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Delay or queue length information has the potential to influence the decision of a customer to
join a queue. Thus, it is imperative for managers of queueing systems to understand how the
information that they provide will affect the performance of the system. To this end, we con-
struct and analyze two two-dimensional deterministic fluid models that incorporate customer
choice behavior based on delayed queue length information. In the first fluid model, customers
join each queue according to a Multinomial Logit Model, however, the queue length information
the customer receives is delayed by a constant A. We show that the delay can cause oscilla-
tions or asynchronous behavior in the model based on the value of A. In the second model,
customers receive information about the queue length through a moving average of the queue
length. Although it has been shown empirically that giving patients moving average informa-
tion causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically
and mathematically show for the first time that the moving average fluid model can exhibit
oscillations and determine their dependence on the moving average window. Thus, our analysis
provides new insight on how operators of service systems should report queue length information
to customers and how delayed information can produce unwanted system dynamics.

Keywords: Queueing theory; choice models; delay differential equations; oscillations; moving
averages; healthcare; Disneyland.

customers. Currently, many companies and system

Understanding the impact of providing delay infor-
mation to customers in service systems is a very
important problem in the operations management
literature. Smartphones and internet technology
have changed the possibilities for communica-
tion between service systems and their potential

managers choose to provide their customers with
valuable information that has the potential to influ-
ence their choice of using the service. One exam-
ple of this communication is delay announcements,
which have become important tools for customers
to know how long they will wait on average for
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someone to start serving them. These announce-
ments are not only important because they give the
customer information about the quality of the ser-
vice, but also they have the possibility of influencing
the possibility that a customer will return to use the
service again. As a consequence, understanding the
impact of providing delay or queue length informa-
tion to customers on customer choices and system
operations, as well as the development of methods
to support such announcements, has attracted the
attention of the Operations Research and Manage-
ment communities in the past few years.

One example of this new communication
between customers and services is in the healthcare
industry. In Fig. 1, we show an example of a typi-
cal billboard sign that many hospitals use for mar-
keting as well as a way of providing information
to potential patients. Since emergency room wait-
ing times can be very long, giving waiting time or
queue length information to potential patients is a
useful tool for hospitals to communicate to patients
when their emergency rooms are relatively under-
loaded. Much of the current literature that explores
the impact of giving customers information about
queue lengths and waiting times has been applied
in the context of telecommunication systems such
as telephone call centers. However, understanding
the impact in a healthcare context is much more
complicated. For one, in healthcare, the service dis-
cipline is not necessarily first come first serve and
can be quite arbitrary. Given the triage system that
is prevalent in hospitals, one could be tempted to
model the emergency room with a priority queue.

However, understanding the impact of waiting times
and queue lengths on the dynamics in the priority
setting is also quite difficult, see for example [Pen-
der, 2017]. Moreover, unlike the call center litera-
ture where callers are likely to only speak with one
agent, the patient experience often involves multi-
ple servers that each have a different purpose in
the service process of the patient. Thus, the patient
experience is more like movement through a queue-
ing network. For example, in a typical emergency
room, a patient might interact with a nurse, a doc-
tor, various administrative staff, and even labora-
tory technicians when tests need to be performed.
Most of the current research on providing queue
length or waiting time information to customer
focuses on the impact of delay announcements
with respect to call centers and telecommunications
applications. There is a vast literature on this sub-
ject, which is mostly segmented into three different
areas of research. The first part emphasizes mak-
ing accurate real-time delay announcements to cus-
tomers. In fact, in [Ibrahim & Whitt, 2008, 2009,
2011a, 2011b] the authors develop new estimators
for estimating delays in various queueing systems.
They primarily study two types of estimators. The
first estimator is the head of the line (HOL) esti-
mator, which provides the current amount of time
that the next customer to get service has waited in
line. The second type of estimator that they study
is the delay of the last customer who entered the
agents service (LES). These two estimators are dif-
ferent and the papers [Whitt, 1999b; Ibrahim &
Whitt, 2008, 2009, 2011a, 2011b] provide a detailed
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Highway signs posting emergency room wait times.

1730016-2



analysis of these estimators. The second part of the
literature addresses how the delay announcements
impact the dynamics of the queueing process and
how customers respond to the announcements.
The works of Armony and Maglaras [2004], Guo
and Zipkin [2007], Hassin [2007], Armony et al.
[2009], Guo and Zipkin [2009], Jouini et al. [2009],
Jouini et al. [2011], Allon and Bassamboo [2011],
Allon et al. [2011], Ibrahim et al. [2016], Whitt
[1999a] and references therein analyze the impact of
delay announcements on the queueing process and
the abandonment process of the system. Finally,
the third part of the literature analyzes the cus-
tomer psychology of waiting. The works of Hui and
Tse [1996], Hui et al. [1997], Pruyn and Smidts
[1998], Munichor and Rafaeli [2007], Sarel and Mar-
morstein [1998], Taylor [1994] explore the behav-
ioral aspect of customer waiting and how delays
affect customer decisions. This paper is most related
to the second area of research; however, it is unique
in that it includes customer choice with delay dif-
ferential equations.

More recently, there is work that also consid-
ers how information can impact queueing systems.
Work by Jennings and Pender [2016] compares
ticket queues with standard queues. In a ticket
queue, the manager is unaware of when a customer
abandons and is only notified of the abandonment
when the customer would have entered service. This
artificially inflates the queue length process and the
work of Jennings and Pender [2016] compares the
difference in queue length between the standard and
ticket queues. Follow-up work by Pender [2015b,
2015c¢] also considers the case when there are depen-
dencies between balking and reneging customers
and when the server spends time clearing a cus-
tomer who has abandoned the system respectively.
However, this work does not consider the aspect
of choice and delays in providing the information
to customers, which is the case in many healthcare
settings.

