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Abstract: The authors investigate the dynamics of a system of two coupled oscillators, each of which has a separatrix loop
in its uncoupled phase portrait. The effect of the coupling, which is of the diffusive viscous type, is to enhance the region
Ce of phase space, which consists of all motions that do not escape to infinity. The authors offer numerically obtained

descriptions of the region Cg , as well as some analytical investigations into its location and nature.
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INTRODUCTION

In this article, we investigate some of the dynamics of the following system of coupled oscillators:

. 1 2 . . 1 2 T 1)
XI—=XI—x1=€(x2—x1), X2— 35 XxX2—x2=¢€ (X1 —X2). (

2 2

This system is related to a system of two coupled pendulums (see appendix). When the coupling
constant € is taken equal to zero, we have two identical homoclinic oscillators. Each of these
oscillators possesses a homoclinic orbit (also known as a separatrix or saddle connection; see
Figure 1). The coupling terms in system (1) may be described as diffusive viscous coupling.

Our interest in the system (1) stems from two sources. First, it is an extension of other systems of
two coupled oscillators that have already been studied. For example, a system consisting of two
coupled Duffing oscillators was studied by Kauderer (1958) and by Rosenberg (1966) and his
associates. The key phenomenon for such a system is the appearance of nonlinear normal modes. As
another example, take a system of two coupled van der Pol oscillators, which was studied by Rand
and Holmes (1980) and their associates. In this case, the key phenomenon is phase locking (or phase
entrainment) versus drift. In the case of equation (1), the key phenomenon is resonant capture versus
escape to infinity. This brings us to the second source of interest in system (1) because the
phenomenon of resonant capture has recently been the focus of a number of articles involving single
oscillators driven by slowly varying feedback. For example, Rand, Kinsey, and Mingori (1992)
studied the system

X—x"=-w, wW=Eg, 2)
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Figure 1. Phase portrait for a homoclinic oscillator, Xx— %% — x= 0. The point (-2,0) is a center and the origin is a saddle. The
separatrix loop intersects the x axis at x=-3 (and at the origin). It is thickest at x=-2, where X = +1.15.

X

whereas Quinn, Rand, and Bridge (1995) studied the system

o2 | Lol o 12 3)
x—x"= w[l ZX} w—£|:1 2x}

Both systems (2) and (3) share with (1) the presence of a homoclinic orbit when € = 0. All three
systems exhibit resonant capture, which may be described by imagining that the separatrix of the
€ = 0 system persists as an instantaneous separatrix in the perturbed system. As time goes on, the
instantaneous separatrix changes its position, and motions that pass near it may cross it and become
captured. Another way of looking at this phenomenon is to note that the saddle connection in the
€ = 0 system is structurally unstable and that it may be expected to break under the various
perturbations, thereby permitting motions that began outside the separated region in the € = 0 system
to enter inside that region when € > 0.

In this article, we first describe the dynamics of system (1) as obtained by numerical integration.
Then we offer some analysis of system (1) in an attempt to explain the numerical results.

RESONANT CAPTURE
A given initial condition (x;(0), x1(0), x(0), x,(0)) to equations (1) will lead to a motion that either
remains “captured” in the phase plane for all t or “escapes” to infinity in finite time. To illustrate

these two situations, we numerically integrate equations (1) with € = 0.1 for the following two sets
of initial conditions:

x1(0) = 1.29, x1(0) = -2, x2(0) = -2, x2(0) = 0 escapes (Figure 2)
x1(0) = 1.31, x1(0) = -2, x2(0) = -2, x2(0) = O captured (Figure 3).

