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Preface

Our purpose in writing this book is to provide computer algebra

programs which implement a number of popular perturbation methods. For each

perturbation method, we present an introduction to the method, a couple of

example problems, sample runs of the computer algebra programs and complete

program listings.

In addition, we include examples of various elementary bifurcations,

such as folds, pitchforks and Hopf bifurcations. These arise in the example

problems. Specifically. we treat Hopf bifurcations in autonomous nonlinear

systems via Lindstedt's method, the construction of center manifolds for

simple, degenerate and nilpotent bifurcations in ordinary differential

equations, the determination of normal forms for Hopf bifurcations and

Takens-Bogdanov bifurcations, and averaging for autonomous and nonautonomous

systems. Further, we use Lie transforms to determine normal forms in

Hamiltonian systems. Bifurcation in partial differential equations, such as

reaction diffusion equations or the Bernard convection problem, are treated via

Liapunov-Schmidt reduction.

Moreover, we offer comparisons of the various methods. We compare

averaging with normal forms, Liapunov-Schmidt reduction with center manifold

reduction. Lindstedt's method with normal form calculations. and so on. To

help in making the comparisons we frequently treat the same problem by two or

more methods. E.g .. we derive the Hopf bifurcation formula both by Lindstedt's

method as well as via normal forms.

Our motivation for applying computer algebra to perturbation problems

comes from the nature of the computations involved in these kinds of problems.
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viii

The massive algebra usually required to obtain detailed results is more quickly

and more accurately accomplished by computer than by hand. Since our emphasis

is on computation. we have dropped mathematical rigor in favor of

intelligibility of the computational methods. However. we have provided the

reader with references to standard mathematical textbooks or research papers.

The book assumes a knowledge of mathematics through a first year

graduate course in applied mathematics. We have chosen the computer algebra

system MACSYMA because it is popular and easy to learn. and some familiarity

with MACSYMA is desirable [35]. For the reader who has no experience with

MACSYMA we have provided a short introduction in the Appendix.

This book is perhaps best read in front of a computer terminal running

MACSYMA. The reader could then enter the programs in this book as BATCH files,

and run them on the sample problems. By examining the value of intermediate

variables. greater understanding can be gained as to how the methods and

programs work. Moreover. we hope that these programs will be useful utilities

to research workers in applied mathematics. A note of caution has to be added:

As the computational complexity of a problem is increased. e.g. by increasing

the number of parameters or the number of equations or the order of truncation,

there will come a point where the programs in this book will cease to work.

either because of running out of memory or taking too long to run. We suggest

that in such cases the reader may extend the usefulness of the program by

tailoring it to fit the particular problem at hand.

We have tested the programs in this book on the following versions of

MACSYMA: Eunice MACSYMA 308.2 on a VAX 8500 and MACSYMA 310.35 on a SYMBOLICS

3670. The timings which are given at the end of each run are machine dependent

and approximate. Even on the same machine. the time for a given run will vary

considerably due to "garbage collections" and other aspects of the LISP

environment which are invisible to the user. While we have tried to design the

programs to run efficiently, the inventive reader can probably improve upon our

schemes and is encouraged to do so.
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IX

We offer to send an electronic file containing the programs to those

readers who have access to BITNET. Our BITNET addresses are currently:

RHRYOCRNLVAX5 (for RHR) and URBYOCRNLVAX5 (for DA).
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CHAPTER 1

LINDSTEDT'S METHOD

Introduction

Lindstedt's perturbation method is a classical scheme for obtaining

approximate solutions to differential equations which contain a small parameter

~. The idea is to expand the solution in a power series in ~,

(1) x(t)

and to solve for the unknown functions xi(t) recursively, i.e., in the order

Unfortunately, it is generally insufficient to simply substitute eq.(l)

into the differential equation to be solved. The shortcoming of such an

approach may be illustrated by trying it on an example. We will take van der

Pol's equation as our example:

(2)
d2x 2 dx
- + x + ~ (x - 1) dt = 0
dt2

For any ~, this differential equation possesses a periodic solution

called a limit cycle (unique to within an arbitrary phase shift in time

([8],§8.7». It's importance lies in the property that any initial condition

(besides the rest state x = x' = 0) will eventually lead to the limit cycle,
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2 LINDSTEDT'S METHOD

i.e., the limit cycle is globally attracting (for e > 0). Moreover, when

e = 0, van der Pol's equation reduces to the simple harmonic oscillator and is

easy to solve. Thus we may hope to "perturb off of" the e = 0 solution by

substituting the series (1) into equation (2). Keeping terms of O(e2), we

obtain:

Since we want a solution which is valid for all (small) values of e, we

equate to zero each of the coefficients of en, for n = 0,1,2, .... For

n =0,1 and 2 we obtain:

(4) Xo + Xo = 0

(5) xl + xl = xO'(I - x0
2

)

(6) x2 + x2 = xI'(I - x0
2

) - 2 Xo xo' xl

Since van der Pol's equation is autonomous (i.e .• has no explicit time

dependent terms), we can choose the instant t =0 to correspond to any point on

the limit cycle. Thus we can choose the initial condition x'(O) = 0 without

loss of generality. From the expansion (1) we then obtain the initial

condi t ions:

(7) o
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Eqs.(4) and (7) give

LINDSTEDT'S METHOD 3

(8) B
O

cos t

where BO is as yet undetermined. Substituting (8) into (5) and using some trig

identities, we obtain

(9) sin

B 3
o . 3t + 4 SIn t

which has the general solution:

( 10) [
B0

3
] t B0

3
.4 - BO (- 2 cos t) - ~ SIn 3t + Bl cos t + Al sin t

where Al and Bl are arbitrary constants of integration.

Note the presence of the t cos t term in eq.(lO). This term grows

unbounded as t ~ 00. In the final expression for x. eq.(l), this term would

appear multiplied by c, i.e., ct cos t. Thus when t grows to be O(l/c), this

ct term becomes 0(1) and invalidates the assumption that each term of the

series is asymptotically smaller than the preceding term. Inclusion of such

unbounded secular or resonance terms prevents the obtained solution from being

uniformly valid over the time interval [0,00). More simplistically, since we

are looking for a periodic solution, we require all (nonperiodic) secular terms

to be removed. In the case of eq.(lO), this requires that we choose

(11 ) 2

So far so good. The procedure fails, however, when we consider eq.(6).

First we apply the initial condition (7) to eq.(lO), giving:
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4

(12)

LINDSTEDT'S METHOD

1 . 3 3. B- 4 Sln t + 4 Sln t + 1 cos t

obtain

Substituting (8) and (12) into (6) and using some trig identities, we

(13) 1 3 54 cos t + 2B1 sin t - 2 cos 3t + 3B1 sin 3t + 4 cos 5t

Note that the cos t term leads to secular behavior, and that no choice

of the constant B1 will eliminate the problem. Thus the foregoing method,

called regular perturbations, fails to yield a solution of the desired form.

Lindstedt's method involves a small modification of regular

perturbations, a modification which permits the removal of all secular terms.

The idea of the modification can be explained physically by reference to a key

distinction between linear and nonlinear dYnamical systems. Nonlinear behavior

is characterized by a dependence of frequency on amplitude. (Think of the

plane pendulum, which obviously takes longer to complete a large amplitude

oscillation than a small amplitude oscillation.) In the case of linear

oscillations, however, the eigenfrequency is accompanied by an arbitrary

amplitude, exemplified by the fact that eigenvectors are never unique but may

be multiplied by an arbitrary constant.

Based on this physical reasoning, Lindstedt's method permits the

response of the nonlinear (~ # 0) system to occur at a different frequency from

that of the linear (~ =0) system. The idea is to stretch time with the

transformation:

(14) T = w t,

where w, the frequency of the response, is expanded in a power series in ~:

(15) W + •••
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LINDSTEDT'S METHOD

where the constants k
i

are to be found. From a strictly algebraic point of

view, (14) represents a change of independent variable which inserts the

undetermined constants k i into the solution, and thereby permits the

troublesome secular terms to be removed.

5

As an example, again consider van der Pol's eq.(2). After the stretch

(14), (2) becomes:

(16) 2 d
2

x 2 dx
w -- + x + t (x - 1) W dT = 0

dT2

and after substituting (1) and (15) and collecting terms, we obtain the

following equations (cf. eqs.(4)-(6»:

(17) Xo + Xo 0

(18) Xl + Xl xO'(I - X0
2

) - 2k I Xo

( 19) x2 + x
2 Xl '(I - X0

2
) - 2 Xo xo' Xl - 2kI Xl

2
+ kI(I

2- (2k
2

+ k
i

) Xo - Xo ) Xo

where primes now represent derivatives with respect to T.