Since hospital networks are more complicated
than telephone call centers, understanding the wait-
ing and queueing dynamics is a much harder prob-
lem, see for example [Armony et al., 2015]. Even
designing a delay estimator in hospital systems is
very difficult and recent work by Plambeck et al.
[2014] develops a new emergency department delay
estimator that combines methodology from statisti-
cal learning theory and queueing theory. Because of
this complexity, it is common that hospitals publish
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historic average waiting times using a 4-hour mov-
ing average and this has been noticed in the work
of Dong et al. [2015].

Another useful application of our work is for
amusement parks like Disneyland or Six Flags. In
Fig. 2, we show a snapshot of the Disneyland app.
The Disneyland app lists waiting times of various
rides in the themepark and customers get to choose
which ride that they would want to go on given the
waiting times. However, the wait times on the app
are not posted in real-time and are calculated based
on moving average of the waiting times. Thus, our
queueing analysis is useful for Disney to synchronize
their waiting times for rides across the themepark.

This paper introduces two new fluid models,
which describe the dynamics of customer choice and
delay information that customers use to make deci-
sions. In the first fluid model, the customer receives
information about the queue length which is delayed
by a parameter A. In the second fluid model, we
use a moving average of the queue length over the
time interval A to represent the queue length infor-
mation given to the customer. The models that we
present are useful in two major contexts. The first
context is where the software that communicates
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with customers is delayed in some fashion, which is
common in many hospitals who outsource the com-
putation of their waiting times and queue lengths.
The second context is where the customer reaction
to the information is delayed. This can happen in
the Disney example where there is a delay between
customers viewing the wait times and them joining
the queue. Thus, the delay does not necessarily need
to be a function of the software or a lag in infor-
mation, it can be caused by the customer behavior
and distance from the queue that they are joining.
What these fluid models are able to show is that
when the delay is small the two queues are bal-
anced and synchronized; however, when the delay
is large enough, the two queues are not balanced
and asynchronous. We determine the exact thresh-
old where the dynamics of the two queues are dif-
ferent for both the constant and moving average
models. Our analysis combines theory from delay
differential equations, customer choice models, and
stability analysis of differential equations.

1.1. Main contributions of paper

The contributions of this work can be summarized
as follows:

e We develop two new two-dimensional fluid mod-
els that incorporate customer choice based on
delayed queue length information. One model
uses a constant delay and another model uses a
moving average.

e We show that the constant delay queueing model
can experience oscillations where the two queues
are not synchronized and derive the exact thresh-
old where the oscillatory behavior is triggered
in terms of the model parameters. Moreover, we
show that the threshold is monotone in terms of
the arrival rate.

e We show that the moving average queueing model
can experience oscillations where the two queues
are not synchronized. However, unlike the con-
stant delay system, the threshold is not monotone
as a function of the arrival rate.

1.2.

The remainder of this paper is organized as follows.
Section 2 describes a constant delay fluid model. We
derive the critical delay threshold under which the
queues are balanced if the delay is below the thresh-
old and the queues are asynchronized if the delay is

Organization of paper

above the threshold. We also show that the insta-
bility is preserved as long as the delay is increased.
Section 3 describes a constant moving average delay
fluid model. We derive the critical delay threshold
under which the queues are balanced if the delay is
below the threshold and the queues are asynchro-
nized if the delay is above the threshold. We also
show that the instability is preserved as long as the
delay is increased in certain regions of the parame-
ter space. Finally in Sec. 4, we conclude with direc-
tions for future research related to this work.

2. Constant Delay Fluid Model

In this section, we present a new fluid model with
customer choice based on the queue length with a
constant delay. Thus, we begin with two infinite-
server queues operating in parallel, where customers
choose which queue to join by taking the size of
the queue length into account. However, we add
the twist that the queue length information that is
reported to the customer is delayed by a constant
A. Therefore, the queue length that the customer
receives is actually the queue length A time units
in the past. An example of this delay is given in
Fig. 3, which is JFK Medical Center in Boynton
Beach, Florida. In Fig. 3, the average wait time is
reported to be 12 minutes. However, on the top right
of the figure we see that the time of the snapshot
was 4:04 pm while the time of a 12 minute wait is
as of 3:44 pm. Thus, there is a delay of 20 minutes
in the reporting of the wait times in the emergency
room and this can have an important impact on the
system dynamics as we will show in the sequel.
The choice model that we use to model these
dynamics is identical to that of a Multinomial Logit
Model (MNL) where the utility for being served in
the ith queue with delayed queue length Q;(t — A)
is u;(Qi(t — A)) = Qi(t — A). Thus, in a stochastic
context with two queues, the probability of going to
the first queue is given by the following expression

p1 (Ql (t), Q2 <t>7 A)

) exp(~Qu(t ~ &) "
exp(—Qu(t — A) + exp(—Qa(t — A))

and the probability of going to the second queue is
p2(Q1(t), Q2(t), A)

_ exp(—Qg(t - A)) (2)
exp(—Q1(t — A)) + exp(—Q2(t — A))
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Since the main goal of our analysis is to pro-
vide insight into the dynamics of the system when
delayed information is given to customers, we ana-
lyze a fluid model of the system instead of the actual
stochastic process, which is more difficult. More-
over, the fluid model enables us to understand the
mean dynamics of the system when the number of
arrivals in the system is large, which is the case
in themeparks like Disneyland. However, since we
analyze the fluid model instead of the real stochas-
tic system, we no longer have probabilities in our
choice model. Instead, we now have rates at which
customers join each of the two queues. In our fluid
model, we assume that the sum of the arrival rate
of customers to both queues is equal to the con-
stant rate A, the service rate of both queues is
equal to p, and the information about the queue
length is delayed by the constant A. Therefore, in
this model, customers join the first queue, ¢ (t),
at rate

N exp(—q1(t — A))
exp(—qi(t — A)) + exp(—ga(t — A))

(3)

) REmREFw={

JFK Medical Center online reporting.

and customers join the second queue, ¢o(t), at rate

| exp(—as(t — A)) W

exp(—qi(t — A)) +exp(—qa2(t — A))”
Thus, our model for customer choice infinite server
queues with delayed information can be represented
by the two-dimensional system of delay differential
equations

_ exp(—qi(t — A))
exp(—qi1(t — A)) + exp(—g2(t — A))
— Hq1 (t>7 (5)
. exp(—q2(t — A))
exp(—qi(t — A)) + exp(—gqa(t — A))
- :U’QQ(t% (6)

where we assume that ¢i(¢t) and go(t) start with
different initial functions ¢;(t) and @2(t) on the
interval [—A, 0].

qi(t) = A

g2(t) = A

Remark 2.1. When the two delay differential equa-
tions are started with the same initial functions,
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Queue Length vs. Time A =.34,u =1
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Fig. 4.

they are identical for all time because of the sym-
metry of the problem. Therefore, we will start the
system with nonidentical initial conditions so the
problem is no longer trivial and the dynamics are
not identical.