Figures 2 and 3 display the x; — x; and x; — x, phase planes for each of these initial conditions.
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Figure 2. Sample numerical integration of equations (1)  Figure 3. Sample numerical integration of equations (1)
with € = 0.1 for an initial condition that leads to escape. with & = 0.1 for an initial condition that leads to capture.
x1(0) = 1.29, J1(0) = -2, %(0) = -2, %2(0) = 0. The separatrix  x1(0) = 1.31, X1(0) = -2, x2(0) = -2, ¥2(0) = 0. The separatrix

of the £ = 0 problem is shown dotted. of the € = 0 problem is shown dotted.
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Figure4. Some two-dimensional slices of the four-dimensional capture region Cg fore =0.1. In each case, two initial conditions
are fixed and two are varied. The darkened areas are initial conditions that lead to capture. (a) x2(0) = -2, x1(0) = 0;
(b) x1(0) = —1, ¥2(0) = —1; (c) x1(0) =-2, ¥2(0) = -2; (d) a magnification of panel c.

The question that interests us is, which initial conditions lead to capture and which lead to escape?
For a given &, let C, represent that region of the R* phase space that leads to capture. Because Cj is
four dimensional, it is difficult for us to imagine and to illustrate. To do so, we may take “slices” of
it by fixing two of the initial conditions and varying two. Figure 4 offers some glimpses at C; for
g = 0.1 and for three different slices through R* . By contrast, Figure 5 displays slices through the
initial condition x,(0) = —0.5, x,(0) = -1.5 for three different values of €.
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Figure 5. Three slices through C: for different values of €. All correspond to the fixed initial conditions X1(0) =-0.5, j2(0) =—1.5.
(@) e=10.1; (b) € = 1; (c) € = 20. The darkened areas are initial conditions that lead to capture.

The rest of this article is aimed at trying to understand the structure of C¢ by examining the
dynamics of system (1).

BASIC CONSIDERATIONS

We begin by considering the individual uncoupled oscillators in (1):

x— %xz ~x=0. @

Equation (4) has two equilibria, a saddle at the origin and a center at x = -2 (see Figure 1). Energy
is conserved in the form

12 13 1,
2x 6x 2x = h = constant.

(&)

The separatrix loop corresponds to & = 0. It intersects the x axis at x = —3 and at the origin. The
separatrix achieves its maximum thickness at x = -2, at which point x = +2/N3 = +1.15. Points in the
x — x phase plane that lie interior to the separatrix loop correspond to & < 0, whereas points outside
the separatrix loop correspond to both £ > 0 and 4 < 0.

Next we note that because the uncoupled oscillators in (1) are identical and the coupling vanishes
when x; = x, the system (1) has a special symmetry, the invariance of the plane x; = x,. In the
four-dimensional phase space x; — x; — x; — X, this becomes a two-dimensional plane P:

P = {(x1, x1, X2, X2) | X1 = X2, X1 = X2}. 6)

Any motion starting in P remains there for all time. From uniqueness in the autonomous system (1),
any motion that does not lie in P at ¢ = 0 can never pass through P in finite time. Motion in the plane
P involves no coupling and therefore has the phase portrait shown in Figure 1.

In contrast to the uncoupled oscillator (4), the coupled system (1) is not conservative. Information
about the dissipation of energy may be obtained by multiplying (1.1) by x; and multiplying (1.2) by
x,, and adding, with the following result:



RESONANT CAPTURE 45

dH _ . .. o)
E— E(.XI xz)

where H is the energy associated with the two uncoupled oscillators:

(L2 13 12| (1l 13 15, ®)
H—|:2.X1 6?1 2x1]+|:2x2 6)C2 2x2 .

Equation (7) shows that the energy H is a nonincreasing function of time z. Because the right-hand
side of equation (7) is not negative definite, however, we cannot conclude that H tends toward its
minimum value. However, H must asymptotically approach some constant value A for every motion
that is bounded. Thus the right-hand side of (7) must go to zero for these captured motions, a condition
that is satisfied only by motions that lie in the invariant plane P.

