3.10 for y=1, €=0.1, andn=0,1,2. The pointsA, B, C, D refer to
example systems discussed in the text.

FIG. 2. The resonance curves of £§.10 for n=0,1,2,3,4.

A<—v/2—0 periodic solutions, (3.7 For points inside these regions, a stable periodic motion of
_ . - . the form(3.11) is predicted to exist. Foa>0, points lying
A>=vl2 but A<yl2—1 periodic solution, (3.8 outside a region(3.12), but on its right-hand side, are pre-
A>y/2—2 periodic solutions. (3.9  dicted to involve two stable statga periodic solution of
hat th h in th ¢ .. known amplitude, and the trivial solutiprFor points outside
It furns out that these changes in the number of periodic, (3.12 on its left-hand side, however, only the trivial so-

so!utions coincide with changes in stab_ility_ of the trivial so- lution is stable. In the case where two stable solutions exist,
I_ut|0n_Rn=0 (as may be shown by considering the SI(_)V_V flow the question of which one occurs depends on the initial con-
linearized neaR,=0). In caseq3.7) and (3.9), the trivial ditions

solution is stable, while it is unstable in the casg&8B). In Note that while the resonance curvéd10 intersect

(3.8), the nontrivial periodic solution is stable, while (8.9) only at 5= 1/4,c=0, the associated instability regiof&12

one of the nontrivial periodic solutions is stable, and one iSoverIap. At points in the overlap regions, we may expect that

unstable. In casgé%.g) and (3.9), the stable motion corre- periodic motions of the form(3.11) exis',t for each of the

sponds to thejr sign 1n Eq§.(3.4) and(3.5). . values ofn corresponding to each of the overlapping regions.
If there is small damping, the results are similar, €xcepy, s region, multiple resonances are expected to be impor-

the stable equilibria of the slow flow change from centers Q4 qnt

sinks. These stable periodic solutions are the unique o foregoing perturbation theory gives a charmingly

asymptotic state for given values of the parameters, indepe'%]mple picture of the steady state dynamics of Eqsl) and
dent of initial conditions, except if two stable states coexist(1 2), at least for small and in the neighborhood of 2:1

[as in(3.9), where t?]e rest Sf.OIUtri]ODE? is al.?ohstab[b resonance. The rest of this paper consists of a comparison
Now suppose t sthwe r|]x the values of the p.ara”;eterf‘)etween the perturbation theory predictions and the actual

@,B,y, ande, and ask how the steqdy state dynamics of EQSepayior of the p.d.g1.1) as obtained by numerical integra-

(1.1, (1.2 change a$ andc are varied. We refer the reader

tion.
to Fig. 2 which shows the resonances
wﬁ= S+ n202=% (3.10 IV. NUMERICAL INTEGRATION OF THE P.D.E.
for n=0,1,2,3,4 plotted in thé—c plane. The perturbation The simulation of hyperbolic p.d.e.’s is often a daunting
analysis is valid in the neighborhood of each of these curved@sk, particularly since their long-time evolution is margin-
and predicts that a stable periodic motion of the form ally stable?! It is essential, for our purpose, that the method-
ology employed introduce no significant dissipation and be
u(x,t) =R, cog wpt+ ¢y)cosnx, (31D capable of preserving the precise character of the solution
where R, and i, are constant§cf. Egs. (3.4 and (3.5)], over hundreds of oscillation periods. Consequently, we felt it
exists on these curves. would be inappropriate to use conventional second-order

In the case of detuning, cf. Eq2.9), each resonance Methodologies, i.e., those whose truncation error is
curve has a region in its neighborhood in which the resQ(Ax*At?). We applied methods that were at least fourth
solution u=0 is unstable(see Fig. 3 The boundaries of order in both space and time. The first class of methods we

these instability regiongor Arnold tongue are given by considered were of spectfalor Galerkirf® type. A natural