In Fig. 4, we see qualitatively different behav-
ior of the fluid model equations when A = 0.34 and
A = 0.4. It is clear from the left plot in Fig. 4 that
the two queues are synchronized and converge to
the same equilibrium solution when A = 0. How-
ever, on the right plot of Fig. 4, we see that the two
queues are not synchronized and exhibit oscillatory
and asynchronous behavior. It turns out that for the
model parameters presented in Fig. 4, asynchronous
dynamics will not occur as in right plot of Fig. 4 if
the delay A < 0.3614. Otherwise, oscillations and
asynchronous dynamics will exist for both queues.
However, this change in behavior can be explained
by the fact that the equilibrium points of the queue
length delay differential equations transition from
stable to unstable where a limit cycle is born. This
situation is known as a Hopf bifurcation and will be
explained in more detail later in the paper, however,
the reader is referred to [Guckenheimer & Holmes,
2013] to learn more about Hopf bifurcations and
the general analysis of ordinary differential equa-
tions. In the next theorem, we show how to derive
the critical delay Ac (A, 1), which depends on the
arrival rate A and the service rate p. The critical
delay A (A, 1) separates the region of oscillatory
and nonoscillatory dynamics of the queueing model

Queue Length vs. Time A = .4

Queue Length

Time

Numerical integration of fluid model for A = 10, p =1, Aer = 0.3614: (left) A = 0.34 and (right) A = 0.4.

and can be determined by a stability analysis of
the delay differential equations given in Egs. (5)
and (6). Moreover, to the left of the critical delay,
the real part of all eigenvalues of the linearized equa-
tions is negative and to the right of the critical delay,
at least one of the eigenvalues is positive. Our first
result, given below, determines the critical delay’s
dependence on the arrival and service rates of our
queueing fluid model with choice.

Theorem 1. For the constant delay choice queueing
model given in Egs. (5) and (6), the critical delay
A (A, 1) is given by the following expression

)

2 arccos Y

Acr()‘a M) = \/m . (7)
Moreover, if A < Ac;, then the two queues will be
synchronized in equilibrium and when A > A the
two queues will be asynchronous and oscillate in
equilibrium.

Proof. See the Appendix for the proof. W

In Fig. 5, we show the dependence of the criti-
cal delay A, as a function of the model parameter
A while keeping p constant. On the left of Fig. 5,
we plot Hopf curves when p = 0.5 and p = 1. We
see that the curves are very similar for both val-
ues of p and that the critical delay value decreases
as A increases. Moreover, on the right of Fig. 5, we
use the function in Matlab called EZ-Plot, to plot
the various critical delay values. We see that there
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are several Hopf bifurcation curves, which indicate
that there could possibly be several regions where
the stability of the delay differential equation sys-
tem might change, i.e. the example of Fig. 4 could
be reversed. However, we will show in the sequel
that this reversal of stability is impossible since all
roots pass from the left half-plane to right half-
plane, which prevents the system from becoming
stable again.

2.1. Hopf bifurcation curves in the
constant delay model

On the right of Fig. 5, as the first Hopf curve
is crossed, we see a stable limit cycle is born.
However, after the next Hopf curve is crossed (as
parameters are slowly changed), there are various
possibilities:

(1) The pair of roots which crossed into the right
half-plane in the first Hopf, may cross back into
the left half-plane. Thus, all roots are in the left
half-plane again and the equilibrium reverts to
stability. The limit cycle which was born in the
first Hopf bifurcation shrinks to nothing and
disappears.

(2) Another pair of roots may cross into the right
half-plane, so that two pairs of roots are now
in the left half-plane. A new limit cycle may be
born, but the stability of the equilibrium does
not change. The new limit cycle is expected to
be unstable.

Queues with Choice via Delay Differential Equations

cos(d/2 sqrt(lam2 -41))+2/lam =0
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(Left) Acr as a function of A when p = 0.5 and p =1 and (right) EZ-plot of A¢; as a function of A when = 1.

(3) One of many possible degenerate cases: multi-
ple pairs may cross at once, or the first pair of
roots may recross simultaneously with the next
pair crossing, or a pair of roots may touch the
imaginary axis but not cross.

Numerical integration with the Matlab delay
differential equation package dde23 showed that
there was only one stable limit cycle observed, no
matter how many of the Hopf curves are crossed.
However, this does not tell us what happens to the
various pairs of imaginary roots which occur on the
various Hopf curves. Do they all pass from left half-
plane to right half-plane, or do some of them come
back in the opposite direction? The purpose of the
remainder of this subsection is to address this issue.

Now suppose that the delay A is close to a crit-
ical value for a Hopf bifurcation. We then make a
slight perturbation from the critical value for the
Hopf bifurcation i.e.

A = AO + EAl (8)

where € < 1. Then the root r will be slightly per-
turbed from the pure imaginary value it would take
at A = Ag. That is, we can write

r=iw + e(ir; +r2) 9)

where r1 and r9, the imaginary and real parts of

the perturbation, may be determined in terms of
AQ and Al.