As in the case of regular perturbations, eq.(I7) has the solution (8).

For no secular terms in (18) we find that BO = 2 and k
i

= O. so that XI(T) is

given by (12). When these results are substituted into (19). we obtain:

(20)
1 3

(4k2 + 4) cos T + 2B I sin T - 2 cos 3T + 3BI sin 3T

5
+ 4 cos 5T
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6 LINDSTEDT'S METHOD

When eq.(20) is compared to its regular perturbation counterpart,

eq.(13), we see that Lindstedt's method has permitted the removal of secular

terms by the choice BI = 0 and k2 = -1/16.

Computer Algebra

The application of Lindstedt's method to finding limit cycles in the

class of equations

(21) x" + x + c f(x,x') = 0

is conveniently accomplished by the use of computer algebra [35]. We present a

MACSYMA program which asks the user to enter the given function f(x,x') and the

desired truncation order. Here is a sample run, followed by the program

listing. LC is the name of the MACSYMA function which contains the program:

LC() ;

THE D.E. IS OF THE FORM: X" + X + E * F(X,X') 0
ENTER F(X,Y), REPRESrnTING X' AS Y
Y*(XA 2-1);

2
The d.e. is: x" + x + e ( (x - 1) y ) = 0
ENTER TRUNCATION ORDER
4;
CHOICES FOR LIMIT CYCLE AMPLITUDE:
1) - 2
2) 2
3) 0
ENTER CHOICE NUMBER
2;
Done with step 1 of 4
Done with step 2 of 4
Done with step 3 of 4
Done with step 4 of 4
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LINDSTEDT'S METHOD

(sin(3 z) - 3 sin(z» e
x = 2 cos(z)

4

2
(5 cos(5 z) - 18 cos(3 z) + 12 cos(z» e

96

3
(28 sin(7 z) - 140 sin(5 z) + 189 sin(3 z) - 63 sin(z» e

+ ---------------------------------------------------------- +
2304

4 2
17 e e

w =----- - -- +
3072 16

[VAX 8500 TIME = 30 SEC.]

Here is the MACSYMA program listing:

1* THIS PROCRAM APPLIES LINDSTEDT'S METHOD TO THE EQUATION:

x.. + X + E F(X,X') = 0,

ASSUMING A LIMIT CYCLE EXISTS. CALL IT WITH: LCO ;

LCO :=(

1* input the differential equation *1

kill(x,xlist,paramlist).

print("THE D.E. IS OF THE FORM: X" + X + E * F(X,X') = 0"),

f:read("ENTER F(X,Y), REPRESENTING X' AS Y"),

print("The d.e. is: x" + x + e (",f,") = 0"),

f:subst('DIFF(x,z,I)*w.y,f),

1* set up the series expansions *1

n: read("ENTER TRUNCATION ORDER"),

w: 1,

for i thru n do w:w+k[i]*e~i,

x:b[O]*cos(z) ,

xlist:[xx[O] = x],

7
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8 LINDSTEDT'S METHOD

for i thru n do x:X+xx[i]MeAi.

1M plug into the d.e. and collect terms MI

depends(xx. z).

temp1:diff(x.z.2)+x/wA2+eMev(f.diff)/wA2.

temp1:taylor(templ.e.O.n).

for i thru n do eq[i]:coeff(temp1.e.i).

1M set up pattern matching rules for use in solving d.e. MI

matchdeclare(n1.true).

defrule(c.cos(n1Mz).cos(n1Mz}/(n1Mn1-1»,

defrule(s.sin(n1Mz).sin(n1Mz)/(n1Mn1-1».

1M ioad poisson series package and set parameter MI

outofpois(dummy).

poislim: 100.

1* main loop *1

for i:1 thru n do block(

1* trigonometric simplification *1

1* efficient alternative to EXPAND(TRIGREDUCE(EXPAND( ») *1

temp1:outofpois(ev(eq[i].xlist.paramlist.diff».

1* eliminate secular terms *1

if i = 1

then (paramlist:solve(coeff(templ.sin(z».b[O]).

print("CHOICES FOR LIMIT CYCLE AMPLITUDE: ").

for j:1 thru length(paramlist) do

print(j. ") ",part(paramlist. j. 2».

r1: read("ENTER CHOICE NUMBER").

paramlist:append(solve(coeff(temp1.cos(z».k[1]).

[part(paramlist.r1)]»
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LINDSTEDT'S METHOD

else paramlist:append(paramlist,

solve([coeff(templ,cos(z»,coeff(templ.sin(z»],

[k[i],b[i-l]]»,

templ:expand(ev(templ.paramlist»,

xlist:expand(ev(xlist,paramlist»,

1* output progress *1

print("Done with step",i,"of",n),

1* exit here if last iteration *1

if i=n then go(end),

1* solve the d.e. *1

1* efficient alternative to ODE2() *1

templ:factor(ev(templ,xx[i] = 0».

templ:applybl(templ,c,s),

templ:xx[i] = templ+a[i]*sin(z)+b[i]*cos(z).

1* fit the initial condition *1

temp2:rhs(templ),

temp2:diff(temp2.z).

temp2:solve(ev(temp2,z:0).a[i]).

xlist:append(xlist,[ev(templ.temp2)]),

1* end of main loop *1

end) ,

1* output results *1

w:ev(w,paramlist),

x:taylor(ev(x,xlist,paramlist),e,O.n-l).

print("x =" ,x),

print("w =" ,w»$

9
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10 LINDSTEDT'S METHOD

In order to check this program, Figs.l and 2 compare the order 4

solution generated in the sample run with numerical results obtained by a Runge

Kutta scheme. In Fig.l there is reasonable agreement even though the value of

c is as large as 1. The solution has already become unacceptable by c = 2,

however (see Fig.2.)

Quadratic Nonlinearities

The foregoing program LC works well for functions f(x,x') (cf. eq.(21»

which, as in the case of van der Pol's equation, do not contain quadratic

terms. However, it fails on an example such as

(22) x + x - c x'(l - x + x') o

for the following reason. The program LC removes secular terms from the Xl

equation and asks the user for a choice of the limit cycle amplitude BO on the

first pass through the perturbation method. The problem here is that the

quadratic terms produce no secular terms on the first pass through the

perturbation method: This is due in essence to the identity

cos2 t 1 1 2=2 + 2 cos t

which contains no secular sin t or cos t terms. In order to handle such terms,

the program must wait until the x
2

equation to find BO' i.e. until the second

pass through the perturbation method.

This modification can be facilitated by scaling the terms in the

differential equation [36]. Let us take the d.e. in the general form:

rand@math.cornell.edu



LINDSTEDT'S METHOD

2.5

11

x(t)

o

-2.5

8 t

Fig.l. Numerical (=N) and Lindstedt 0(4) (=L) solutions

for the limit cycle in van der Pol's eq.(2) for E = 1.

2.5

x(t)

o

-2.5

8 t

Fig.2. Numerical (= N) and Lindstedt 0(4) (= L) solutions

for the limit cycle in van der Pol's eq.(2)for E = 2.
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12 LINDSTEDT'S METHOD

•• 2 x,2x + x + c x + a
l

x + a
2

x x· + a
3

+ b I x3
+ other cubic terms

4+ dl x + other quartic terms

+ higher order terms o

Now we scale x by setting u ~ x to obtain:

+ ~2 (b I u3
+ other cubic terms)

+ ~3 (dl u4
+ other quartic terms)

+ higher order terms o

There remains the question of how to scale the damping coefficient c.

Let us expand c in a power series in ~:

c + •••

Now in order to perturb off of the simple harmonic oscillator we must take

Co =O. Moreover. in order to remove resonant terms during the first pass, c I

must be chosen to be zero. (If c I were not chosen to be zero. the perturbation

method would fail to obtain a limit cycle.) Thus we scale the linear damping

term to be of order ~2.
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LINDSTEDT'S METHOD

In summary, we require the terms to scale as follows:

linear: O(E.2 )

quadratic: O(E.) ,

cubic: 2O(E. ),

3quartic: O(E. ), etc.