A==+ y/2, cf. (3.7—(3.9), or by expansion emerges from the cosine function over the interval
(0,m), i.e., comx for n=0,1,. .., since this defines a com-
1.y lete basis set whose derivati ish at the end point
22_7.,7 2 plete basis set whose derivatives vanish at the end points.
otnc 472 e+ 0(e). (312 (Conceptually, this spectral or Galerkin scheme is a natural
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extension of the truncated basis set that we employ in owvhere we specified the initial Fourier components a4,
analytic calculations. The use of this methodology also proanda,. We numerically integrated the systéfnl) and(1.2)
vided a quantitative confirmation of our ansatz that a lowfor 800 time units or greater, at which point steady state was
order truncated mode expansion, i.e., 3 modes, was suffapproximately achieved. Then we Fourier expandexl time
cient) numerical solution to obtain

We employed a basis set with 128 terms, so that we
could exploit the computational efficacy of the Fast Fourier ~ U(%1)=Fo(t)+ fa(t)cosx+f5(t)cos 2+
Transform. Formally, the nonlinearities present in the spatial +f () COS 2, 4.2
operator required that we employ a “pseudospectral
method'?® to accurately and rapidly approximate the right- wheref,(t) is the Fourier component with wave numbyer
hand side of the partial differential equation. Pseudospectral In order to restrict the complexity of the problem, all of
methods convert partial differential equations into ordinarythe numerical experiments which we report here correspond
differential equations, thereby reducing their computationato the parameter values
complexity. The resulting set of ordinary differential equa-
tions can be solved using a fourth order integration scheme. @=1, B=3 y=1, e=0.1. (4.3
We employed a standard fourth order Runge—Kffiar this
purpose. Although thls_, method_ls not computatlonal_ly optl—the initial conditions(4.1).
mal, it is extremely simple to implement and requires no A ) f th dicti f th turbati i
special starting procedure. Extensive testing of this proce- companson ot the predictions of the perturbation ap
dure. particularly in the limit where we can analvtically es- proach with the results of numerical integration may be il-

» P y y y

tablish the exact solution, showed that it was reliable anciustrated with some examples. We present results for four

; - , . typical points labeledA, B, C, D in Fig. 3. In each case
accurate to five significant figures over hundreds of oscilla-” . . o .
) ) : ) initial conditions(4.1) are taken in the form
tion periods. However, this accuracy was obtained at the ex-
pense of computation time and the overhead associated with ;(x 0)=0.1+ 0.1 cosx+0.1cos X,  u,(x,00=0. (4.4)
the repeated performance of FFT's. To overcome the high
cost of this otherwise desirable approach, we considered al- For point A: (8,¢)=(0.25,0.5), numerical integration
ternatives to our method for evaluating the spatial operatorproduced a periodic motion with afl,(t)=0 exceptf(t),

We selected the so-called “method of line®'The ba-  which had amplitude 0.77. To compare this result with per-