Thus every captured trajectory eventually approaches a periodic motion lying in the invariant
plane P, a fact that is confirmed by numerical integration of the coupled system (1) (cf. Figure 3).
Any such periodic motion x; = x; = f{¥) satisfies the differential equation

f =312 =f=0 ”
and is given by the analytical expression
x;1=x3=f1) =A + B sn” (u,m) (10)
where
A=—1—1+2m, B=3—m,oc4=1—-m+m2, u=t2_t0 an
o o m

and where sn(u,m) is the Jacobi elliptic function with square modulus m (Rand, 1994). Here m =0
corresponds to the equilibrium f{r) = -2, whereas m = 1 corresponds to motion on the separatrix,
which may be written in the simplified form

- 12

S N , m=1 (separatrix). a2
210

cosh [——2 ]

To investigate the stability of the periodic motions (10), we transform coordinates from
(x1, X1, X2, X2) to (V1, Y1, Y2, Y2):

xl=x2=f(t)=

yi=Xx1+x2, Y2=X1—X2. 13)

Equations (1) become
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Linear stability of x; = x, = f{) may be determined by setting

=2+ N, y2=0+m2 (15)

in equation (14) and linearizing in 1;,1,, giving the variational equations

ﬂ{ - [1+fHlm=0, 16.1)

.. . (16.2)
M —[1+fH)lM2=-2¢€n..

Note that the invariant plane P, equation (6), when expressed in y; — y, coordinates, becomes yp=0.
This shows that equation (16.1) represents the effects of a small deviation within the invariant plane
P, whereas (16.2) similarly governs the growth of deviations normal to P.

Equation (16.1) is a Hill’s equation (Magnus and Winkler, 1966; Stoker, 1950). One of its linearly
independent solutions is given by 1 = dfld, a periodic function. This follows at once by differenti-
ating equation (9) for fr), which gives

a7

f-[1+A f=0.

Thus one of the Floquet multipliers of equation (16.1) is unity. Because the product of the Floquet
multipliers for a Hill’s equation is unity (Stoker, 1950), we have that the second Floquet multiplier
is also unity. The second independent solution of (16.1) grows linearly in ¢ (see Stoker, 1950),
reflecting the Lyapunov instability of periodic motions in the invariant plane P due to the dependence
of their period on amplitude. These motions are, however, orbitally stable to deviations in the plane P.

Equation (16.2) may be treated by setting

M=y (18)

giving the following equation on v:
v-[1+e+fn]v=0. (19)

For small €, equation (19) is close to equation (16.1), which we just discussed. Thus, if we neglect
terms of O(g?) in (19), we see that solutions v grow no faster than linearly in ¢, and hence that all
solutions 1, are bounded, from (18). For large values of €, we have investigated the stability of
equation (16.2) by using numerical integration with Floquet theory. We found that (16.2) was stable
for all values of m (cf. equation [11]) and .
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Thus the region of the invariant plane P that lies inside the separatrix loop is attractive, although
the individual periodic motions that fill it are only neutrally stable relative to deviations within the
plane P. In addition, from the previous energy analysis (cf. equation [7]), every bounded motion
approaches this invariant plane. Our stability analysis, however, gives us no information as to which
motion a particular initial condition approaches.

Let us next consider the equilibria of the coupled system (1). The two equilibria of the uncoupled
oscillator (4), namely (x, x) = (0, 0) and (-2, 0), lead to four equilibria in the coupled system (1):
(x1, X1, X2, X2) = (0, 0, 0, 0), (0, 0, -2, 0), (-2, 0, 0, 0), and (-2, , —2,0). Linearization of equations (1)
about each of these equilibria gives the following stability results:

Equilibrium Eigenvalues Type

(0, 0, 0, 0) M=1,A=—-1,has=—ctVe2 +1 saddle

(0,0,-2,0) A>0,A2<0,As4 =2 0 saddle-focus
(-2,0,0,0) same as (0, 0, -2, 0)

(-2,0,-2,0) M=, Ao = i, Ao = —eVe2 — 1 focus-center (e < 1)

node-center (e 2 1)

In the case of (0, 0, -2, 0) and (-2, 0, 0, 0), 1 and  are abbreviations for complicated functions of €.