13

For example in eq.(22), set E. E. 1/ 2 and x = E. X to obtain

(23) x + x -- ~2 ;;:'+ E. x X
~ ~,2

- E. x o

The following program LC2 is a generalization of LC for the system:

(24.1)

(24.2)

x

y

-y + E. f(x,y)

x + E. g(x,y)

where f(x,y) and g(x,y) are assumed to be in the form:

2quadratic + E. [linear + cubic] + E. quartic + •••

Here is a sample run based on eq.(23) in the form (24), followed by the

program listing:

LC2() :

The d.e. 's are of the form x -y + e*f, y' = x + e*g
where f,g are of the form:

quadratic + e*(linear + cubic) + e~2*(quartic) + ...
Enter f:
0:
f = 0
Enter g:
E*Y-Y~2-X*Y:

2
g - y - x y + e y

rand@math.cornell.edu



14 LINDSTEDT'S METHOD

Enter truncation order:
4;
Done with step 1 of 4
Choices for limit cycle amplitude:
1) 0
2) - 2
3) 2
Enter choice number
3;
Done with step 2 of 4
Done with step 3 of 4
Done with step 4 of 4

(4 sin(z) + 2 cos(2 z) - 2 sin(2 z) + 6) e
x = 2 cos(z) + ------------------------------------------

3

+ (62 cos(z) - sin(z) + 32 cos(2 z) + 32 sin(2 z) + 3 cos(3 z) - 21 sin(3 z»
2

e/36+ ...

(4 cos(z) - 4 cos(2 z) - 4 sin(2 z» e
y = 2 sin(z) - --------------------------------------

3

+ (cos(z) + 2 sin(z) - 64 cos(2 z) + 64 sin(2 z) + 63 cos(3 z) + 9 sin(3 z»
2

e /36 + .

4 2
113 e 5 e

w - ---- +
108 6

[VAX 8500 TIME = 100 SEC.]

Here is the MACSYMA program listing:

LC2() :=(

/* input the differential equation */

kill(x.y.xylist.paramlist).

print("The d.e. 's are of the form x' = -y + e*f. y' = x + e*g").

print("where f.g are of the form:

quadratic + e*(linear + cubic) + e~2*(quartic) + ... ").

f:read("Enter f:"),

print("f =", f),
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g: read( "Enter g:").

print("g =" .g),

1* set up the series expansions *1

n:read("Enter truncation order:").

k[O]:l.

k[l]:O,

w:sum(k[i]*eAi.i.O,n),

xy:[x:b[O]*cos(z)+sum(xx[i](z)*eAi,i.l.n).

y:b[O]*sin(z)+sum(yy[i](z)*eAi.i,l.n)],

xylist:[xx[O](z)=b[O]*cos(z).

yy[O](z)=b[O]*sin(z)].

1* plug into d.e. 's and collect terms *1

templ:[-diff(x,z)*w-y+e*ev(f,diff).-diff(y.z)*w+x+e*ev(g,diff)],

temp2:taylor(templ.e,O.n).

for i:l thru n do eq[i]:coeff(temp2,e,i),

1* main loop *1

for i:l thru n do block(

1* trigonometric simplification *1

15

temp3:expand(trigreduce(expand(ev(eq[i].xylist,paramlist.diff)))),

1* eliminate secular terms *1

if i=l then (temp4:temp3. go(skip_to-here-lirst_time»

else newparamlist::

solve([coeff(part(temp3,l),sin(z))-coeff(part(temp3,2),cos(z)).

coeff(part(temp3,l),cos(z))+coeff(part(temp3,2),sin(z))],

[b[i-2].k[i]]).

if i=2 then (paramlist:newparamlist,

print("Choices for limit cycle amplitude:").
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16 LINDSTEDT'S METHOD

for j:l thru length(paramlist) do

print(j, ") ", part (paramlist , j, 1,2»,

rl:read("Enter choice number"),

paramlist:part(paramlist,rl»

else paramlist:append(paramlist,newparamlist),

temp4:expand(ev(temp3,paramlist»,

xylist:expand(ev(xylist,paramlist»,

skip_to-here-iirst_time,

1* output progress *1

print("Done wi th step", i, "of" ,n),

1* exit here if last iteration *1

if i=n then go(end),

1* solve the d.e. 's *1

temp4a:subst(dummy(z),yy[i](z),temp4),

atvalue(dummy(z),z=O.O).

temp5:desolve(temp4a.[xx[i](z).dummy(z)]).

temp5a:subst(yy[i](z),dummy(z).temp5),

temp5b:subst(b[i],xx[i](O).temp5a),

xylist:append(xylist.[temp5b]).

1* end of main loop *1

end),

1* output results *1

w:ev(w,paramlist),

soln:taylor(ev([x.y].xylist,paramlist),e,O.n-2).

print("x =",part(soln.l»,

print("y =",part(soln,2».

print("w =" ,w»$
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As a check on the program and the method, we compare the results of LC2

with numerical integration on eq.(22). Fig.3 shows the limit cycle of eq.(22)

for c = 0.16 (i.e. ~ = 0.4 in the perturbation scheme, see eq.(23.» The

curves in Fig.3 were obtained from the previous run (truncation of order 4), as

well as from runs with truncation orders 6 and 8. In addition, Fig.3 displays

numerical results generated by a Runge Kutta scheme. Note how, for this choice

of c, greater accuracy is achieved by taking more terms in the series.

Hopf Bifurcation

As an application of the program LC2, we investigate the Hopf

bifurcation [36]. Whenever an equilibrium point of the focus type (i.e. having

complex eigenvalues) changes its stability as a result of parameter changes in

the differential equations, a limit cycle is generically born. In order to use

Lindstedt's method to see how this occurs, we consider the most general version

of eqs.(24) up to cubic terms, i.e. we expand f and g in Taylor series. We

also include damping terms with coefficient M so that varying M through zero

will change the stability of the equilibrium, producing the desired result:

(25.1)

(25.2)

x

y'

2 fxx 2 fvv 2
-y + c M x + c (~x + fxy x y +~ y )

2 (fxxx 3 ~ 2 ~ 2 !.riL 3)+c --6- x + 2 xy + 2 xy + 6 Y + •••

2 <no< 2 m,2
x + c M Y + c (~x + gxy x y + 2 y)
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18 LINDSfEIJf'S METHOD

12

x(t)

o

-12

8
t

Fig.3. Numerical (= N) and Lindstedt 0(8), 0(6) and 0(4)

(= L8, L6 and L4 respectively) solutions for the limit

cycle of eq.(22) for £ = 0.16 (Le. '£= 0.4).
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Here is the run:

LC2() ;

The d.e. '5 are of the form x' = -y + eMf, y' = x + eHg
where f,g are of the form:

quadratic + e*(linear + cubic) + e A 2*(quartic) + ...
Enter f:
e*(fyYy*yA3/6+fxYY*x*yA2/2+fxxy*xA2*y/2+fxxx*xA3/6)+fyy*yA2/2+fxy*x*y
+fxx*xA 2/2+e*mu*x;

19

f

3 2 2 3 2 2
fyYy y fxYY x y fxxy x y fxxx x fyy y fxx x

e (------- + --------- + --------- + -------) + ------ + fxy x y +
6 2 2 6 2 2

+ e mu x

Enter g:
e*(gyYy*yA3/6+~*x*yA2/2+gxxy*xA2*y/2+gxxx*x~3/6)+gyy*yA2/2+gxy*x*y

+gxx*xA 2/2+e*mu*y;

g

3 2 2 3 2
gyYy y ~ x y gxxy x y gxxx x gyy y

e (------- + --------- + --------- + -------) + ------ + gxy x y + e mu y
6 2 2 6 2

2
gxx x

+ ------
2

Enter truncation order:
2·
Done with step 1 of 2
Choices for limit cycle amplitude:
1) 0
2) - 4 sqrt(- mu/(gyYy - gxy gyy + fyy gyy - gxx gxy + gxxy - fxx gxx

+ fxy fyy + fxYY + fxx fxy + fxxx»

3) 4 sqrt(- mu/(gyYy - gxy gyy + fyy gyy - gxx gxy + gxxy - fxx gxx

+ fxy fyy + fxYY + fxx fxy + fxxx»
Enter choice number
3;
Done with step 2 of 2

x = 4 cos(z) sqrt(- mu/(gyYy + (- gxy + fyy) gyy - gxx gxy + gxxy - fxx gxx

+ fxy fyy + fxYY + fxx fxy + fxxx» + . .

y 4 sin(z) sqrt(- mu/(gyYy + (- gxy + fyy) gyy - gxx gxy + gxxy - fxx gxx

+ fxy fyy + fxYY + fxx fxy + fxxx» + . .

rand@math.cornell.edu



20 LINDSTEDT'S METHOD

2 2 2
w e (2 gyy + (5 gxx - 5 fxy) gyy - 3 gxyy + 2 gxy + (- fyy - 5 fxx) gxy

222
- 3 gxxx + 5 gxx - fxy gxx + 3 fyyy + 5 fyy + 5 fxx fyy + 2 fxy + 3 fxxy

2
+ 2 fxx ) mu/(3 gyyy + (3 fyy - 3 gxy) gyy - 3 gxx gxy + 3 gxxy - 3 fxx gxx

+ 3 fxy fyy + 3 fxyy + 3 fxx fxy + 3 fxxx) +

[VAX 8500 TIME = 331 SEC.]