sic feature of this method is that the derivatives with respecturbation theory, we note that sinée=0.25, the detuning
to one of the independent variablés., time remain con-  of wgz 6=0.25 in Eq.(2.9 is zero, so that the predicted
tinuous, while derivatives with respect to the other indepenamplitudeR, of then=0 mode in Eq(3.5) is given byR,
dent variables are replaced by finite-difference approxima=_0.76.
tions. The method of lines is essentially a technique for  For pointB: (§,¢)=(0.15,0.15), numerical integration
replacing a system of partial differential equations by a sysproduced a periodic motion with afl,(t)=0 exceptf,(t),
tem of ordinary differential equations, like pseudospectrawhich had amplitude 0.78. This time the detuning @}
methods, using local Taylor seriés contrast with Fourier = 8+4c?=0.24 is given byA=—0.1, yielding predicted
serieg to develop the expansion. Recently, Hbltand amplitudeR,=0.77 in Eq.(3.4).
Schiessér have explored this methodology. In our situation, ~ For point C: (8,¢)=(0.15,0.3), numerical integration
the boundary conditions are relatively simple since, it can b@roduced a periodic motion with all even modgg(t)=0,
shown,u,=u,,,=0 at each boundary. Hence, we can definewhile f;(t) had amplitude 0.78f3(t) had amplitude 0.01
two “image” points on the other side of each boundary and the other odd modes had amplitud®.001. This time
which turn out to be mirror images of the respective pointsthe detuning ofwi=8+c?=0.24 is given byA=-0.1,
inside the boundary. A five-point central difference operatowielding predicted amplitud®,;=0.77 in Eq.(3.4).
can therefore be used over the entire interval to estimate the Thus there is excellent agreement between perturbation
spatial operator or, equivalently, the right-hand side of théheory and numerical integration for poirks B, andC. Not
partial differential equation with an error @(Ax?). Em- SO for pointD, however. o .
ploying a computational grid for the method of lines with the ~ For point D: (8,¢)=(0.19,0.3), numerical integration
same resolution as that employed in the 128 point pseurroduced a quasiperiodic motion with all modes pressee
dospectral expansion produced results which were identicdl'd- 4 The approximate amplitudes 6p(t), fa(t), f5(t)
over four significant figures over 100 oscillation periods of&'€, respectively, given by 0.3, 0.9, 0.3, although these val-
the system. Remarkably, however, the simplicity of the five-U€S Vary slightly from cycle to cycle since the motion is not

point finite difference operator in contrast with the FFT, pro-Periodic. The corresponding amplitudes of the higher modes

vided nearly an order of magnitude improvement of the com@'€ all<0.03. We shall refer to this steady state as a multi-

putational speed with no significant diminution of accuracy.Mode response. The frequencies of the mode0,1,2
We generally chose our initial conditions in the form  (Which also vary from cycle to cycleare approximately
found to bewy=0.33,w,=0.5, w,=0.67, and hence repre-

sent a resonance in the ratio

For these fixed parameter values, we vargndc as well as

u(x,0)=ay+a; cosx+a, cos X, u,(x,0)=0, 4.1 Wy wyiwyiwy::2:3:4:6, 4.5
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15— ] nonlinearity in the formeau® is responsible for this phe-
F ] nomenon, in contrast to a more realistic nonlinearity of the
10} 3 form sinu. The absence of unbounded growth from the per-
F turbation theory may be due to the scaling by snaalvhich
05 3 localizes the dynamics around the origig=0.
Z ook
g oo ot
X ] V. THREE-MODE TRUNCATION
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[ ] Another feature observed in our numerical experiments
-10F = is that, generally speaking, the steady state is dependent on
[ 3 the initial conditions. This phenomenon is well known in
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FIG. 4. Numerical integration of the p.d.€l.1) and(1.2). The functions
fo(t) are the Fourier components of E@l.2). Parameters correspond to
point D in Fig. 3, cf. Eqs.(4.3), (4.4). Note the multimode behavior of the 1.0
steady state.
0.5
=
= 0.0
St
wherewy=1 is the frequency of the driver cadn this case 05
the perturbation result is completely wrong; the detuning of
w?=6+c?=0.28 is given byA =0.3, yielding the predicted -1.0
amplitude of a lone periodin=1 mode ofR;=1.14 in Eq.
(3.4). No such lonen=1 mode is observed. B T RS- ea—vrum—
Another feature which is present in the dynamics of the t

p.d.e., th _Wthh IS missing from the perturbatlon theory’ ISFIG. 5. Numerical integration of the three-mode o.d.e. truncat®f)—
the possibility of unbounded growth. The presence of thes.3. Parameters and initial conditions are the same as for Fig. 4.
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FIG. 6. Results of numerical integration of the three-
mode o.d.e. truncation for parameté#ss3), for initial
conditions (,(0)=0.1,f,(0)=0.1, f,(0)=0.1), and
for zero initial velocities. Se¢5.4) for the meaning of
symbols.