THE CAPTURE REGION C¢

It is easy to characterize the capture region C; for € = 0 because in that case equations (1) become
the Cartesian product of two copies of equation (4). Capture can occur in equation (4) only if motions
start inside the separatrix loop or lie on the unbounded branch of the stable manifold (S manifold)
of the saddle. The € = 0 capture region Cy thus has (i) a four-dimensional component consisting of
points (x;, x;) and (xp, xp) that lie inside the respective saddle loops; (ii) a three-dimensional
component if the (x;, x;) point lies inside the saddle loop while the (x,, x,) point lies on the unbounded
branch of the S manifold of the saddle, or vice versa; and (iii) a two-dimensional component if both
(x1, x1) and (xp, x7) lie on the unbounded branch of the S manifold (see Figure 6).

We may expect that for small enough € > 0, C; looks similar to Co, but that all of its components
are four dimensional. This is confirmed by numerical integration. For example, Figure 4c with
¢ = 0.1 shows a four-dimensional C, that corresponds to the two-dimensional Cy in Figure 6c.

Next, consider the form of the slice through C; corresponding to the initial conditions x2(0) = -2,
x,(0) = 0 (i.e., the second oscillator is initially at rest at its [uncoupled] equilibrium point; see Figure
4a). For small €, we may expect that x, remains close to its equilibrium during the time that x; motions
are being captured. This situation may be investigated analytically by perturbing off of the S manifold
of the equilibrium (x1, X1, Xy, X3) = (0, 0, -2, 0). For € = 0, this S manifold consists of the Cartesian
product of the motion on the S manifold of the saddle at the origin in the x; — x; plane with the stable
equilibrium at x; = -2, x, = 0. Note that there are two branches of the S manifold of the saddle at the
origin here: the separatrix loop and the unbounded branch. For small € > 0, we neglect terms of O(?)
and set
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Figure 6.  Behavior of the € = 0 capture region Co. In each case, the initial velocities x1(0) and ¥(0) are fixed at values
displayed on the phase plane shown at the left. The initial conditions x1(0) and x2(0) that lead to capture are shown on the
right.

x=gt)+e&, xnn=-2+e& (20)

where g(7) = for the motion around the unperturbed separatrix (cf. equation [12]) or

=3
t—t
cosh? [TO]
3
t—1
sinh? [ 3 O:I

analytically at the same time by writing

where g(f) = for the motion on the unbounded branch. These may both be treated

-12z @21
L Il Gl

g =

where z = +1 corresponds to motion around the separatrix loop and z = -1 corresponds to motion on
the unbounded branch of the S manifold of the saddle. Substituting (20) into (1) and neglecting terms
of O(e?) gives

Ei-[1+gl&=-g, @2.1)
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E+E&=g (22.2)

Because g and g are bounded functions that approach zero as ¢ goes to infinity, the &, motion will
remain bounded. Thus from (20), x, cannot leave the neighborhood of its initial position and its
trajectory in the x; — X, plane cannot represent a boundary between motions that escape and that
remain captured. A trajectory that approaches the origin in the x; - x plane, on the other hand, will
represent such a boundary. Here equation (22.1) on &; characterizes the breaking of the € = 0
separatrix. Thus we may expect the trajectory that approaches the origin in the x; — x, plane to
approximate for small € the boundary of C,, sliced by the plane x,(0) = -2, x»(0) = O as in Figure 4a.

To solve equation (22.1), we use an approach due to Vakakis (1994) (see Rand, 1994; Quinn
and Rand, 1994). First note that (22.1) possesses a complementary solution &; = g, by the same
reasoning as that used in equation (17) to show that (16.1) had the solution f. Then we obtain a second
independent complementary solution by using variation of parameters, &; = u g, where u is to be
found. Substituting into (22.1) gives &= 1/g?, which may be integrated in closed form for g as in
(21). For brevity, we omit the explicit form of the resulting complementary solution but write it
instead as

élcomp = Fl(t) +C FZ(t)- ) (23)

Now to find a particular solution of (22.1), we again use variation of parameters, permitting ¢
and c; in (23) to depend on . Again substituting into (22.1) gives the following equations on c¢; and c;:

c1=Fg, c=-Fig 24

where we have used the fact that the Wronskian FZF |- F 1F2 equals —1. Using MACSYMA to
integrate equations (24), we obtain the following expression for a particular solution to
equation (22.1):

(30T +15) € — (30T +95) z € + 15 &" + 7) (25)
5+ €Y’

Elpn=2€

where T =t — t; and where z is 1 depending on which branch of the S manifold is being
considered.