Proposition 1. Suppose that we make a slight per-
turbation on the order of eAy near a critical delay

1730016-7
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Queue Lengthvs. Time A=.02,u =5
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value for a Hopf bifurcation, then the real part of r
is equal to

. 4&)2A1

C 8Agu+ AN 447

(10)

T2
In particular, ro has the same sign as Aq.
Proof. See Appendix. H

Thus ro has the same sign as Aj. This means
that as A increases past Ag, the critical Hopf value,
r crosses the imaginary axis from left to right. This
analysis holds for every Hopf curve, which implies
that the initial instability that occurs after pass-
ing through the first Hopf curve is preserved and
does not change as we pass through more Hopf
curves. In Fig. 6, we provide an additional numer-
ical example to illustrate the change in stability
before and after our critical delay A... Once again,
we see that for all values of the delay before the
critical delay threshold, the two queues synchro-
nize, balance is achieved, and the system is stable
near the equilibrium point. However, for all values
after the critical delay threshold, the two queues
exhibit asynchronous behavior and are not staubleI

ep( !
<o ——
A =

Numerical integration of fluid model for A\ =

[ o)

Queue Lengthvs. Time A=.05u =5

e ———

Queue Length
(=2}
T

L I
0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time

100, p =5, (left) A = 0.02 and (right) A = 0.05.

near the equilibrium point. However, not all real
systems use a constant delay to report to their cus-
tomers about the queue length or waiting time. It
has been observed in [Dong et al., 2015] that some
service systems such as hospitals use a moving aver-
age. Thus, a moving average fluid model will be
analyzed in the subsequent section.

3. Moving Average Delay Fluid
Model

In this section, we present another fluid model with
customer choice and where the delay information
presented to the customer is a moving average. This
model assumes that customers are informed about
the queue length, but in the form of a moving aver-
age of the queue length between the current time
and A time units in the past. Like in the previous
model, customers also have the choice to join two
parallel infinite server queues and they join accord-
ing to the same multinomial logit model. We also
assume that the total rate at which customers show
up to the system is given by the parameter A\ which
is a constant. However, unlike the previous model,
we assume that customers join the first queue at
rate

exp(—% /;A ql(s)ds> —l—exp(—% /;Aqg(s)ds>

1730016-8



and join the second queue at rate

( 1
exp *Z

[ o)
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. exp(%/ttA ql(s)ds) +exp(%/ttA qg(s)ds).

(12)

Thus, our model for customer choice with delayed information in the form of a moving average can be
represented by a two-dimensional system of functional differential equations

1 t
eXP<—/ Ch(S)dS)
. _ A Jia
Q@) =A- T T — paqi(t), (13)
exp(——/ ql(s)ds> + exp (——/ qg(s)ds)
AJia AJia
1 t
eXP<—/ Q2(5)d5>
. AJia
G2(t) = A~ T T — pga(t), (14)
exp ——/ q (s ds> —i—exp(——/ q2(s ds>
( AJia =) A Jia =)
where we assume that ¢ and qp start at differ- _ _
ent initial functions ¢1(t) and @y(t) on the interval  differential equation
[_A70}' 1 )
(1, A) = % (ait) — alt = A)), i€ {1,2},
Remark 3.1. We should also mention that if we (16)

initialize the differential equations with the same
initial conditions, then the moving average delay
differential equations are identical for all time
because of the symmetry of the problem. Starting
the two queues with identical initial conditions
places both queues on an invariant manifold from
which it cannot escape. Therefore, we start the
system with nonidentical initial conditions so the
problem is no longer trivial and the two queues start
off the invariant manifold.

On the onset this problem is seemingly more
difficult than the constant delay setting since the
ratio now depends on a moving average of the queue
length during a delay period A. To simplify the
notation, we find it useful to define the moving aver-
age of the ith queue over the time interval [t — A, ]
as

mi(t, A) = % /t |l (15)

A key observation to make is that the moving
average itself solves a delay differential equation.
In fact, by differentiating Eq. (15) with respect to
time, it can be shown that the moving average of
the ith queue is the solution to the following delay

Leveraging the above delay equation for the
moving average, we can describe our moving aver-
age fluid model with the following four-dimensional
system of delay differential equations

exp(—mq(t))

b= T 0) om0
(7)

N exp(—ma(t)) B

= T () + ey 2
(13)

i = @) it - A), (19)

o = - @(0) — alt = A)). (20)

In Fig. 7, we plot two examples of the moving
average delay differential equations. In the exam-
ple on the left of Fig. 7, the differential equa-
tions converge to the equilibrium of A/(2u) when
A = 0.02 and the dynamics are stable. It also seems
like the plot on the right of Fig. 7 also converges
to the equilibrium and is also stable. However, it
is not stable and requires even closer observation.
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In Fig. 8, we zoom in and look at the dynamics of
each example. On the left of Fig. 8, a closer look
reveals that the differential equations are indeed
stable. However, on the right when A = 0.1, it is
observed that the differential equations are not sta-
ble. Although the two queues appear to be stable
in Fig. 7, the amplitude is too small to detect the
asynchronous dynamics of the two queues. Thus,
like in the previous fluid model, we need to under-
stand the dynamics of the fluid model near the
equilibrium to determine when the two queues will
exhibit asynchronous behavior. The next theorem
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provides insight for understanding when the equi-
librium behavior will be stable or unstable.

In Fig. 9, we plot the Hopf curves for the mov-
ing average model when p = 1. These curves are
different from what would be plotted in the Matlab
function EZ-Plot. One reason is that we square the
cosine and sine functions, which introduces extra-
neous roots that do not exist. Thus, the plot given
in Fig. 9 excludes these extraneous roots. Moreover,
unlike the constant delay case, we also see a linear
curve at the bottom of Fig. 9. This line represents
where w = 0 and is another root of the equation.
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However, the stability is unchanged on this line,
therefore it is not interesting to study.

Theorem 2. For the moving average fluid model
given by Eqs. (17)—(20), A = Acc(A, 1) is given
by the following transcendental equation

A 20U cr A
; . 2 “HScer 2
sin <Acr - 0 ) + 3 - o 0.

