


2. Averaging

We set

d ¼ 1
4
þ d1� ð3Þ

in order to perturb off the well-known 2:1 resonance of the linear Mathieu equation. Then we set

x ¼ R cos
t
2

�
þ w

�
and

dx
dt

¼ �R
2
sin

t
2

�
þ w

�
ð4Þ

in which R and w are slowly varying functions of time t. Substituting Eq. (4) into Eq. (1) and averaging [6] over one
cycle of duration 4p gives the slow-flow equations:

dR
dt

¼ �
R
2
sin 2w

�
� bR3

�
; ð5Þ

dw
dt

¼ � d1

�
þ 1
2
cos 2w þ aR2

�
; ð6Þ

where

a ¼ 3
4
Aþ 1
16

C and b ¼ 1
8
Bþ 3
32

D: ð7Þ

Equilibria in Eqs. (5) and (6) correspond to periodic motions in Eq. (1). These may be obtained by setting the right-

hand sides of Eqs. (5) and (6) equal to zero, then solving the first for sin 2w, and the second for cos 2w, and then using
the identity sin2 2w þ cos2 2w ¼ 1. This gives the following equation:

a2
�

þ b2
�
R4 þ 2ad1R2 þ d21 �

1

4
¼ 0: ð8Þ

Eq. (8) is a quadratic on R2, and may be easily solved. We find that in addition to the origin R ¼ 0, there are ad-
ditional slow-flow equilibria as follows, assuming a > 0:

For d1 > 1
2
, there are none.

For � 1
2
< d1 < 1

2
, there is one.
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Fig. 1. Transition curves for the linear Mathieu equation.
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For �M < d1 < � 1
2
, there are two.

For d1 < �M , there are none.
Here the quantity M turns out to be given by

M ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

b

� �2s
ð9Þ

This situation is illustrated in Fig. 2.

If a < 0, however, the situation is reversed, as shown in Fig. 3. If we combine Figs. 2 and 3 for a fixed value of b, we
get Fig. 4, which shows the number of (nonorigin) slow-flow equilibria in various regions of the d–a parameter plane.
Here � has been fixed so that d is given by Eq. (3). The curved lines in Fig. 4 are given by d1 ¼ �M .

3. Numerical integration

In order to test the validity of the foregoing analysis, we numerically integrated Eq. (1) for the following sample

parameter values:

A ¼ 1; B ¼ 3; d1 ¼ 0:49; � ¼ 0:01; b ¼ a: ð10Þ

We varied the remaining parameter, a, and obtained the Poincar�ee maps shown in Fig. 5. These maps are based on
the surface of section t ¼ 0 mod 2p. The steady state periodic motions obtained in the averaging analysis would cor-
respond to a period-2 motion in the Poincar�ee maps. This predicted motion is observed in Fig. 5(a). However, Figs. 5(b),
(c) and (d) show dynamical features which are not predicted by the averaging analysis. In order to use averaging to

explain these features, we found it necessary to extend the analysis to second-order averaging.

R

-M -1/2 1/2 1δ

Fig. 2. Slow-flow equilibria for a > 0.

M-1/2 1/2

R

1δ

Fig. 3. Slow-flow equilibria for a < 0.
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Fig. 5. Poincar�ee maps for A ¼ 1, B ¼ 3, � ¼ 0:01, a ¼ b ¼ �l obtained by numerical integration of Eq. (1), arrows point to fixed points
of the map (periodic orbits of Eq. (1)): (a) displays an attractive period-2 motion in the map which corresponds to a period 4p motion
in Eq. (1); (b) and (c) displays quasi-periodic motions in Eq. (1); (d) displays bistability: two different sets of initial conditions are used

which are attracted to two distinct period-2 motions.
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Fig. 4. Number of (nonorigin) slow-flow equilibria for b fixed as predicted by the first-order averaging.
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4. Second-order averaging