.04 e 2222000000M-------—--—————————-
----220000000M--
----200000000M--
----000000000M -~
0 X 000000000M————————— - - ——— ——

f|n|t(_=_=. dlmenS|oan problem.s, i.e., in systems of o.d.e.’s. Af2+w§f2+e(,8f2+ vf, cost)

familiar example is a Z-periodically forced single degree of

freedom oscillator, where the dependency of steady state on = ea[3f3f,+ 33+ 2f2f,+ 3f,f7], (5.3
initial conditions may be displayed by giving the boundaries

of the basins of attraction on a Poincaection with cut at

t=0 mod 2 (see Ref. 28, for exampleThe present situa- \wherew?= 5, w?=5+c? and ws= 5+ 4c2.

tion is much more complicated, however, because of the in-  Here we have selected 3 modeather than 2 or 4, say

of the p.d.e.(1.1) as a system of an infinite number of chiefly involved 3 modes.

coupled oscillators, each corresponding to a single mode Numerical simulation of the truncated syste.1)—

cosnx. _ . (5.3 by a fourth-order Runge—Kutta has shown that it gives
In order to investigate the dependency of steady state og good approximation of the p.d.€.1) and(1.2) for some

initial conditions in an efficient manner, we consider a threeparameters and for initial conditions of the for@.1). For

mode o.d.e. truncation of the infinite systén2), example, see Fig. 5, which shows that the 3-mode truncation
exhibits the multimode behavior of Fig. 4.
fot w3fo+ e(Bf o+ yfocost) We numerically integrated Eqg$5.1)—(5.3) for a wide
3 3e 62 3e2 3e o2 range of parameter values, and for each of four sets of initial
=ealfot+3fofa+afifat2fofi], (5.1 conditions f4(0),f1(0),f,(0))=(0.1,0.1,0.1, (1.0,0.1,0.1
(0.1,2.0,0.1), (0.1,0.1,1.0), the results of which are respec-
f1+ w3t + e(Bf,+ yf, cost) tively displayed in Figs. 6, 7, 8, 9. All four of these figures

) 503 3e o2 use the following symbols to denote the observed steady
=6a[3f0f1+ Zf1+ Eflf2+3f0f1f2], (52) state:
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b 1 b R b
3
fo only, f,=f,=0, dynamics of the p.d.g1.1) and(1.2), it gives us an indica-
e tion of the great complexity of the steady state structure of
f1 only, fo="1,=0,
the p.d.e.
f2 Only, f0=f1=0,
trivial solution, fo=1f,=1f,=0
o2 VI. DISCUSSION AND CONCLUSIONS
unbounded growth, ) . . o .
f—andf- onl f.=0 (5.9 Inspection of Fig. 6, which corresponds to initial condi-
oandr, only, 2= tions which lie relatively close to the origin, clearly shows
f, andf, only, fo=0, the regions of instability predicted by perturbation theory, cf.
f, andf, only, f,=0, Fig. 3. Parameter values which lie outside these instability

regions are seen to correspond to the trivial steady &lige
played as the symbol "), in agreement with perturbation
theory. Parameter values which lie inside the instability re-

In all cases the initial velocities were taken as zero for sim-gions are predicted by perturbation theory to lead to a lone
plicity. We note that in addition to the trivial motion and to periodic resonant modé&isplayed by one of the symbols
the pure modes predicted by perturbation theory, a variety of0,” “1” or “2” ). Although this prediction is fulfilled in
mixed modes are observed, as well as unbounded growtlrig. 6 for some points inside the instability regions, there are
Comparison of these four figures shows that the dynamics ddlso observed a number of multimode steady stétkés

the truncated systen5.1)—(5.3) is very complicated, far played by one of the symbolsA,” “ B,”“ C”or“ M"). In
more complicated than the simple picture coming from theaddition, some motions are observed to lead to unbounded
perturbation theory presented above. Although the dynamicgrowth (displayed by the symbol X™).