The significance of this computation lies in the requirement that the

limit cycle amplitude be real. The limit cycle amplitude is given by the

expression:

(26)

where

(27)

limit cycle amplitude 4 (_~S)I/2,

S = gyyy + gxxy + fxxx + fxyy + fyy gyy + fxy (fxx + fyy)

- fxx gxx - gxy (gxx + gyy)

In particular this requires that the sign of S be opposite to the sign

of~. If S = 0 the computation is indecisive and offers no information. See

Fig.4 for the two cases of subcritical and supercritical Hopf bifurcations, in

which the stability of the limit cycle is respectively unstable and stable.

Note that the form of the linear terms in eqs.(25) involves the

symmetriC appearance of ~ in both the x' and y' equations. A general system of

the form

(28) x' = a x + b y + y c x + d y + •••

can be transformed into

u v' = n u + ~ v + •••
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SUPERCRITICAL CASE, S < 0

y y

21

]1 < 0

x

A
]1 > 0

x

STABLE LIMIT CYCLE

STABLE EQUILIBRIU~ UNSTABLE EQUILIBRIUM

y

SUBCRITICAL CASE, S > 0

y

---\--+--fd:H-4--x

]1 < 0

STABLE EQUILIBRIUM

---+-+-+++-++--- x

]1 > 0

A

UNSTABLE LIMIT CYCLE

UNSTABLE EQUILIBRIUM

Fig.4. Supercritical and subcritical Hopf Bifurcations.

A = amplitude of limit cycle.
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22 LINDSTEDT'S METHOD

via the linear transformation [36]

(29) x = b u, y [d-a]2"" u"-flv

where fl = [- (d~a)2_ bcf/2 and where Jl = a;d

In this way we could apply the results (26),(27) to the system

(30) 2 2 2x" + x + e c x' + e (a
l

x + a
2

x x' + a
3

x' )

by writing it in the form:

(31. I) x' - y

(31.2) 222y =x - e c y + e (al x - a2 x y + a3 y )

2 3 2 2 3+ e (b x - b x y + b x y - by) + •••
1 2 3 4

and then using the transformation (29) to get it in the form (25).

Alternately we can apply the program LC2 directly to the system (31):

LC2();

The d.e. 's are of the form x' =-y + eMf, y' =x + e*g
where f,g are of the form:

quadratic + e*(linear + cubic) + e~2*(quartic) + ...
Enter f:
0;
f =0
Enter g:
-c*y*e+(al*x~2-a2*x*y+a3*y~2)+e*(bl*xA3-b2MxA2*y+b3*x*yA2-b4*y

A

3);

3 2 2 3 2 2
g =e (- b4 y + b3 x y - b2 x y + bl x ) + a3 y - a2 x y - c e y + al x
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- 2 sq r t (- --------------------------)

3 b4 + b2 - a2 a3 - al a2

Enter truncation order:
2:
Done with step 1 of 2
Choices for limit cycle
1) 0

2 )

amplitude:

c

c
3) 2 sqrt(- -------------------------)

3 b4 + b2 - a2 a3 - al a2

Enter choice number
3;
Done with step 2 of 2

c
x = 2 cos(z) sqrt(- -------------------------) + ...

3 b4 + b2 - a2 a3 - al a2

c
y 2 sin(z) sqrt(- -------------------------) + ...

3 b4 + b2 - a2 a3 - al a2

2 2 2 2
(3 b3 + 9 bl - 4 a3 - 10 al a3 - a2 - 10 al ) c e

w 1 - ----------------------------------------------------
18 b4 + 6 b2 - 6 a2 a3 - 6 al a2

[VAX 8500 TIME 74 SEC. ]

From this run we can conclude that for small c eq.(30) possesses a

limit cycle if the quantity

(32)

has the opposite sign to that of the damping c. For example. in the case of

van der Pol's equation (2). where c = -I, b2 = 1 and the other coefficients are

zero. the quantity (32) becomes unity and the limit cycle amplitude is

correctly evaluated as 2. Note also that the c2 contribution to the frequency

w vanishes for van der Pol's equation. (Cf. eq.(15) where k1
2must be replaced by c for comparison with the foregoing run.)

o and where c
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Exercises

LINDSTEDT'S METHOD

1. Find an equation of the form

x" + x + e f(x.x·) 0

which exhibits a limit cycle with frequency w = 1 + k l e + •••. where k l # O.

Note that the examples used in this Chapter. namely van der Pol's equation (2).

eq.(22). and eq.(30). all have k l = O.

Hint: Take a l =a2 =~ =0 in eq.(30).

2. We have dealt exclusively with autonomous systems in this Chapter. Write a

program to apply Lindstedt's method to nonautonomous equations of the form

x" + x + e f(x.x· .t) O.

As an example. consider the forced damped Duffing equation.

x·· + x + e 0 x· + e a x3

Discussion: First we set T = wt to get

e ..., cos wt

2 d2x dx 3w -- + x + e 0 w - + e a x e ..., cos T
dT2 dT

and then we expand x = XO(T) + xl(T) e + •••. We look for solutions with

period 2v in T. i.e. with the same period as the forcing function.
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In order to eliminate secular terms in the xl equation we can now

25

choose A
O

and B
O

' (Note that the ki's are viewed as being given in this

formulation.) Similarly the complementary solution for the Xi equation can be

chosen as Xi =Ai sin T + Bi cos T and an appropriate selection of Ai and
comp

Bi will eliminate secular terms in the x i +1 equation.

Unfortunately the algebraic equations on AO and BO (or more generally

on Ai and Bi ) are usually too complicated to solve in closed form.

Transformation to polar coordinates

usually helps. E.g. in the case of Duffing's equation, AO and BO satisfy

o

which become in polar coordinates,

which can be combined to give

2
....
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26 LINDSTEIJr'S MErHOn

3. Mathieu's equation.

x" + (0 + 10 cos t) X 0

is both linear and nonautonomous. The problem here is to find the coefficients

0i in the eXPansion

n 0.1.2.···

such that the differential equation exhibits periodic solutions. This

eXPansion represents a transition curve in the 0-10 parameter plane (hence the

phrase parametric excitation) which separates regions of bounded behavior from

regions of unbounded behavior. See e.g. [44].

Write a program to accomplish this task. Note that since the equation

is linear. no frequency-amplitude relation is eXPected and no stretch T = ~ t

is needed. so that regular perturbations will work on this problem.

After

then Xo = cos

neXPanding x = Xo + Xl 10 + •••. separately choose Xo = sin 2t and

~t. as each gives a distinct transition curve. Find the 0i by

elimination of secular terms. See [35].

4. Apply the transformation (29) to eqs.(3I) to get them in the form (25).

Then show that the results (26) and (27) agree with results of the last run in

the Chapter on eqs.(3I) directly.
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CHAPTER 2

CENTER MANIFOLDS

Introduction

Center manifold theory [6] is a method which uses power series

expansions in the neighborhood of an equilibrium point in order to reduce the

dimension of a system of ordinary differential equations. The method involves

restricting attention to an invariant subspace (the center manifold) which

contains all of the essential behavior of the system in the neighborhood of the

equilibrium point as t ~ 00.

This method is applicable to systems which, when linearized about an

equilibrium point, have some eigenvalues which have zero real part, and others

which have negative real part. We assume that no eigenvalues have positive

real part, since in such a case the center manifold will not be attractive as

~oo

Under such assumptions the components of the solution of the linearized

equations which correspond to those eigenvalues with negative real part will

decay as t ~ 00, and hence the motion of the linearized system will

asymptotically approach the space 8 1 spanned by the eigenvectors corresponding

to those eigenvalues with zero real part. The center manifold theorem [6]

assures us that this picture (which is so far based on the linearized

equations) extends to the full nonlinear equations. as follows:
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28 CENTER MANIFOLfS

There exists a (generally curved) subspace S2 (the center manifold)

which is tangent to the (flat) subspace SI at the equilibrium point. and which

is invariant under the flow generated by the nonlinear equations. All

solutions which start sufficiently close to the equilibrium point will tend

asymptotically to the center manifold. In particular. the theorem states that

the stability of the equilibrium point in the full nonlinear equations is the

same as its stability when restricted to the flow on the center manifold ([6J.

p.4). Moreover. any additional equilibrium points or limit cycles which occur

in a neighborhood of the given equilibrium point on the center manifold are

guaranteed to exist in the full nonlinear equations ([6J. p.29).