To obtain a slow flow valid to O(�2), we follow the procedure in [4]. To accomplish this, we must expand the pa-
rameters d, a and b to higher order in �:

d ¼ 1
4
þ d1�þ d2�

2; ð11Þ

a ¼ a0 þ a1� and b ¼ b0 þ b1�: ð12Þ

We obtain the following slow-flow equations:

dR
dt

¼ �
1

2
R sin 2w

�
� b0R

3

�
þ �2

�
� d1 sin 2wRþ

�
� 3
2

a0 sin 2w þ 1
2
A sin 2w � 7

6
b0 cos 2w

þ 1
12

B cos 2w � 2b0d1 þ
1

2
Bd1 � b1

�
R3 þ 4

3
a0b0

�
� 2Ab0 þ

1

3
a0B

�
R5
�
; ð13Þ

dw
dt

¼ � d1

�
þ 1
2
cos 2w þ a0R2

�
þ �2

�
� d1 cos 2w þ d2 � d21 �

1

8
þ 1

3
b0 sin 2w

�
þ 1
3
B sin 2w

þ a0 cos 2w � 2A cos 2w � 3Ad1 þ a1

�
R2 þ

�
� 3
2
b20 �

1

6
Bb0 �

1

24
B2 � 3

2
a20 þ Aa0 �

3

2
A2
�
R4
�
: ð14Þ

These equations are significantly more complicated than Eqs. (5) and (6). The fixed points of the system will now

depend on the parameters d1, d2, �, a0, a1, b0, b1, A and B. Because of the large number of parameters, several sim-

plifications were made in order to make the analysis more tractable. First, we set a0, b0 ¼ 0 since it will turn out that
second-order averaging is most relevant when a and b are of O(�). Second, we arbitrarily fix the parameters A ¼ 1, B ¼ 3
and set a1 ¼ b1 ¼ l. These simplifications result in the following system:

dR
dt

¼ �
1

2
R sin 2w

� �
þ �2

�
� d1R sin 2w þ 3

2
d1

�
� l þ 1

2
sin 2w þ 1

4
cos 2w

�
R3
�
; ð15Þ

dw
dt

¼ � d1

�
þ 1
2
cos 2w

�
þ �2 d2

�
� d21 �

1

8
� d1 cos 2w þ lð � 3d1 þ sin 2w � 2 cos 2wÞR2 � 15

8
R4
�
: ð16Þ

The simplified slow-flow equations (15) and (16) now have a reduced parameter space of �, l, d1 and d2. If we regard
� as fixed but small and recall our previous assumption that d ¼ 1=4þ �d1 þ �2d2, the perturbation d ¼ 1=4þ �D gives
D ¼ d1 þ �d2. Thus, the system can be viewed in a 2-D parameter space of D and l only. We will generally take d2 ¼ 0,
since with � fixed any value of D can be achieved by choosing D ¼ d1. However, at points where d1 takes on critical
values (i.e. where features change rapidly with d1), we will take d2 nonzero.
Performing a bifurcation analysis of Eqs. (15) and (16) includes finding the fixed points of the system, which requires

solving a high-order polynomial in R. A combination of analytic and numerical techniques was used in this analysis.

These included using Taylor series expansions at various stages of the calculation to produce approximate solutions and

numerically solving the polynomial in R for different values of d1, d2, � and l and counting the number of positive real
roots to determine the number of fixed points of the system. Fig. 6 (see Table 1) presents a bifurcation diagram

summarizing the features observed for the simplified system equations (15) and (16) when � ¼ 0:01.
The labels RI, RII, . . . in Fig. 6 correspond to regions in parameter space with different numbers of fixed points. The

remaining labels SN1, HO, . . . identify various types of bifurcation curves.
The curves LM1 and LM2 represent bifurcations where a pair of saddle points along the R ¼ 0 axis are created and

destroyed. Analytic expressions for these curves can be obtained from Eq. (6). It was found that the equations for LM1

and LM2 are d1 ¼ �1=2, d2 ¼ �1=8 and d1 ¼ þ1=2, d2 ¼ �1=8, respectively. These values correspond to the O(�2)
expressions for the boundaries of the 2:1 resonance tongue present in the linear Mathieu equation.

The curves SN1, SN2, and SN3 correspond to saddle node bifurcations of Eqs. (15) and (16). Analytic approxi-

mations for SN1 and SN2 were obtained from Eqs. (15) and (16) using Taylor series expansions in �. It was found that
the equations

d1 ¼ � 1
2
; d2 ¼ � 1

8
� 2
15

l

�
� 1
2

�2
; l � 1

2
P 0 ð17Þ

approximate SN1, SN2, respectively, in the neighborhood of the LM1, LM2 curves.
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5. Bifurcations of periodic orbits in slow flow

Periodic orbits in the slow-flow equations correspond to quasi-periodic orbits in Eq. (1). In Eqs. (15) and (16),

R > 0 and �p=2 < w < p=2 so that the phase space is Rþ � S1. There are two types of periodic orbits in Eqs. (15)
and (16). We refer to type 1 periodic orbits as those which plot as a topological circle in the R–w phase space
and to type 2 periodic orbits as those which are topologically equivalent to R ¼ const. Shown in Fig. 6 are
dashed lines which represent bifurcations of periodic orbits in the simplified slow-flow Eqs. (15) and (16). The

curve labeled HPF corresponds to a Hopf bifurcation in which a type 1 periodic orbit is born, HO corresponds

to a heteroclinic bifurcation and LC corresponds to a type 2 periodic orbit being created. These bifurcation

curves were found to exist by numerically integrating Eqs. (15) and (16) and observing the phase portraits

generated.