of the truncated system is surely not exactly the same as the In contrast to Fig. 6, Figs. 7, 8, and 9 correspond to a
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FIG. 8. Results of numerical integration of the three-
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.12 XOHHAK ~———— =~ 222222222222M111111 IXMMXXX~~~-~~-~~~

relatively large initial condition in one of the modal ampli- perturbation analysis of a parametrically excited p.d.e. with
tudes(respectivelyfy, f1, f,), while the other two initial numerical integration of the p.d.e. and of a three-term o.d.e.
conditions remain small. The resulting figures have less iriruncation. The relationship between the all too simple pic-
common with the predictions of perturbation theory than thature presented by the perturbation method and the extremely
exhibited by Fig. 6. At parameters lying outside of the re-complicated behavior of the p.d.e. is itself complicated. The
gions of instability predicted by perturbation theory, thetongues of instability predicted by the perturbation theory are
larger initial conditions of Figs. 7—9 have led to steady statepresent in the numerically observed dynamics, but we have
other than the trivial solution. In addition, unbounded growthobserved multimode steady states which are absent from the
is seen to occur for a wider range of parameter values. Notpresent perturbation results. These multimodes were also ob-
that in each of Figs. 7, 8, and 9, the mode which is given theserved in a related two mode o.d.e. truncation.
larger initial condition(respectively 0, 1, and)2ccurs more In the perturbation scheme presented in this work, we
plentifully than in Fig. 6, especially to the right of the asso-have taken account of the possibility of a single 2:1 reso-
ciated region of instability predicted by perturbation theory.nance between the driver coand one of the modef, cosnt
This is to be expected since such an initial condition is likelyof Eq. (2.1). The appearance of the multimodes in the nu-
to lie in the interior of the basin of attraction of the respec-merical simulations, absent from the perturbation predic-
tive steady state. Note also that the steady states which itions, are conjectured to be due to multiple resonances. This
volve only two componentésymbolized by ‘A,” *“ B” and has been showing in a limited way in a 2-mode analytical
“C") often lie near the boundaries of the tongues associatestudy?® in which both then=0 andn= 1 modes are close to
with their respective components. Evidently, these are mulbeing in 2:1 resonance with the driver ¢oShe resulting
tiple stable basins of attraction, in some cases correspondirdynamical behavior is shown to include stable 2-model mul-
both to single modes and to multiple modes. One could argugmodes in addition to the single-mode steady states, ob-
that these observations offer some support for the notion dfined in the present work.
“mode suppression.” The three-term o.d.e. truncation shares some of the com-
In this paper we have compared the predictions of glexity of the p.d.e. We may view the truncated approxima-
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tion as an autonomous system of four coupled o.d@ys APPENDIX A: DERIVATION OF (2.5) AND (2.6)

associating the cddorcing term with the output of a simple ) , ,
In this appendix we derive Eq$2.5 and (2.6) on R,

harmonic oscillator Although we know of no general study . ) = .
of four coupled oscillators, Baesens, Guckenheimer, Kim@nd #». We begin by differentiating2.4), and using the

and MacKay® have shown that the dynamics of three @PPreviations=sin(wyt+yr), ¢=Ccos@t+yp),
coupled oscillators is extremely complicated. v . -

We view the present paper as a first step in understand- fn= = @RS+ ReC=Rnt/nS. (A1)
ing the behavior of the p.d.€1.1) and (1.2. We expect As usual in the variation of parameters method, we take
additional work to be done on this system because it has _
numerous applications and it is a natural extension of R,c—R,¢,s=0 (A2)
Mathieu's equation(1.3), and thus represents a paradigm
system for parametrically excited p.d.e.’s. In particular we
hope for a perturbation analysis which yields the nature and

so that(Al) becomes

bifurcation of the multimode steady states which we have fn=~©nRys. (A3)
observed numerically. Differentiating (A3), we find
fo=— 02RCc— 0 R,S— 0 Ry¥nC. (A4)
ACKNOWLEDGMENTS Substituting(A4) into (8), we obtain
A preliminary version of this paper appeared as an _ © o . R #C=€Q (A5)
n'*n n'**n¥n n-