(21)
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Proof. See the Appendix for the proof. H

In Fig. 10, we plot the dynamics for the mov-
ing average model when A = 2 and when A = 4.
When A = 2 we see that the dynamics are sta-
ble and the queues will converge to the equilib-
rium point. However, when A = 4, we see that
the dynamics are not stable and the queues are not
synchronized. These dynamics are the same as in
Fig. 11. Like in the constant delay example, we see
that the stability of the queues is also given by the
first Hopf curve. To the left and bottom of the Hopf
curve, the two queues will eventually converge to
their equilibrium values; however, to the right and
above the Hopf curve, the two queues will be forever
asynchronous.

3.1. Hopf bifurcation curves in the
moving average model

Numerical integration with the Matlab delay differ-
ential equation package dde23 showed that there
was only one limit cycle observed in the moving
average model, no matter how many of the Hopf
curves are crossed. However, like in the constant
delay setting, this does not tell us what happens to
the various pairs of imaginary roots which occur on
the various Hopf curves. We will show that as per-
turbation increases the size of the delay, the roots
always pass from the left to the right, which implies
that the equilibrium remains unstable as the delay
increases forever.
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Now suppose that the delay A is close to a crit-
ical value for a Hopf bifurcation. We then make
a slight perturbation from being near the critical
value of the Hopf bifurcation i.e.

A= Ag+ ey (22)
where € < 1. When the root r is close to the pure
imaginary value, the critical delay is near the value
A = Ay. Thus, when we make a slight perturbation
the real and imaginary parts of the root will also be
slightly perturbed i.e.

r=iw + e(iry + ro). (23)
Proposition 2. For the moving average model, sup-
pose that we make a slight perturbation on the

order of eA1 near a critical delay value for a Hopf
bifurcation, then the real part of r is equal to

B 2A1w2 . (2A0w2 — QIUJA)
N 8AZpw? + 12A0w? + 480 p + A2 + 4N
(24)

2

Proof. In order to prove this, we can follow the
same steps as in Proposition 1. When ¢ = 0,
we reduce back to the original critical threshold
of Eq. (A.67). Now we substitute Eq. (A.38) into
Eq. (A.61) and do a Taylor expansion for small val-
ues of €. Then solve for r; and ro. Solving for the
real part of r, we find that ro is equal to the follow-
ing value
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[ |

)

In the moving average model, we see that the
real part of the roots has the same sign as A
when Agw? > p) and has the opposite sign when
Aow? < p). Therefore, when Agw? > p, the roots
move from the left to the right and the stability is
preserved. However, when Agw? < p this may not
be the case. This is caused by the fact that the Hopf
curve is not monotone as a function of A and can
be seen in Fig. 9.

4. Conclusion and Future Research

In this paper, we analyze two new two-dimensional
fluid models that incorporate customer choice and
delayed queue length information. The first model
considers the customer choice as a multinomial logit
model where the queue length information given
to the customer is delayed by a constant A. We
derive an explicit threshold for the critical delay
where below the threshold the two queues are bal-
anced and converge to the equilibrium. However,
when A is larger than the threshold, the two queues
have asynchronous dynamics and the equilibrium
point is unstable. In the second model, we con-
sider customer choice as a multinomial logit model
where the queue length information given to the
customer is a moving average over an interval of A.
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We also derive an explicit threshold where below
the threshold the queues are balanced and above the
threshold the queues are asynchronous. It is impor-
tant for businesses and managers to determine and
know these thresholds since using delayed informa-
tion can have such a large impact on the dynamics
of the business. Even small delays can cause oscil-
lations and it is of great importance for managers
of these service systems to understand when oscil-
lations can arise based on the arrival and service
parameters.

Since our analysis is the first of its kind in the
queueing literature, there are many extensions that
are worthy of future study. One extension that we
would like to explore is the impact of nonstation-
ary arrival rates in the spirit of Massey and Pender
[2013], Engblom and Pender [2014], Pender [2014,
2016, 2015a, 2015d]. This is important not only
because arrival rates of customers are not constant
over time, but also because it is important to know
how to distinguish and separate the impact of the
time varying arrival rate from the impact of the
delayed information given to the customer. Other
extensions include the use of different customer
choice functions and incorporating customer pref-
erences in the model. With regard to customer
preferences, this is a nontrivial problem because
the equilibrium solution is no longer a simple
expression, but the solution to a transcendental
equation. This presents new challenges for deriv-
ing analytical formulas that determine synchronous
or asynchronous dynamics. A detailed analysis of
these extensions will provide a better understanding
of what information and how the information that
operations managers provide to their customers will
affect the dynamics of the system. We plan to
explore these extensions in subsequent work.
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Appendix

We believe that it is important to outline the proof
in words before we give the proof in mathemat-
ics to give the reader some intuition and to alert
the reader to the variety of mathematical methods
involved. Since we are analyzing a fluid model or
deterministic model, we start with a nonlinear delay
differential equation, however, the stability analysis
of this nonlinear delay differential equation is non-
trivial. Nonetheless, we can still analyze the sta-
bility of the nonlinear delay differential equation
by using the principle of linear stability analysis
from the ordinary differential equation literature.
To analyze the stability of the nonlinear delay dif-
ferential equation, we exploit a generalization of
Lyapunov’s indirect method for delay differential
equations given in Theorem 4.8 of [Smith, 2010].
For readers who are unfamiliar with Theorem 4.8 of
[Smith, 2010], the theorem tells us that in order to
analyze the original nonlinear system of delay equa-
tions it now suffices to linearize the original delay
equations about the chosen equilibrium points and
analyze the stability of the linearized delay differen-
tial equations. Thus, the stability of the linearized
system governs the stability of the nonlinear system
near the equilibrium point. The fact that the lin-
earized system allows us to determine the stability

1730016-14



of the original system is an important and funda-
mental result in dynamical systems analysis. For
more details about linear stability analysis and its
applications see [Hale, 1971].