Fig. 7 shows a sequence of phase portraits (R along the horizontal axis, w along the vertical axis) that were observed
while holding d1 fixed and increasing l in region RIII of the parameter space. Fig. 7(a) corresponds to being below the
LC curve in region RIII where there exist only 2 saddle points on the R ¼ 0 axis and an unstable fixed point with R 6¼ 0.
As l is increased, a stable type 2 limit cycle is observed to have been created as shown in Fig. 7(b) (darker trajectory).
The creation of this limit cycle corresponds to the LC bifurcation curve. As l further increases, the limit cycle moves in
towards R ¼ 0 until it eventually connects with the saddle points on the R ¼ 0 axis forming a heteroclinic loop as shown
in Fig. 7(c). This corresponds to the heteroclinic bifurcation curve HO. Increasing l causes the previous type 2 limit
cycle to become a type 1 limit cycle around an unstable fixed point (Fig. 7(d)). The limit cycle now shrinks around the

fixed point it encircles until it disappears in a Hopf bifurcation changing the stability of the fixed point as shown in

Fig. 7(e).

LM1 LM2

SN1

SN2

SN3

RII

RVI

RIV

HPF

HO

LC

µ

RVI
RIII

RI

RV
∆

Fig. 6. Bifurcation curves for A ¼ 1, B ¼ 3, � ¼ 0:01, a ¼ b ¼ �l as predicted by second-order averaging. The horizontal axis is
D ð¼ d1 þ �d2Þ and the vertical axis is l ð¼ a1 ¼ b1Þ (see Table 1).

Table 1

Region Total # fixed

points

# Fixed points on

R ¼ 0
Curve Bifurcation type

RI 0 0 LM1,LM2 Bifurcation of fixed points on R ¼ 0
RII 2 0 SN1,SN2,SN3 Saddle-node bifurcation

RIII 3 2 HPF Hopf bifurcation

RIV 5 2 HO Heteroclinic bifurcation

RV 2 0 LC Limit cycle created at 1
RVI 0 0
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6. Analysis using auto

The AUTO bifurcation and continuation software [1] was used to confirm the results previously obtained for the

simplified system equations (15) and (16) and to investigate the bifurcation diagrams for different values of A and B in

Eqs. (13) and (14).

The bifurcation diagram for Eqs. (15) and (16) generated using AUTO is shown in Fig. 8. It appears that the HPF

and HO curves emanate from a common point l ¼ 0 on the LM1 curve. In addition, both the HPF and HO curves exist

-1. 0. 1. 2. 3. 4. 5. 6.

-10.

-5.

0.

5.

10.

15.

δ

µ

1

Bifurcation Diagram for A=1, B=3, =0.01

SN2SN1

HO

HPF

SN3

LM1 LM2

ε

Fig. 8. Bifurcation diagram for A ¼ 1, B ¼ 3, � ¼ 0:01, a ¼ b ¼ �l obtained by using AUTO to investigate the second-order averaging
slow-flow Eqs. (15) and (16).
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−π/
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Fig. 7. Phase portaits of the sequence of bifurcations observed while holding d1 fixed and increasing l in region RIII cf. Fig. 6.
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outside of the region bounded by the LM1, LM2 curves and continue into the region RV. AUTO has been used to

obtain related bifurcation diagrams for various values of �, A and B but these are omitted here for brevity.