ASME conference papéf.We wish to thank J.M. Hyman,
D. Holm, B.C. Denardo, G. Forest, and S. Putterman folNow we solve(A2) and (A5) simultaneously to get the de-
some useful discussions. sired Egs.(2.5) and(2.6) of the text.
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APPENDIX B: DERIVATION OF (2.7)—(2.11) In order to find out what happens to the resonant mode, we

) ] ) ] have to examine the averaged version of Ef6) on ¢,,.
In this appendix we derive the averaged equationRon  pgefore doing so, we generalize the discussion to allow for

and ¢,,, Egs.(2.7—(2.11). We replace the right-hand sides detuning from resonance, hence,
of (2.5 and(2.6) with their average value&@veraged irt, )
holding R,, and ¢, fixed). This process may be legitimized wa=7tA¢, (B7)
by using a near-identity transformation, but the result to,neren is a detuning coefficient. From E€.2), this adds
O(e) is the same, so we take the simpler path. an additional term t&,,, namely,
Note from(2.3) thatQ,, consists of three terms, namely, .
Q,=— Bf,— yf,cost+ag,—Af,. (B8)

Q,=—Bf,— yf,cost+ag,. (B1)
) , Note that the additional termy- Af,,, adds a term propor-
Note also thaR, determines the amplitude of tmth mode,  yiona) to cosfo,t+ yr) Xsin(w,t+ ) to the right-hand side of
while ¢, determines its phase. We consider E25) first. (5 5 \hich averages to zero since it is proportional to
The damping term- gf,, contributes to Eq(2.5) the quan-  sin(2wt+24). So the resonant mode is still governed by Eq.
tity (2.8 in the presence of detuning.
€ Now we are interested in finding the averaged version of
—— (= B)[—Ryo,SiIw,t+ ) ]siwt+ ,), (B2) Eq. (2.6) for the resonant mode. We neglect term&Ogk?),
@n so the factor kb, becomes simply 2. We consider each of
where we have used EGA3). Equation(B2) averages to the terms inQ,, separately. First, note that the damping term

B — pf,, averages to zero. Next, note that the detuning term
- EER”' (B3) —Af,, produces the averaged contributieAR,, .
Next consider the contribution due to the forcing term
Next consider the contribution t(2.5) from the nonlinear — yf,cost. This term involves the trigonometric terms
term ag,,. This looks like it will be difficult to compute, cosf)cosf,t+ #,)=cosf)cost/2+ ¢,,), where we neglect
sinceg, itself is an infinite series. However, it can be donethe detuning inside the cosine because it leads to a term of
easily, since all the terms ig,, are cubic in the;’s, i.e., are  higher order ine. When inserted into the right-hand side of
cubic in cosfit+) for all possible choices of. Using  Eq. (2.6), these terms get multiplied by co®+ ¢,), giving
trigonometric identities, each of these cubic terms gives anly one term which does not average to zero, namely,
single cosine term of the form dde;* wj*w)t+ i+ €vyI2-R,, cos(2/,).
*y], wherei, j, k can take on any integer values. The Finally we consider the contributions coming from the
contribution of each such term to E@.5 involves multi-  nonlinear term iQ,,, ag,,. As discussed above, this term is
plying by sin@.t+¢,), which gives terms of the form composed of an infinite number of cubic terms, each of
sin (o F o= o Fot+ ==t ¢y ]. Each such term has which can be put in the form cfig)*w; = w)t+ g+
average value zero, no matter whatj, k, n are involved.  *+], and wherd, j, k can take on any integer values. The
Thus theag,, term makes no contribution to averaged equa-contribution of each such term to E.6) involves multi-
tion onR,. plying by cosfqt+,), which gives terms of the form
Next we consider the contribution {@.5) coming from  CO§(w;* w;* W+ wt+ ¢ ¢+ =] Now since wi= 6
the term — yf, cost. This term involves the trigonometric +n%c?, the set ofw,’s may be assumed to be mutually in-
terms cosg.t+)cost. When inserted into the right-hand commensurate, i.e., no resonance relation exists between any
side of Eg. (2.5, these terms get multiplied by st of them, e.g..w1# 2wy, etc. Then, in order for the average
+,), giving terms which may be trigonometrically simpli- of such a term to be nonzero, the argument inside the cosine
fied to sif(2w,+1)t+24]. For genera(nonresonantvalues  must be zero. The only way that can happen is if the terms
of the parameters, these terms have average value zero, ag@ncel each other, e.g.,ji=i andk=n and the term takes