Thus center manifold theory allows us to eliminate algebraic

complications which are due to unessential behavior and to focus on the motion

in the center manifold which contains the critical information concerning the

system's local stability and bifurcation of steady state behavior. In doing so

we omit reference to how the system gets onto the center manifold. but rather

we are assured of the asymptotic stability of the center manifold. Since the

eigenvalues associated with the linearized flow in the center manifold have

zero real part. the study of the motion in the center manifold must still be

accomplished and may not be an easy task. In this Chapter we will be concerned

with the question of how to reduce a system to its center manifold and we will

leave for later Chapters treatment of the flow on the center manifold.

The method will be illustrated by reference to the following example

[3IJ of a system of three differential equations:

(1)

(2)

(3)

x·

y'

z

y

- x - x z

2
- z + a x
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Here we have a feedback control system in which the spring constant in

the simple harmonic oscillator of eqs.(1).(2) is given by 1 + z. The control

variable z is governed by eq.(3) and involves the feedback term a x2 . We wish

to know the stability of the equilibrium at the origin.

Although the system (1)-(3) is 3-dimensional. we can use center

manifold theory to reduce the stability question to the study of a

2-dimensional system. Linearizing about the origin. we see that the x-y plane

is associated with a pair of pure imaginary eigenvalues, while the z axis

corresponds to an eigenvalue of -1. Thus the center manifold is a

2-dimensional surface which is tangent to the x-y plane at the origin.

In order to obtain an approximate expression for the center manifold,

we write z as a function of x and y, and expand in a power series. Since the

center manifold is tangent to the x-y plane, we begin the power series with

quadratic terms:

(4) z 2 2
a2 ,O x + a 1 ,1 x y + aO,2 y + •••

The requirement that the center manifold be invariant is satisfied by

substituting (4) into (3):

(5) (2 a2 .0 x + a 1 ,1 y) x' + (2 aO,2 y + al,l x) y + •••

2 2 2
- (a2 ,O x + a l . 1 x y + aO.2 y ) + a x + •••

Note that (5) involves the derivatives x and y'. Substitution of

expressions for these from (1) and (2) gives:
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(6) (2 a2 •0 x + a l . l y) y + (2 aO. 2 y + a l . l x) (- x - x z) + •••

2 2 2
- (a2 .0 x + a l . l x y + aO. 2 y ) + a x +

This last step once again introduced z into the computation (since y

depended on z). So we again eliminate z by substituting (4) into (6).

Collecting terms and neglecting cubic and higher order terms. this gives:

(7)

2+ (al . l + aO. 2) y + ••• = 0

Equating the coefficients of xiyj equal to zero. and solving the three

resulting equations for the a .. ·s. we obtain:
1. J

(8) 3
a 2 •0 = g a

2 2- g a . a O•2 = g a

Substitution in (4) gives the following first approximation to the

center manifold:

(9)
3 2 2 2 2

z=gax -gaxY+gay +

We may now substitute (9) into eqs.(1).(2) in order to obtain

approximate equations for the flow on the center manifold:

(10) x = y

(11 ) y'
3 3 2 2 2 2

-x-gax +gax y-gaxy + •••
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Although approximate. eqs.(lO).(ll) contain the answer to the question

of the stability of the origin in the original system (1)-(3). The point of

center manifold theory is that eqs.(lO).(ll) are easier to analyze than

eqs.(1)-(3). We will return to the analysis of eqs.(lO).(ll) in the next

Chapter on normal forms.

Computer Algebra

The calculation of center manifolds involves the manipulation of

truncated power series and is readily performed using computer algebra. We

present a MACSYMA program to accomplish such computations. The program listing

follows a sample run on the preceding example:

CM() ;

ENTER NO. OF EQS.
3;
ENTER DIMENSION OF CENTER MANIFOLD
2;

THE D.E. 'S MUST BE ARRANGED SO THAT THE FIRST 2 EQS.
REPRESENT THE CENTER MANIFOLD. I.E. ALL ASSOCIATED
EIGENVALUES ARE ZERO OR HAVE ZERO REAL PARTS.

ENTER SYMBOL FOR VARIABLE NO.
X;
ENTER SYMBOL FOR VARIABLE NO. 2
Y;
ENTER SYMBOL FOR VARIABLE NO. 3
Z:
ENTER ORDER OF TRUNCATION
2:
ENTER RHS OF EQ.
DxIDT=
Y:

ENTER RHS OF EQ. 2
D y IDT
-X-X*Z:

ENTER RHS OF EQ. 3
D z IDT =
-Z+ALPHA*XA 2:
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dx
-- = Y
dt

dy
-- = - x z - x
dt

dz 2
-- =alpha x - z
dt

CENTER MANIFOLD:

CENTER MANIFOLDS

2 2
2 alpha y 2 alpha x y 3 alpha x

[z =---------- - ----------- + ----------]
5 5 5

FLOW ON THE C.M.:

2 2
dx dy 2 alpha y 2 alpha x y 3 alpha x

[-- = y. -- = - x (---------- - ----------- + ----------) - x]
dt dt 5 5 5

[VAX 8500 TIME = 6 SEC.]

Here is the MACSYMA listing for the program CM:

CM() :=(

1* INPUr PROBLEM *1

N:READ("ENTER NO. OF EQS.").

M: READ( "ENTER DIMENSION OF CENTER MANIFOLD").

PRINT("THE D.E. 'S MUST BE ARRANGED SO THAT THE FIRST" .M. "EQS.").

l'RINT("REPRESENT THE CENTER MANIFOLD. I.E. ALL ASSOCIATED").

PRINT("EIGENVALUES ARE ZERO OR HAVE ZERO REAL PARTS.").

FOR I: 1 THRU N 00

X[I]:READ("ENTER SYMBOL FOR VARIABLE NO .... I).

L:READ("ENTER ORDER OF TRUNCATION").

FOR 1:1 THRU N DO (

PRINT("ENTER RHS OF EQ.... I).

PRINT("D" .X[I]."/DT =").
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G[ IJ: READ() ) .

1* SET UP D.E. 'S *1

FOR I: 1 THRU N DO

DEPENDS(X[I].T).

FOR I: 1 THRU N DO

(EQ[I]:DIFF(X[I].T)=G[I].

PRINT(EQ[I]».

1* FORM POWER SERIES *1

SUB:MAKELIST(K[I].I.l.M).

VAR:PRODUCT(X[I]AK[I].I.l.M).

UNK:[].

FOR P:M+l THRU N DO{

TEMP:A[P.SUB]*VAR.

FOR I: 1 THRU MDO

TEMP:SUM(EV(TEMP.K[I]=J).J.O.L).

TEMP2:TAYLOR(TEMP.MAKELIST(X[I].I.l.M).O.L).

1* REMOVE roNSTANT AND LINEAR TERMS *1

TEMP3:TEMP2-PART(TEMP2,l)-PART(TEMP2.2).

SOLN[P]:EXPAND(TEMP3).

1* PREPARE LIST OF UNKNOWNS *1

SETXTOl:MAKELIST(X[I]:l.I.l.M).

1* TURN SUM INTO A LIST *1

UNKN[P]:SUBST( .. [ .....+... EV(TEMP3.SETXTOl».

UNK:APPEND(UNK.UNKN[P]».

SOL:MAKELIST(X[P]:SOLN[P].P.M+l.N).

1* SUBSTITUTE INTO D. E..S *1

CMDE:MAKELIST(EQ[I].I.l.M).

REST:MAKELIST(LHS(EQ[I])-RHS(EQ[I]).I.M+l.N).

TEMP4:EV(REST.SOL. DIFF),

33
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34 CENTER MANIFOLDS

TEMP5: EV (TEMP4 ,CMDE ,DIFF) ,

TEMP6:EV(TEMP5,SOL).

TEMP7:TAYLOR(TEMP6,MAKELIST(X[I].I.1,M),O,L),

1* COLLECT TERMS *1

COUNTER: 1,

1* MAKE LIST OF TERMS *1

TERMS:SUBST("[", "+" ,SOLN[NJ).