Now it turns out that the complementary solution F, blows up as ¢ goes to infinity, whereas
ﬁlp o A0d F1 remain bounded. So we must take ¢, =0 in (23) for motions on the S manifold. Moreover,
Vakakis (1994) has shown that the effect of ¢; is to time-shift the solution to order €. Such a time
shift does not alter the shape of the corresponding trajectory in the x; — x, plane, and so we take ¢; = 0
for simplicity. Then the expression for x; on the S manifold becomes

x1= g(0) + € Eipart OE) (26)

where &, part is given by equation (25). Equation (26) is displayed in Figure 7 for € = 0.1. Comparison
with Figure 4a shows reasonable agreement for large ¢.
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Figure 7. The perturbation approximation equation (26) for the S manifold of the equilibrium x = 0, X2 = -2 displayed in the
x1 — X1 plane. The tail of the component that wraps around the separatrix loop is inaccurate for x1 > 0. As discussed in the
text, this curve is expected to be close to the slice through C; corresponding to the initial conditions x2(0) = -2, x2(0) =0
(cf. Figure 4a).

The points in C; may be described as lying on the union of the S manifolds of all the periodic
motions (10) in the invariant plane P. Because these periodic motions form a one-parameter family
of orbits lying in the two-dimensional plane P, the S manifold of each one must be three dimensional
because, when taken together, all these S manifolds must account for the four-dimensional region
Ce. On the other hand, the linear stability analysis of these periodic motions performed previously
(cf. equations [16]) showed that there are only two dimensions that are locally attractive (i.e., the S
manifold is locally two dimensional near the periodic motions in P). Evidently, a three-dimensional
continuum of orbits must approach this two-dimensional set in order that the S manifold of an
individual periodic motion be three dimensional.

STRUCTURE OF THE INTERIOR OF C;

We have seen that the fate of all motions that do not escape to infinity is to approach a periodic motion
that lies inside the separatrix loop in the invariant plane P (cf. equation [6] and Figure 1). Greater
understanding of the dynamics of system (1) may be obtained by investigating the structure of the
interior of Ce—that is, by associating an initial condition in C; with the periodic orbit that it
approaches asymptotically. We characterize a periodic orbit in the invariant plane P by giving its
energy h as defined by equation (5). The limiting cases are the equilibrium at x = -2, x = 0, for which
h=-2%4, and the separatrix, for which 4 =0. Figure 8 shows the asymptotic value obtained numerically
for h as a function of x;(0), as the latter is varied across the capture region for € = 0.1 and for the
initial conditions x(0) = -2, x,(0) = -2, x2(0) = 0.

Note the dependence of the asymptotic value of h on the initial condition in Figure 8. The effect
is most pronounced near dCe, the boundary of the capture region, where we see an oscillatory
dependence of 4 on x4(0). Small differences in initial condition are seen to lead to large differences
in A.

To investigate this phenomenon analytically, we set up a perturbation scheme centered on the
equilibrium (xy, x;, X3, x,) = (=2, 0, -2, 0), which lies in the deep interior of the € = 0 separatrix loops.
We set
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Figure 8. Panel a is the final energy h of equation (5) displayed as a function of the initial condition x1(0) for £ = 0.1 and for
x1(0) = =2, x2(0) = ~2, x2(0) = 0. These values apply to Figure 4a, which see. Fix the vertical coordinate at x1(0) = -2 and
imagine sweeping across the darkened region horizontally. Each initial condition so chosen ends up on some periodic motion
for which x1(f) = x2(f) and which lies inside the separatrix of Figure 1. Note that the dependence of hrinai On x1(0) is very sensitive
near 3C;. Panel b is a magnification of the left edge of panel a.

xi=—2+Wz, Mn<<l,i=12. 2N
Substitution of (27) into (1) gives

.. 1 . . 28
Z1+21—5HZ%=8(22—21), @9

. 1 . .
z;z+zz—§ uz%= € (z1 — 22).