so make no contribution to the averaged Eq.Ryn which ~ the form cof(wi—wi+wn—wpt+ii— i+ ¢ —yn]=cos 0=1.

becomes Such a term would have come from the cubfi¢,,. If such a
term appeared iy, with the coefficientk, i.e., g,=kff,
Rn=—eERn. (B4) +---, then its contribution to the right-hand side (%.6)
2 would be
The foregoing equation is no longer valid if the term —26akR,~2C052(wit+ i) R,COS(wpt+ ). (B9)

sin (2w, = 1)t+2¢4,], just discussed, does not average to zero. _— . .
Such will be the case i, =1/2, for then The contribution of this term to the averaged version of Eq.

(2.6) would be — eakRian/Z, except ifi=n, in which case

SN (2wn—1)t+ 24, ] =sin(2¢r,) (B5 it would be —3eakR3/4. There will be an infinite number of
which behaves like a constant under averaging. In such §Uch terms for a given value of one term for each integer
case, there will be an extra term in the averaged Ed), i. However, we have already shown that the amplitURlesf '
namely all the nonresonant modes decay to zero. So we may omit

such terms from the averaged equationgn thereby re-
(B6) stricting attention to the long-time behavior, i.e., after the
transients associated with the decay of the nonresonant

Be y Y

R,= _EER”+62 R, sin 24, .
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modes die out. Thus the only term which contributes to thé?p. G. Drazin and R. S. Johnso8glitons: An IntroductionCambridge

averaged equation corresponds to the ¢ase and has con-
tribution — 3eakR¥/4. Herek is the coefficient of thé? term
in g,. The value ofk may be stated as follows: If we take

University Press, Cambridge, 1989

A, R. Bishop, R. Flesch, M. G. Forest, D. W. McLaughlin, and E. A.
Overman, “Correlations between chaos in a perturbed sine-gordon equa-
tion and a truncated model system,” SIAKBoc. Ind. Appl. Math. J.

just one mode fou (the other nonresonant modes decaying Math. Anal.21, 1511-15361990.

to zerg, u=f,cosnx thenk is the coefficient of cosx in
the nonlinear term cdsix. If n=0, thenk= 1. Otherwise, the
identity

cos x= 3 cosx+ 2 cos X (B10)

showsk=3/4. Thus we conclude that the contribution of the
ag, term to the averaged version of Ed2.11) is
—9eaR3/16 forn>0, and— 3eaR3/4 for n=0.

1A, R. Bishop, M. G. Forest, D. W. McLaughlin, and E. A. Overman, “A
model representation of chaotic attractors for the driven, damped pendu-
lum chain,” Phys. Lett. A144, 17—-25(1990.

N, M. Ercolani, M. G. Forest, D. W. McLaughlin, and A. Sinha,
“Strongly nonlinear modal equations for nearly integrable PDEs,” J.
Nonlinear Sci.3, 393-426(1993.

16R. Grauer and Y. S. Kivshar, “Chaotic and phase-locked breather dynam-
ics in the damped and parametrically driven sine-gordon equation,” Phys.
Rev. E48, 4791-48001993.