In order to analyze the stability of the lin-
earized system, we can use two approaches. The
first approach to determine stability is to exploit
the knowledge and properties of the Lambert-W
function, see for example, [Asl & Ulsoy, 2003; Yi
et al., 2010; Yi & Ulsoy, 2006]. The second approach
is to use the D-decomposition method of Neimark
[1973], which exploits complex analysis and the
eigenvalues of linear operators. We only consider the
D-decomposition approach because the Lambert-W
function analysis only provides a numerical way for
computing the threshold for stability, while the D-
decomposition method provides analytical formulas
that we provide in our theorems.

A.1. Proof of Theorem 1

Proof [Proof of Theorem 1]. Since our result is
not common in the queueing literature, we split
the proof into several parts to help readers under-
stand the important ingredients that are necessary
to prove the theorem. Our proof uses some theory
developed in the analysis of nonlinear dynamical
systems and the reader is referred to [Strogatz,
2014] for an elementary discussion of linear stabil-
ity analysis and dynamical system analysis. More-
over, we outline the main parts of the proof in
bold text.

A1.1.

The first part of the proof is to compute an equilib-
rium for the solution to the delay differential equa-
tions. In standard ordinary differential equations,
one sets the time derivative of the differential equa-
tions to zero and solve for the value of the queue
length that makes it zero. This implies that we set

q1(t) =0, (A1)
ga(t) = 0. (A.2)

This further implies that we need to solve the
following two nonlinear equations

N exp(—qi(t — A))
exp(—qi(t — A)) + exp(—g2(t — A))

— g1 (t) = 07

Computing the equilibrium

(A.3)

Queues with Choice via Delay Differential Equations

_ exp(—q2(t — A))
exp(—qi(t — A)) + exp(—q2(t — A))

— pg2(t) = 0.

A

(A.4)

Sometimes finding the equilibrium is nontrivial
in many nonlinear systems. In our system, we also
have the complication that the differential equa-
tions are delay differential equations and have an
extra complexity. However, in our case, the delay
differential equations given in Egs. (5) and (6) are
symmetric and this simplifies some of the analy-
sis. Moreover, in the case when A = 0, the two
equations converge to the same point since in equi-
librium each queue will receive exactly one half of
the arrivals and the two service rates are identical.
This is also true in the case where the arrival process
contains delays in the queue length since in equilib-
rium, the delayed queue length is equal to the non-
delayed queue length. Thus, we have in equilibrium
that

a(t—A) =gt —A)=q(t) = ¢t

= — ast— oo.

” (A.5)

To mathematically verify that this is the equi-
librium, one can substitute ﬁ for q1(t), q2(t), q1 (t —
A),g2(t — A) and observe that the time derivative
of Egs. (5) and (6) are both equal to zero.

A.1.2. Understanding the stability of the

equilibrium,

Now that we know the equilibrium for Egs. (5)
and (6), we need to understand the stability of the
delay differential equations near the equilibrium.
The first step in doing this is to set each of the queue
lengths to the equilibrium points plus a perturba-
tion. With this in mind, we substitute the following
values for each of the queue lengths

q(t) = % +uy (1), (A.6)
q@(t) = % + ua(t). (A7)

In this substitution, u;(t) and wus(t) are perturba-
tions about the equilibrium point ﬁ By substitut-
ing Egs. (A.6) and (A.7) into Egs. (5) and (6) we
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get the following equations

exp(—uy(t — A))

uy(t) = - oxp(—ur(t — D)) + oxp(—ua(t — A)
— puy () — %, (A-8)

oy exp(—ua(t — A))

un(t) = A exp(—u(t — A)) + exp(—ug(t — A))
— pua(t) — % (A.9)

Now if we linearize around the point u(t) =
ua(t) = 0, which is equivalent to performing a Tay-
lor expansion and keeping only the linear terms, we
have that the linearized version of uy(t) and usa(t),
which we now define as w;(t) and w(t) solve the
following linear delay differential equations

a(t) = —2 - (wa(t — A) — w(t — A))

— 1wy (t), (A.10)

to(t) = —2 - (w(t — A) — w (¢ — A))

— 1 - wa(t). (A.11)

Now the reader might ask about the validity
of the Taylor expansion or the linearization. This
Taylor expansion is valid since we expect that the
perturbations are near the value of zero. This is
because, we expect the two queues to be near the
equilibrium values ﬁ and therefore, the pertur-
bations are expected to be near zero and this is
common in linear stability analysis. However, to
reiterate again, we are only using the Taylor expan-
sion or linearization since it suffices to analyze the
linearized system in order to determine the stabil-
ity of the original nonlinear system. An additional
question a reader not familiar with dynamical sys-
tems theory might ask is how does the stability
of the linear differential equations in Egs. (A.10)
and (A.11) relate to the shifted nonlinear system
given in Egs. (A.8) and (A.9)? By Lyapunov’s lin-
earization theorem as discussed on page 6 of [Rand,
2012], we see that if the real part of the eigen-
values of the linearized system are negative, then
the equilibrium point in question is locally asymp-
totically stable. For more information and results
on linear stability analysis or differential equations,
the reader is also encouraged to review the first

three chapters of [Strogatz, 2014]. Thus, to under-
stand the local stability of our original queueing sys-
tem, it suffices to study the linearized version using
Lyapunov’s linearization theorem or Theorem 4.8
of [Smith, 2010].

A.1.3. Uncoupling the differential

equations

In their current form the delay differential equations
for the perturbations or Egs. (A.10) and (A.11) do
not yield any immediate insight since they are a
system of coupled equations. However, we can apply
a simple transformation to Egs. (A.10) and (A.11)
and the resulting delay differential equations will
become uncoupled. Thus, we apply the following
transformation to uncouple the system of equations:

V1 (t)

va(t)

w1 (t) -+ woy (t),

w1 (t) — W2 (t)

(A.12)
(A.13)

This transformation yields the following delay dif-
ferential equations for the transformed perturba-
tions v1(t) and v (t)

1)1 (t) = —M- U1 (t), (A.14)

1')2(25) = *i . ’Ug(t — A) — U V2.