Because the quadratic terms will not produce secular terms in a perturbation method until ow?)
terms (see, e.g., Rand and Armbruster, 1987, pp. 10-13), it is natural to set € = u? in (28), giving

2+ —%uz%=u2(22—21) , 2'2+Zz—%uz%=u2 (z1—22) - @)
We use second-order averaging on equation (29) for small  (see Rand, 1994). We set
w=aicosQ;, zi=—a;sing;, i=1,2. (30)
Substitution of (30) into (29) and using variation of parameters gives
@3n

ai=-W G;sin @;, (p,-=1—piG,-COS(p,-, i=1,2

where G; = 1 ZF+n@E-z) i=1,2,j=2, 1. Second-order averaging involves a near identity
transformation from (a;, 9;) to (a;, 9,):
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a= E,‘ + L wi; (55,6,') + |J,2 Vii (E,-,@,-) + 0(“3)

@i = Qi+ 1L wai(@i @) + W2 vai@i ) +O(1) (32)

where the generating functions w;; and v;; are chosen to simplify the resulting equations on g; and
@; as much as possible. This process results in the following slow flow, where we have dropped the
bars on g; and ¢, for convenience and where we have defined

Y=02-¢ (33)
&1=%u2[—a1+azcosw] (34a)
ilz=%u2[—a2+a1 cos ¥ ] (34b)

1 2l S o o fa al]. (340)
V=5H l:ﬁ(al—QZ)—[‘(‘l;'f‘a_l:lSanjl.

Equations (34) are defined on a; — a, — y phase space: R* x R* x S. Note that a; = a, is an invariant
plane L on which the slow flow (34) takes the form

éz=%u2[—1+cosl|l]a, \i!=—u2sin\|1 G3)

where a = a; = a;. From (35.2), we see that y = 0 and y = & are invariant lines in the plane L. From
(35.1), it further follows that the line y = 0 is composed of equilibria. The flow (35) may be integrated
in closed form by writing

da g 508 -1 (36)
dy 2siny

which has the general solution

C 37

\V1+cos y

where c is an arbitrary constant (see Figure 9a).
The stability of the equilibrium a; = a, = ag, Y = 0 may be obtained by computing the eigenvalues
of the linear variational matrix:

a=
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Figure 9. Panel ais the slow-flow (35) on the invariant plane L of equations (34). Panel b is the setting for equations (34)
is the a1 — a2 — y phase space. The top-surface y = = s identified with the bottom-surface y = —x. The invariant plane L of 9a
is shown. The vector field on the planes a1 = constant and a2 = constant point into the region as shown.
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which turn out to be -2, =2, and 0. The eigenvectors corresponding to eigenvalue ~2 span a plane
perpendicular to the line of equilibria, whereas the eigenvector corresponding to 0 lies along the line
of equilibria. Each of these equilibria is therefore attractive, the zero eigenvalue representing the fact
that the equilibria are not isolated. Moreover, (34a) shows that a; < 0 for a; > ay, so that the vector
field is pointing inward on the surface a; = constant between the plane a; = 0 and the plane a; = ay,
and therefore no motions can escape to infinity across that surface (see Figure 9b). Similarly, (34b)
shows that a, < 0 for a;, > ay, so that no motions can escape to infinity across a, = constant between
the plane a; = 0 and the plane a; = a,. Because the only equilibria of equations (34) are the line of
equilibria a; = ay, Yy = 0, which lie in plane L, and because no motions can escape to infinity, we are
not surprised to find that every motion approaches some equilibrium on this line. See Figure 10,
which displays the results of numerical integration of equations (34) projected onto the a; = a; plane.