7. Analytic approximation of Hopf bifurcation

At the point where the HPF, HO and LM1 curves intersect we have a degenerate bifurcation point (l ¼ 0,
d1 ¼ �1=2, d2 ¼ �1=8). An unfolding procedure outlined in ([2, Chapter 7]) was performed to investigate the dynamics
around this point. We start by setting d1 ¼ �1=2 and introducing the following rescaling transformation:

R ¼ r
ffiffiffi
u

p
; w ¼ rv; l ¼ rm1; d2 ¼ �1=8þ r2m2; s ¼ �rt for r small: ð18Þ

Substituting Eqs. (18) into Eqs. (15) and (16) and Taylor expanding in r, we get the following equations:

du
ds

¼ 2ð1þ �Þuv� �u2r � 2 m1ð
�

� vÞ�u2 þ 4
3
1ð þ �Þuv3

�
r2 � �u2v2r3 þO r4

� �
; ð19Þ

dv
ds

¼ m2�� 1ð þ �Þv2 � �

2
uþ m1ð þ 2vÞ�ur þ 4�uv2

�
� 15
8
�u2 þ 1

3
1ð þ �Þv4

�
r2 � 4

3
�uv3r3 þO r4

� �
: ð20Þ

A Hopf bifurcation occurs when the system has a pair of purely imaginary eigenvalues. We obtain a condition for

Hopf bifurcations by requiring the trace of the Jacobian of Eqs. (19) and (20) be zero at the fixed point for which u is

not zero. We start by first finding a series approximation for the fixed point:

u� ¼ u�0 þ u�1r þ u�2r
2 þ � � � ;

v� ¼ v�0 þ v�1r þ v�2r
2 þ � � � ;

ð21Þ

where u�i , v
�
i are functions of �, m1 and m2. We then substitute this solution into the Jacobian of Eqs. (19) and (20) and set

its trace equal to 0. The condition that we find for a Hopf bifurcation to occur is:

m1 ¼
3�m2r
1þ �

þ 9� 11�þ 5ð Þm22r3

2 1þ �ð Þ2
þO r4

� �
: ð22Þ

Transforming back to the original parameters, we get the following approximation for the Hopf bifurcation curve:

l ¼ 3� d2 þ 1=8ð Þ
1þ �

þ 9� 11�þ 5ð Þ d2 þ 1=8ð Þ2

2 1þ �ð Þ2
: ð23Þ

8. Limit cycle at infinity

Although we did not use AUTO to track the bifurcation curve associated with the creation of a type 2 limit cycle, we

did find that the Hopf and heteroclinic bifurcation curves (HPF, HO) exist in region RV outside of the LM1, LM2

transition curves. For these bifurcation curves to exist, a type 2 limit cycle must have been created which suggests that

the LC bifurcation curve should also exist in region RV and have a slope similar to the HPF, HO curves. This prompted

the following analysis which results in an expression for the LC bifurcation curve.

In Section 5, we saw that a stable type 2 limit cycle was created somehow between Figs. 7(a) and (b), a result

obtained by observing phase portraits of Eqs. (15) and (16) generated by numerical integration. Further investigation

reveals that the type 2 limit cycle is created at R ¼ 1. Prior to the creation of the limit cycle, trajectories would escape
off to R ¼ 1. This suggests investigating the behavior of the system for large R. Taking only the largest terms in R for
Eqs. (13) and (14) with a0 ¼ b0 ¼ 0 results in:

dR
dt

¼ �2
A
2
sin 2w

�
þ B
12
cos 2w þ B

2
d1 � b1

�
R3; ð24Þ

dw
dt

¼ �2
�
� 1
24

B2 � 3
2
A2
�
R4: ð25Þ
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This system turns out to be integrable giving the solution:

RðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

J2

B
24
sin 2w � A

4
cos 2w þ J1w

� �
þ C1

s
; ð26Þ

where J1 ¼ ð1=2ÞBd1 � b1, J2 ¼ �ð1=24ÞB2 � ð3=2ÞA2, and C1 is a constant of integration.
Note that J26 0 and dw=dt6 0 (from Eq. (25)) so we can conclude that w is always decreasing in time for large R.

Using these facts and Eq. (26), we see that as t ! 1,

R �

ffiffiffiffiffiffiffiffiffiffi
2J1w
J2

s
ð27Þ

so that for J1 > 0, R ! 1 as t ! 1 (for sufficiently large initial R).
Thus, the LC curve is given by J1 ¼ 0 or b1 ¼ ð1=2ÞBd1. Numerical integrations of Eqs. (15) and (16) appear to agree

with this condition.

9. Conclusions

In this paper we have performed a bifurcation analysis of a Mathieu equation with cubic nonlinearities restricting

our attention to parameter values near the 2:1 resonance. We found that using first-order averaging could not explain

some of the features observed by numerical integration and it was necessary to extend the analysis to second-order

averaging. A bifurcation diagram was found for the second-order slow-flow equations.

The AUTO bifurcation and continuation software was used to obtain numerical bifurcation diagrams.

Finally, we analytically investigated some of the bifurcations associated with periodic orbits in the slow-flow

equations.
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