. (A.15)

Remark A.1. Before we analyze the above delay
equations, we would like to alert the reader to the
fact that vy (t) and vo(t) are linear equations. This
implies that any scalar multiple of the solution to
these equations is also a solution since they form a
vector space. Moreover, any solution can be added
to another solution and the sum is also a solution.
Thus, the superposition of two solutions is a solu-
tion as well.

Since Eq. (A.14) is linear, an ordinary differ-
ential equation, and does not depend on the delay
parameter A, we can explicitly solve for its solu-
tion. The general solution of Eq. (A.14) is vy (t) =
c1 exp(—put) and is bounded and stable. Thus, it
remains for us to analyze the stability of Eq. (A.15).
The analysis of this delay differential equation is
nontrivial since it depends on the delay parameter
A. However, to start to analyze the delay differen-
tial equation, we substitute the following expression
for vo(t)

va(t) = exp(r - t). (A.16)
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By performing the substitution, we see that

r-exp(r-t) = *% ~exp(r - (t — A))

— - exp(r - t) (A.17)
and multiplying both sides by exp(—r - t), we have
the following transcendental equation for the
parameter r which is given by the equation

) Cexp(—rA) — . (A.18)

2
One should note that this transcendental equation
is not a polynomial and involves an exponential
function, which implies that the solution is infi-
nite dimensional and has an infinite number of com-
plex roots. With the transcendental equation for the
parameter 7, it only remains for us to find the tran-
sition between stable and unstable solutions. Char-
acteristic equations of the form (A.18) are often
studied in order to understand changes in the local
stability of equilibria of delay differential equations.
It is therefore important to determine the values of
the delay at which there are roots with zero real
part. This value of the delay is given by Ac (A, p).
When the parameter r crosses the imaginary axis,
the stability of the equilibrium changes. In the fully
nonlinear system given in Egs. (5) and (6), this
transition generally occurs in a Hopf bifurcation,
in which a pair of roots crosses the imaginary axis
and a limit cycle is born. Thus, to find the critical
delay or Ac (), ) for the change of stability, we set
r = iw, which yields the following equation

iw = —§(cos WA —isinwA) —u.  (A.19)
Writing the real and imaginary parts of Eq. (A.19),
we have that:

0= —% cos wA — p (A.20)

for the real part and

W= sinwA (A.21)
for the imaginary part. However, in letting r = iw
one might be tempted to say that we are now mak-
ing v9 a complex valued function. This is true, how-
ever, we can easily make vy a real-valued function
by adding the complex conjugate solution to vy. For

Queues with Choice via Delay Differential Equations

example, if we substitute

va(t) =c-exp(r-t)+c* -exp(r*-t) (A.22)
where r* and ¢* are the complex conjugates of r and
c respectively, then we have a real expression and
it is also a solution due to the vector space prop-
erty of the linear equations we are analyzing. Fur-
thermore, we should make it clear that we are not
really interested in whether or not vy is complex or
not. By Theorem 4.8 of [Smith, 2010], we are only
concerned about the boundary that separates the
eigenvalues of the linear system from being positive
or negative. Moreover, one should note that if one
can find A, (A, 1) satisfying Egs. (A.20) and (A.21),
then Eq. (A.18) will have pure imaginary roots. The
reader should also keep in mind that just because we
set r = iw and the solution to vy is complex does not
imply that the original nonlinear delay differential
equations ¢; and ¢o are complex valued. Since we
are concerned with the stability of the equilibrium
point, we use the linearized equation vy to deter-
mine the stability of the equilibrium point of the
original queueing equations.

Our goal in the remaining part of the proof is
to find solutions of Egs. (A.20) and (A.21), which
will yield transitions between bounded behavior and
unbounded behavior and give us the critical value
of the delay A,. If we solve Egs. (A.20) and (A.21)
for the functions sinwA. and coswA,, we get that

2.
cos WA = _T,u, (A.23)
for the real part and
sinwAe = QTW (A.24)

for the imaginary part. Now by squaring both equa-
tions and adding them together we get that

M =4 (W p?), (A.25)
which by some rearranging yields
1
w= VA2 —4u’ (A.26)

2

Now if we go back to use Eq. (A.20) to find an
expression for the critical delay Ac (A, p). From
Eq. (A.20) we know that

2-u

- (A.27)

cos WA ¢ =
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and therefore by taking the arcosine of both sides,

we have that
2
arccos (— 7”)
Ay = ———F.

) (A.28)

Finally substituting our expression for w in

Eq. (A.26), we are able to obtain the final expres-
sion for the critical delay:

2
2 arccos ( 7”)
Ay = .

A2 — 4p2

(A.29)

A.2. Proof of Proposition 1

Proof. When e¢ = 0, we reduce back to the original
critical threshold of Eq. (A.29):

( 2M>

2 arccos Y

Ag = . A.30
0 Sea— (A.30)

Now we substitute Eq. (8)

A= Ag+ A (A.31)
and (9)
r=iw + €(ir; +ra) (A.32)
into Eq. (A.18)
A
r=-g- exp(—rA) —p (A.33)

and do a Taylor expansion for small values of e.
Collecting real and imaginary parts, Eq. (A.18)
becomes

1 1
0= i<w — 5)\ sin(Agw)> + 5/\ cos(Aow) + i
. 1 .
+e [z <r1 - §A(A0r2 sin(Aow) + cos(Agw)
I
X (Agry — Alw))> +1ry — 5A(sm(A0w)

X (Alw + AQTl) + Agro COS(Aow)):|

+O(e?). (A.34)

We set the real and imaginary parts of the
O(e) term separately equal to 0, and solve for r;
and 7o since there are two linear equations and two
unknowns. Solving for the real part of r, we find
that ro is equal to the following value

B —2A1 Adw sinwA
 4AphcoswAg — AZA2 — 4

(A.35)

)
Now if we substitute the expressions for sin wAg

A
W= sinwA (A.36)

and coswA

0= —% cos wA — i (A.37)

from Egs. (A.20) and (A.21), then we have that

. 4w2A1
C8Agu 4+ AZNZ 44

2

(A.38)
u

A.3. Proof of Theorem 2

Proof [Proof of Theorem 2]. Like in the constant
delay setting, we will split the proof into several
parts to help readers understand the important
ingredients that are necessary to prove the theorem.
We should take the time to emphasize that making
the observation given in Eq. (16) was crucial to this
analysis. Otherwise, we could not exploit the delay
differential equation literature for the moving aver-
age equations.