173. J. StokerNonlinear Vibrations in Mechanical and Electrical Systems

Collecting all the preceding results together, we obtain (wiley, New York, 1950.

the averaged equations

. 9
lpn:eAJre%coszlpn— 1—66aRﬁ,n>o, (B11)

. 3
¢0=6A+e%0052¢0—zeaRg,n=O. (B12)

1B. Denardo, “Observations of Nonpropagating Oscillatory Solitons,”

Ph.D. thesis, Department of Physics, University of California, Los Ange-

les, California, 1990.
2B. Denardo, W. Wright, and S. Putterman, “Observation of a kink soliton
on the surface of a liquid,” Phys. Rev. Le@4, 1518—-1521(1990.

3B. Denardo, B. Galvin, A. Greenfield, A. Larraza, S. Putterman, and W.

Wright, “Observations of localized structures in nonlinear lattices: Do-
main walls and kinks,” Phys. Rev. Letb8, 1730—-17331992.

4B. Denardo, A. Larraza, S. Putterman, and P. Roberts, “Nonlinear theory

of localizing standing waves,” Phys. Rev. Le®9, 597-600(1992.

A, H. Nayfeh and D. T. MookNonlinear OscillationgWiley, New York,
1979.

19C. A. Holmes and R. H. Rand, “Coupled oscillators as a model for non-
linear parametric excitation,” Mech. Res. Comm@n.263—-268(1981).

20 A. Month and R. H. Rand, “Bifurcation of 4:1 subharmonics in the
nonlinear Mathieu equation,” Mech. Res. Comm@n233-240(1982.

21). C. strikwerdaFinite Difference Schemes and Partial Differential Equa-
tions (Wadsworth & Brooks/Cole, Pacific Grove, 1989

22R. Peyre and T. D. TaylorComputational Methods for Fluid Flow
(Springer, New York, 1983

2C. A. J. FletcherComputational Galerkin Method$pringer, New York,
1984).

24, F. ShampineNumerical Solution of Ordinary Differential Equations
(Chapman & Hall, New York, 1994

25D, J. Jones, J. C. South, and E. B. Klunker, “On the numerical solution of
elliptic partial differential equations by the method of lines,” J. Comput.
Phys.9, 496-527(1972.

SM. Holt, Numerical Methods in Fluid Dynamics2nd revised ed.
(Springer, Berlin, 1984

2|

53. J. Putterman and P. H. Roberts, “Nonlinear theory of modulated stand>”W. E. SchiesserThe Numerical Method of Lines Integration of Partial

ing waves: Domain walls, kinks, and breathers,” Proc. R. Soc. London
Ser. A440, 135-148(1993.

5B. Denardo and W. Wright, “Structural properties of kinks and domain
walls in nonlinear oscillatory lattices,” Phys. Rev. &, 1094-1104
(1995.

’R. Keolian, “Modulations of Driven Nonlinear Standing Surface Waves
on Water and Liquid Helium-4,” Ph.D. dissertation, Department of Phys-
ics, University of California, Los Angeles, California, 1985.

8G. B. Whitham,Linear and Nonlinear Wave@Viley, New York, 1974.

°R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Mor@glitons and
Nonlinear Wave EquationgAcademic, London, 1982

19G. EilenbergerSolitons(Springer, Berlin, 1988

1G. I. Lamb, Jr.Elements of Soliton TheofWiley, New York, 1980.

28

Differential EquationgAcademic, San Diego, 1991

C. S. Hsu,Cell-to-Cell Mapping(Springer, New York, 1987

29R. H. Rand, “Dynamics of a nonlinear parametrically-excited PDE:2-term
truncation,” Mech. Res. Commur23, 283-289(1996.

30C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay, “Three coupled
oscillators: Mode locking, global bifurcations and toroidal chaos,”
Physica D49, 387—-475(1991).

3!R. H. Rand, W. I. Newman, B. C. Denardo, and A. L. Newman, “Dy-
namics of a nonlinear parametrically-excited partial differential equa-
tion,” in Proceedings of the 1995 Design Engineering Technical Confer-
ences, Vol. 3, Part A, “Vibration of nonlinear, random and time-varying
systems,” Boston, Massachusetts, September 17-20, 1995, A.S.M.E.,
DE-84-1, 57-68(1995.