TERMS:EV(TERMS.A[DUMMY,SUB]:=l).

FOR I: 1 THRU N-M DO (

EXP[I]:EXPAND(PART(TEMP7.I».

FOR J: 1 THRU LENGTII(TERMS) DO(

COND[COUNTER]:RATCOEF(EXP[I].PART(TERMS.J».

COUNTER: COUNTER+ 1) ) •

CONDS:MAKELIST(COND[I],I,l.COUNTER-1).

1* SOLVE FOR CENTER MANIFOLD *1

ACOEFFS:SOLVE(CONDS. UNK).

CENTERMANIFOLD: EV(SOL ,ACOEFFS) •

PRINT("CENTER MANIFOLD: ").

PRINT(CENTERMANIFOLD) •

1* GET FLOW ON CM *1

CMDE2: EV(CMDE ,CENTERMANI FOLD) •

PRINT("FLOW ON THE C.M. :").

PRINT(CMDE2»$
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Since the center manifold must contain a linearized system with

eigenvalues equal to zero or having zero real part. it would appear that the

method is inapplicable to the systems which have damping. Carr [6] has shown.

however. that such cases can be handled by embedding the given system in a

larger system which contains the damping as an additional dependent variable.

For example. consider the previous example when damping is added:

(12)

(13)

(14)

x'

y

z

~ x + y

- x + ~ y - x z

(15)

Now to these equations we add the dummy equation:

o

The system (12)-(15) is now a 4-dimensional system with a 3-dimensional

center manifold. The damping terms ~ x and ~ yare now nonlinear (quadratic)

terms in the neighborhood of the origin x = y = z = ~ = O. Naturally the

results of the method are only valid for small values of ~.

In order to illustrate the procedure. we apply the program CM to this

example:
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CM() ;

CENTER MANIFOLDS

ENTER NO. OF EQS.
4;
ENTER DIMENSION OF CENTER MANIFOLD
3;

THE D.E. 'S MUST BE ARRANGED SO THAT THE FIRST 3 EQS.
REPRESENT THE CENTER MANIFOLD. I.E. ALL ASSOCIATED
EIGENVALUES ARE ZERO OR HAVE ZERO REAL PARTS.

ENTER SYMBOL FOR VARIABLE NO.
MU;
ENTER SYMBOL FOR VARIABLE NO.2
X;
ENTER SYMBOL FOR VARIABLE NO.3
Y;
ENTER SYMBOL FOR VARIABLE NO.4
Z;
ENTER ORDER OF TRUNCATION
3;
ENTER RHS OF EQ.
D mu lOT =
0;

ENTER RHS OF EQ. 2
D x lOT =
MU*X+Y;

ENTER RHS OF EQ. 3
D y lOT =
MU*Y-X-X*Z;

ENTER RHS OF EQ. 4
D z lOT =
-Z+ALPHA*XA 2;

dmu
--- = 0
dt

dx
--=y+mux
dt

dy
-- = - x z + mu y - x
dt

dz 2
-- = alpha x - z
dt
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CENTER MANIFOLD:
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2
28 alpha mu y

2
2 alpha y 8 alpha mu x y 2 alpha x y

[z -------------- + ---------- + -------------- - -----------
25 5 25 5

2 2
22 alpha mu x 3 alpha x

- -------------- + ----------]
25 5

FLOW ON THE C.M.:

2 2
dmu dx dy 28 alpha mu y 2 alpha y

[--- = O. = y + mu x, - x (- -------------- + ----------
dt dt dt 25 5

2 2
8 alpha mu x y 2 alpha x y 22 alpha mu x 3 alpha x

+ -------------- - ----------- - -------------- + ----------) + mu y - x]
25 5 25 5

[VAX 8500 TIME 51 SEC.]

That is. for small values of ~. the flow near the origin on the center

manifold of the system (12)-(15) is given by:

(16) x = y + ~ x

( 17) y

Here the origin is unstable for ~ ) 0 and stable for ~ < O. Thus there

is a Hopf bifurcation at ~ = O. Let us use the Lindstedt method program LC2 of

Chapter 1 to approximate the size of the limit cycle as a function of the

parameters a and~. In order to put the problem in a form suitable for

treatment by LC2. we scale x. y and ~ as follows:

(18) X to x. Y - to y. M

whereupon eqs. (16). (17) become:
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(19) X'

CENTER MANIFOLDS

. 2 2 [3 2 2 2 2](20) Y = X + M c Y + a c X 5" X + 5" X Y + 5" Y + •••

We continue with the application of the program LC2 to eqs.(19).(20):

LC2();

The d.e. '5 are of the form x'

where f.g are of the form:

-y + e*f. y = x + e*g

quadratic + e*(linear + cubic) + e A 2*(quartic) + ...

f =e m x

Enter g:
M*E*Y+ALPHA*E*X*(3*XA 2/S+2*X*Y/S+2*YA 2/S);

g = alpha e x

2
2 y

(---- +
S

2
2 x y 3 x

+ ----)
S S

+ e m y

Enter truncation order:
2;

Done with step 1 of 2

Choices for limit cycle amplitude:

1) 0

m
2) - 2 sqrt(S) sqrt(- -----)

alpha

m
3) 2 sqrt(S) sqrt(- -----)

alpha

Enter choice number
3;

Done with step 2 of 2
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m
x 2 sqrt(- -----) sqrt(5) cos(z) + ...

alpha

m
y 2 sin(z) sqrt(- -----) sqrt(5) + . . .

alpha

2
11 e m

w 1-
2

39

[VAX 8500 TIME 12 SEC.]

That is, to lowest order approximation, the limit cycle amplitude is

calculated as (cf. eq.(18):

(21) [
5M] 1/2

2 - - or
a

( 2 2)1/2x + y

Eq.(21) asserts that for small ~ the limit cycle exists only if ~ and a

have opposite signs. As a check on this computation, we present in Fig.5 the

results of a numerical integration of the differential equations (12)-(14) for

parameter values ~ =0.01, a = -0.01. As can be seen from the Figure, the

foregoing result based on center manifold and Lindstedt methods is in good

agreement with the numerical computation.
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5 y

-5
x

5

-5

Fig.~. Numerical (= N) and center manifold/ Lindstedt

0(2) (= eM) solutions for the limit cycle of eqs.(12)-(14)

for ~ = 0.01 and a = -0.01, displayed in the x-y plane.
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The program CM requires that the coordinates on the center manifold be

linearly uncoupled from the other coordinates of the problem. In the case that

the original system is not in this form. some linear algebra needs to be done.

We shall give an example of this complication next. as we consider a

bifurcation in the well-known Lorenz equations [14]:

(22)

(23)

(24)

x

y

z'

a (y - x)

px-y-xz

- /3 z + x y

We shall be interested in the behavior of this system in the

neighborhood of the equilibrium at the origin. Linearizing about the origin.

we obtain

(25)
a

-1
o J] [~ ]

We use the EIGEN package in MACSYMA to compute the eigenvalues of the

linearized system: (Here and in what follows we use the symbols s.r.b and e in

MACSYMA to stand for a.p./3 and c respectively. We refer to the matrix of the

linearized system (25) as A.)

A:MATRIX([-S.S.O].[R.-1.0].[O.O.-B]);

[ - s s 0 ]
[ ]
[ r - 1 0 ]
[ ]
[ 0 0 - b ]
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EIGENVALUES(A) ;

CENTER MANIFOLDS

2
sqrt(s + (4 r - 2) s + 1) + s + 1

[[- ----------------------------------
2

2
sqrt(s + (4 r - 2) s + 1) - s - 1

- b]. [1, 1. 1]]
2

Here the first list of three eigenvalues is followed by a second list

of their respective multiplicities. Note that at p = lone of the eigenvalues

is zero for all a and~. Thus at p = 1 we have a one-dimensional center

manifold. We propose to use our program CM to study the bifurcations of

equilibria in the neighborhood of the origin. Before we can proceed. however.

we must uncouple the eigencoordinate corresponding to the center manifold from

the other eigencoordinates. We return to our previous MACSYMA session and

compute the eigenvectors of the linearized system when p = 1:

ElGENVECfORS(EV(A.R:l»;

[[[- s - 1. - b. 0]. [1. 1. 1]]. [1. - - 0]. [0. O. 1]. [1. 1. 0]]
s

Here the first list contains the eigenvalues. the second their

respective multiplicities. and the last three lists are their respective

eigenvectors. In order to diagonalize the linearized system. we transform

variables from x.y.z to u.v.w via a matrix whose columns are the preceding

eigenvectors:

(26)

Now we need to substitute (26) into (22)-(24). We will use our own

MACSYMA utility program. TRANSFORM. to accomplish this. TRANSFORM performs an
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arbitrary coordinate transformation (not necessarily linear) and will be used

again in later Chapters. We follow the MACSYMA run with a listing of

TRANSFORM:

TRANSFORM() ;

Enter number of equations
3;
Enter symbol for original variable
X·
Enter symbol for original variable 2
Y;
Enter symbol for original variable 3
Z;
Enter symbol for transformed variable
U;
Enter symbol for transformed variable 2
V;
Enter symbol for transformed variable 3
W;

The RHS's of the d.e. 's are functions of the original variables:
Enter RHS of x d.e.
d x Idt =
S*(Y-X) ;

d x Idt = s (y - x)

Enter RHS of y d.e.
d y Idt =
R*X-Y-X*Z;

d y Idt = - x z - y + r x

Enter RHS of z d.e.
d z Idt =
-B*Z+X*Y;

d z Idt = x y - b z

The transformation is entered next:

Enter x as a function of the new variables
x =
U+V;

x =v + u

Enter y as a function of the new variables
y =
U-V/S;

v
y u - ­

s
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Enter z as a function of the new variables
z =
W;

z =w

du 5 (u W + (1 - r) u) + 5 V (w - r + 1)
[[-- -------------------------------------

dt 5 + 1

2
dv 5 «r - 1) u - u w) + v (5 (- W + r + 1) + 5 + 1)

dt 5 + I

2 2
dw 5 (b w - u ) + v + (u - 5 u) V

-------------------------------]]
dt 5

[VAX 8500 TIME = SEC.]

Here is the listing of TRANSFORM:

TRANSFORM():=(

1* input data *1

n:read("Enter number of equations"),

for i:1 thru n do

x[i]:read("Enter symbol for original variable",i),

for i:1 thru n do

y[i]:read("Enter symbol for transformed variable",i),

print("The RHS's of the d.e.'s are functions of the original variables:"),

for i:1 thru n do (

print("Enter RHS of",x[i],"d.e."),

print("d",x[i],"/dt ="),

f[i]: read() ,

print("d",x[i],"/dt =",f[i]),

print("The transformation is entered next:"),

for i:1 thru n do (

print("Enter",x[i],"as a function of the new variables"),

rand@math.cornell.edu



CENTER MANIFOLDS

print(x[i],":"),

g[ i J: read() ,

print(x[i]. ":" .g[i]».

1* do it *1

for i:l thru n do depends([x[i],y[i]],t).

for i:l thru n do eq[i]:diff(x[i],t):f[i].

trans:makelist(x[i]:g[i].i,I,n),

for i:l thru n do treq[i]:ev(eq[i],trans,diff).

treqs:makelist(treq[i].i.l,n),

derivs:makelist(diff(y[i],t),i,l.n),

neweqs:solve(treqs.derivs»$

In order to observe the bifurcation of equilibria in the center

manifold as p passes through unity, we set

45

(27) p 1 + /0

and we embed the system in a 4-dimensional phase space with /0' : O. The

following MACSYMA command substitutes (27) into the list NEWEQS which contains

the results of TRANSFORM. The right hand sides of the transformed equations

are stored in an array RHS, to be conveniently passed on to the program CM:

FOR 1:1 THRU 3 DO RHS[I]:EV(PART(NEWEQS.l.I.2),R:l+E);

CM() ;

ENTER NO. OF EQS.
4;
ENTER DIMENSION OF CENTER MANIFOLD
2;

THE D.E. 'S MUST BE ARRANGED SO THAT THE FIRST 2 EQS.
REPRESENT THE CENTER MAN IFOLD. I . E. ALL ASSOCIATED
EIGENVALUES ARE ZERO OR HAVE ZERO REAL PARTS.
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ENTER SYMBOL FOR VARIABLE NO.
E;
ENTER SYMBOL FOR VARIABLE NO.2
U;
ENTER SYMBOL FOR VARIABLE NO.3
V;
ENTER SYMBOL FOR VARIABLE NO. 4
W;
ENTER ORDER OF TRUNCATION
2;

ENTER RHS OF EQ.
D e IDT =
0;

ENTER RHS OF EQ. 2
D u IDT =
RHS[1];

ENTER RHS OF EQ. 3
D v IDT =
RHS[2] ;

ENTER RHS OF EQ. 4
D w IDT =
RHS[3];

de
-- =0
dt

CENTER MANIFOLDS

du 5 (u W - e u) + 5 V (w - e)

dt 5 +

2
dv 5 (e u - u w) + v (5 (- W + e + 2) + 5 + 1)

dt 5 + 1

2 2
dw 5 (b w - u ) + v + (u - 5 u) V

dt

CENTER MANIFOLD:

5

2
e 5 U U

[v =- ------------, w =--]
2 b

5 + 2 5 + 1
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FLOW ON THE C.M. :

2
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s + 2 s + 1
------------------------------]

s + 1

de
[--
dt

O.
du

dt

3
u

s(---eu)­
b

2 u
e s u (-- - e)

b

2

[VAX 8500 TIME 13 SEC.]

The resulting expression from CM. stored in the variable CMDE2. can be

cleaned up by using the MACSYMA function FACTOR:

FACTOR(CMDE2) ;

de
[--
dt

O.
du

dt

2 2
s (s - e s + 2 s + 1) u (u - b e)
-----------------------------------]

3
b (s + 1)

The last equation gives an approximation for the flow on the center

manifold. There are 1 or 3 equilibria. depending on the sign of the product

(3 10:

(28) u o and u = + «(3 10)1/2

Thus there is a pitchfork bifurcation at p = 1. see Fig.6.

In order to check the center manifold computation. we calculated the

center manifold numerically. It is straightforward to do this since any

initial condition close to the origin produces a motion which asymptotically

approaches the center manifold. In Fig.7 we plot in the x-y plane the

numerical results for Lorenz's original parameter values of a = 10, (3 = 8/3,

and for p 0.9. Fig.7 also shows the results of the preceding analysis.

obtained as follows: We invert the change of coordinates (26) and transform

the center manifold equations:
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£

u

Fig.6. Pitchfork bifurcation of equilibria on the center

manifold at the origin in the Lorenz equations, see eq.(28).

1 y

eM

x

-1

Fig.7. Numerical (= N) and center manifold (= CM) solutions

for the center manifold at the origin in the Lorenz equations

for a = 10, S = 8/3, p = 0.9, E = -0.1, displayed in x-y plane.
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giving

v
to 0 u

- (1+0)2

CENrER MANIFOLDS

2
u

w = 73

49

(30) y
2

(0+1) + to

2(0+1) - to 0

x
_ (0+1)4

z - 2
f3 [(0+1) - to

2
2 x

0]

For 0 = 10, f3 8/3 and to -0.1 this projects onto the x-y plane as the

straight line

(31)

Exercise

y 0.99 ... x

1. This problem concerns the behavior of van der Pol's equation at infinity

[19]. If in van der Pol's equation,

(PI)

we set [27]:

w

(P2) v = w / w and z 1 / w

and reparameterize time with dT = w2 dt, we obtain:

(P3.l)

(P3.2)

v

z 3- v z

where primes now represent derivatives with respect to T.

The equilibrium at infinity, v = z = 0, has eigenvalues zero and -to.

There is a center manifold tangent to the z-axis. Use the program CM to obtain

f O(z12).an approximation or it to Note that unlike the treatment of van der

Pol's equation by Lindstedt's method, we do not assume to is small here.
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NORMAL FORMS

Introduction

Like Lindstedt's method. the method of normal forms is used for

obtaining approximate solutions to ordinary differential equations. In

contrast to Lindstedt's method, however, the method of normal forms does not

involve eXPanding the solution in an infinite series. Rather, the idea is to

transform the differential equations themselves into a form which is easily

solved. The method involves generating a transformation of coordinates (i.e.

dependent variables) in the form of an infinite series, and computing the

coefficients of the series so that the resulting transformed differential

equations are in a normal (i.e., a simple or canonical) form.

The method may be illustrated by considering a system of two

differential equations (although the same process applies to an n dimensional

system) :

(1. I)

(1.2)

x

y'

f(x,y)

g(x,y)

We assume that the coordinates x and y have been chosen so that the

origin x = y = 0 is an equilibrium point:

rand@math.cornell.edu



NORMAL FORMS 51

(2) f(O,O) g(O,O) o

We Taylor expand f and g about the origin,

(3.1)

(3.2)

x

y

a x + b y + F(x,y)

c x + d y + G(x,y)

where F and G are strictly nonlinear (i.e., contain terms of degree 2 and

higher) .