A.3.1.

The first part of the proof is to compute an equilib-
rium for the solution to the delay differential equa-
tions. In our case, the delay differential equations
given in Egs. (17)-(20) are symmetric. Moreover,
in the case where there is no delay, the two equa-
tions converge to the same point since in equilib-
rium each queue will receive exactly one half of the
arrivals and the two service rates are identical. This
is also true in the case where the arrival process
contains delays in the queue length since in equilib-
rium, the delayed queue length is equal to the non-
delayed queue length. It can be shown that there
is only one equilibrium where all of the states are
equal to each other. One can prove this by substi-
tuting ¢ = A/ — ¢1 in the steady state version

Computing the equilibrium

1730016-18



of Eq. (17) and solving for g;. One eventually sees
that q1 = g2 is the only solution since any other
solution does not obey Eq. (17). Thus, we have in
equilibrium that

q1(t) = q2(t) = ma(t) = ma(t)

(A.39)

A.3.2. Understanding the stability of the

equilibrium

Now that we know the equilibrium for Egs. (17)-
(20), we need to understand the stability of the
delay differential equations around the equilibrium.
The first step in doing this is to set each of the
queue lengths to the equilibrium values plus a per-
turbation. Thus, we set each of the queue lengths
to

q1(t) = % + uq(t), (A.40)
w(t) = 3+ ualt) (A.41)
ma(t) = % +us(t), (A.42)
ma(t) = % () (A.43)

Substitute Eqgs. (A.40)-(A.43) into Egs. (17)-(20)

and perform a Taylor expansion or linearize about

Queues with Choice via Delay Differential Equations
A.3.3. Uncoupling the differential
equations

In their current form the delay differential equations
for the perturbations do not yield any insight since
they are coupled together. However, we can make a
simple transformation and the resulting delay dif-
ferential equations will become uncoupled. Thus, we
apply the following transformation to uncouple the
system of equations:

ni(t) = ur(t) + us(t), (A.48)
volt) = ur(t) — us(t), (A.49)
U3 (t) = Uus (t) + U4(t), (A 50)
U4(t) = U3(t) — U4(t), (A.51)
which gives
b1(6) = —p 01 0), (A.52)
Ba(t) = 5wt —powat)  (ABY)
B(0) = 5 - (D)~ it~ A), (A5
oa(t) = % (a(t) —va(t— A)).  (A.55)

The general solution of Eq. (A.52) is vy =
cpexp(—pt) and is stable (bounded). This also
implies that Eq. (A.54) is also stable and bounded
since it only depends on the solution of Eq. (A.52).
To study Egs. (A.53) and (A.55), we let

the point u;(t) = ua(t) = uz(t) = ua(t) = 0, giving vy = Aexp(rt), (A.56)
\ vg = Bexp(rt). (A.57)
= (uat) —us(t) — p-u(t),  (A44) These solutions imply the following relationships
A\ between the constants A, B, and r.
g = - (us(t) —ua(t)) — p-ua(t),  (A45) A\
Ar = —§B — [A, (A.58)
_ 1
Uy = (up(t) —ui(t — A)), (A.46) 1
Br = Z(A — Aexp(—rA)) (A.59)
. 1
RN (ua(t) = uz(t — A)). (A.47) solving for A yields
Once again, this Taylor expansion or lineariza- _ A (A.60)
tion is valid because of the two Lyapunov theorems 2(p+r)

that are discussed on page 6 of [Rand, 2012] or The-
orem 4.8 of [Smith, 2010], which rigorously describe
why the linearization is valid and suffices for ana-
lyzing stability.

and rearranging yields the following equation for r

(exp(—=rA) —1) —u.  (A.61)

70:2A~r
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Now it remains for us to understand the transi-
tion between the stable and unstable solutions once
again.

A.3.4. Understanding the transition
between stable and unstable
solutions

To find the transition between stable and unstable
solutions, set r = iw, giving us the following equa-
tion

iw = IR (exp(—iwA) — 1) — p.  (A.62)

Multiplying both sides by iw and using Euler’s iden-
tity, we have that
A . . 2
E(cos(wA) —isin(wA) — 1) — piw + w* = 0.
(A.63)

Writing the real and imaginary parts of Eq. (A.63),
we get:

2Aw?
cos(wA) =1— /\w (A.64)
for the real part and
2A
sin(wA) = — A’M. (A.65)

Once again by squaring and adding sinwA and
cos wA together, we get:

[ A
_ _ 2
w = e

Finally, substituting the expression for w into
Eq. (A.65) gives us the final expression for the
critical delay, which is the solution to the following

(A.66)

transcendental equation:

[ A
i . - 2 —_— _— 2 pr—
sm(A I ) + 3 w* = 0.

A.4. Proof of Proposition 2

Proof. In order to prove this, we can follow the
same steps as in Proposition 1. When ¢ = 0, we
reduce back to the original critical threshold of
Eq. (A.67).

sin(A- %,u?) +%. %7M2:O‘
(A.68)
Now we substitute Eq. (22)
A=Ag+eA (A.69)
and Eq. (A.35)
r=iw + e(iry +r2) (A.70)
into Eq. (A.61)
A
r=gox o exp(-rd) =) —p (AT

and do a Taylor expansion for small values of e.
Then solve for r; and ry. Solving for the real part
of r, we find that 75 is equal to the following value

B 2A w2 - (2A0w? — 2u))
T 8AZuw? + 12A0w? + 4A0Au + AgA2 + 4N
(A.72)

2
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