There remains the question of which equilibrium point a given initial condition will approach.
Note that although the local S manifold of an equilibrium on the line a = a,, ¥ =0 is two dimensional
(being a plane through the equilibrium point and perpendicular to the line of equilibria), a three-
dimensional set of orbits must approach each equilibrium point (to account for all initial conditions
in the three-dimensional phase space). Figure 11 shows the results of numerical integration of
equations (34) for the initial conditions a,(0) = 5 and y(0) = 3 and for a,(0) between 0.1 and 10. The
vertical axis shows the associated asymptotic value of a; = a,. These results are typical of the behavior
of the slow flow (34) and illustrate the phenomenon seen in Figure 8 for equations (1). The location
of the final periodic orbit (represented by the amplitude a; = a; in the slow flow) depends in an
oscillatory fashion on the initial condition. Although the initial conditions of a motion that is destined
to be captured may lie far from the interior of the separatrices (where the perturbation study is valid),
all captured motions must eventually enter this region, at which point they will experience the
phenomena characterized by Figure 11.
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Figure 10. Numerical intsgration of the slow-flow equations Figure 11. The relationship between a1(0) and the final value
(34) projected onto the a1 — a2 plane. Al trajectories corre- of a; of Figure 10 as obtained by numerical integration. Note
spond to the initial conditions w(0) = 3, a(0) = 5. The initial the qualitative similarity to Figure 8.

condition a1(0) was varied as shown. All motions asymptoti-

cally approach the line of equilibria a1 = a2, y = 0. The

relationship between a1(0) and the final value of ay is dis-

played in Figure 11.

SUMMARY AND CONCLUSIONS

We have investigated the dynamics of the coupled system of homoclinic oscillators (1), especially
with regard to the question of which initial conditions become captured. In addition to presenting
numerical descriptions of the capture region C;, we have been able to characterize this set in the
special cases of (i) small € and (ii) special initial conditions in which one oscillator is initially at rest
at its stable equilibrium. In the latter case, we used perturbations to generate an approximation for the
S manifold of an equilibrium that consists of the center of one oscillator and the saddle of the other.

We found that every motion that is captured approaches some periodic orbit lying in the invariant
plane P, x; =x,. The question of which initial conditions lead to which periodic orbit was investigated
by numerically integrating the system (1) as well as by studying the dynamics of a slow flow based
on perturbing the system about the stable equilibria of both uncoupled oscillators.

This work is a first step toward understanding the dynamics of coupled homoclinic oscillators.
For example, we would like to better understand the four-dimensional shape of the capture region
Ce and the reasons for its having this shape. Moreover, we are interested in the dynamics of similar
systems having other types of coupling—for example, coupling involving the displacements x;.

APPENDIX

Relation to a System of Coupled Pendulums

In this appendix, we show how equations 1 are related to the equations of motion of two coupled
pendulums. Let each of the pendulums be driven by a constant torque of magnitude A, and let the
pendulums be coupled by a viscous damper. Then
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e . . .. . . . (A1)
Qr+sin@r=A+k(@—¢1), ¢r—+sin2=A+k (91— @)
where @ and @, are the angular displacements of the pendulums.
Now set
¢i=x;+B (A2)
where B is a constant to be chosen appropriately. Substitution of (A2) into (A1) gives
xi+sin(x+B)=A+k(a—x1), Xp+sin(xa+B)=A+k (x1—x2) (A3)
which gives
X1 + sin x; cos B+ cos x; sin B=A +k (x2 — x1) (A4)
and a similar equation on x,. Taylor expanding the trig terms gives the approximate equation:
. 1 . .. A
X1+ x1COS B+ l_ix% sinB=A+k (x2— x1). (A3)
We choose sin B = A to move the origin to an equilibrium point:
%+ x1 cos B —ix? sin B=k (iz - ). 49

2

Equation (A6) and the similar equation on x, may be cast into the form of equations (1) by taking

3 o b 1 S ot .
B= 4 T, which gives sin B = —cos B = 7 and stretching time so that t = T This choice of

B corresponds to taking the torque A = sin B = L . Also, the quantity € in equations (1)

V2

corresponds to € = 2"k
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