In the case that F and G contain quadratic terms, we transform from x,y

to u,v coordinates via a near-identity transformation with general quadratic

terms:

(4.1)

(4.2)

2 2
x u + A120 u + AlII u v + Al02 v

2 2
y v + A220 u + A211 u v + ~02 v

where the A. are to be determined.
1

We substitute eqs.(4) into eqs.(3) and neglect terms of order 3 (which

do not influence the quadratic coefficients Ai)' The resulting equations are

linear in the derivatives u' and v'. We solve for these and again expand about

u = v = 0, neglecting terms of degree 3 and higher:

(5.1)

(5.2)

u

v

2 2a u + b v + C120 u + Clll u v + C
l02

v

2 2c u + d v + C
220

u + C
2ll

u v + C
202

v

where the coefficients C. are known linear functions of the A.. The linear
1 1

terms in (5) are identical to the linear terms in (3) due to the near-identity
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nature of the transformation (4).

At this point the coefficients Ai are chosen so as to put eqs.(5) into

a normal form. If the equilibrium point is hyperbolic (i.e. if all the

eigenvalues have nonzero real parts), then we can always remove all nonlinear

terms [14,§3.3]. However, in some problems (involving resonances or repeated

zero eigenvalues) this is not possible. In such cases the choice of the normal

form is somewhat arbitrary [11].

Once the coefficients in (4) have been determined, we may extend the

transformation from x,y to u,v coordinates to include cubic terms. (Note that

even if eqs.(3) do not contain cubic terms, the transformation (4) will

generally introduce cubic terms.) Proceeding as before we compute the new

equations on u and v neglecting terms of order 4, and choose the coefficients

of the cubic terms in the near-identity transformation in order to best

simplify the resulting differential equations. Note that the transformation up

to and including cubic terms will not affect the already determined quadratic

terms in the normal form.

Proceeding in this fashion we can (in principle) generate the desired

transformation to any order of accuracy. Note, however, that the use of

truncated power series can be expected to restrict the applicability of the

method to a neighborhood of the origin.
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The Case of a Pair of Imaginary Eigenvalues

As our first example of the method We will consider the system

53

(6.1)

(6.2)

x

y

- y + F(x,y)

x + G(x,y)

where F and G are strictly nonlinear in x,y. The problem here is to determine

the stability of the equilibrium at the origin. Linearization about the origin

is no help, since the origin is a center (cf. Hartman's theorem [14]).

Takens [45] has shown that this important class of systems can be put

in the normal form:

(7.1) 3 5 7r = B1 r + B
2

r + B
3

r + •••

(7.2) S'

where r and S are polar coordinates

(8) u r cos S, v r sin S

and where u,v are related to x,y by a near-identity transformation. In

rectangular coordinates, eqs.(7) become:

(9.1)

(9.2)

u

v

2 2 2 2- v + B1 (u + v ) u - D1 (u + v ) v + 0(5)

2 2 2 2u + B1 (u + v ) v + D1 (u + v ) u + 0(5)
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Comparison of eqs.(9) and (5) shows that all the quadratic terms can be

eliminated in this case. although terms of odd power will in general remain.

We shall present several MACSYMA programs which will be used to treat

this problem [38J. Before presenting a sample run. we discuss a computational

detail. If the original equations are written in the form

(10) x f(x)

where x and f(x) are n-vectors. cf. eqs.(l). then the application of a

near-identity transformation.

(11 ) x =u + g(u)

where u and g(u) are n-vectors. cf. eqs.(4). gives:

(12) (I + Dg) u feu + g(u»

where Dg is the n x n Jacobian matrix. Eq.(12) may be solved for u as

(13) u
-1

(I + Dg) feu + g(u»

Now this matrix inversion may be accomplished approximately by using the

expansion:

(14) (I + Dg)-l 2 3 _1
I - Dg + (Dg) - (Dg) + ••• + (-Dg)

where m is the degree of the highest order terms retained in (13) after

truncation. (The series (14) is truncated at degree m-1 terms since it is

multiplied by f(u+g(u» which begins with linear terms.) We use this scheme in
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the computer algebra program NF which follows. We found it to be faster than

using the MACSYMA SOLVE routine to isolate the derivatives u' in eq.(12).

We return now to eqs.(6) which we write in the truncated form:

2 2 3 2
(15.1) F ~+ F F L+ F x F ~x - y + xy x y + -+xx2 yy2 xxx 6 xxy 2

2 3
F ~+ F L+
xyy 2 yyy 6

2 2 3 2
(15.2) Y x + G ~+G xy+G L+G ~+G ~

xx2 xy yy2 xxx 6 xxy 2

2 3
G ~+G L+

xyy 2 yyy 6

The MACSYMA run which applies normal forms to this system consists of

the functions NF. GEN. DECOMPOSE. HOPF2. HOPF3. and a function used in

Chapter 2. TRANSFORM. We will annotate the run in Italics (to distinguish the

comments from the run itself) and will follow it with the program listings:

NF()$
DO YOU WANT TO ENTER NEW VARIABLE NAMES (YIN)?
y.
HOW MANY EQS
2;
SYMBOL FOR OLD X[ ]
X;
SYMBOL FOR OLD X[ 2 ]
Y;
SYMBOL FOR NEW X[ ]
U;
SYMBOL FOR NEW X[ 2 ]
V;
DO YOU WANT TO ENTER NEW D.E. 'S (YIN)?
Y;
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ENTER RHS OF EQ. NO. 1 .n x IDT =
-Y+FXXI2*X~2+FXY*X*Y+FYY/2*Y~2+FXXXl6*X~3+FXXY/2*X~2*Y+FXYY/2*X*Y~2+FYYY/6*Y~3;

3 2 2 2
fyyy y fxyy x y fyy y fxxy x y

n x IDT = ------- + --------- + ------ + --------- +
622 2

3
fxxx x

fxy x y - y + ---~--­

6

2
fxx x

+ ------
2

ENTER RHS OF £0. NO. 2 .n y IDT =
X+GXXl2*X~2+GXY*X*Y+GYY/2*Y~2+GXXX16*X~3+GXXY/2*X~2*Y+GXYY/2*X*Y~2+GYYY/6*Y~3;

3 2 2 2 3 2
gyyy y gxyy x y .gyy y gxxy x y gxxx x gxx x

n y IDT =------- + --------- + ------ + --------- + gxy x y + ------- + ------
6 2 2 2 6 2

+ x
INPUT NEAR-IDENTITY TRANSFORMATION
(USE PREV FOR PREVIOUS TRANSFORMATION)
x = u + ?

We wish to enter a quadratic near-identity transformation with generaL

coefficients. as in eq.(4). The program GEN is designed to faciLitate this

frequentLy needed step.

GEN(2);
2 2

x=a v +a uv+a u +u
1, [0. 2] 1. [1. 1] 1. [2. 0]

y = v + ?
GEN(2) ;

2 2
y = a v + a u v + v + a u

2. [0. 2] 2. [1, 1] 2. [2. 0]

ENTER TRUNCATION ORDER (HIGHESf ORDER TERMS TO BE KEPT)
2;

du 2
-- = - v - «2a + 2 a - fxx) u
dt 2. [2. 0] 1, [1, 1]

+ (2 a - 4 a + 4 a - 2 fxy) v u
2. [ 1. 1] 1, [2. 0] 1. [0. 2]

2
+ (2 a - 2a - fyy) v )/2 +

2. [0. 2] 1, [ 1. 1]

rand@math.cornell.edu



NORMAL FORMS 57

~ 2
= u - «2 a

dt 2. [1. 1J
- 2 a

1. [2. OJ
- gxx) u

+ (- 4 a
2. [2. OJ

+ (- 2 a
2. [1, 1J

+ 4 a
2. [0. 2J

- 2 a
1, [0. 2J

- 2 a
1. [1, 1J

2
- gyy) v )/2 +

- 2 gxy) v u

00 YOU WANT TO ENTER ANarHER TRANSFORMATION (YIN)
N;

[VAX 8500 TIME = 9 SEC. J

These Last equations correspond to eqs.(5) in our generaL treatment. We must

now isoLate the coeFFicients Ci (see eqs.(5». a FrequentLy needed step which

is FaciLitated by the utiLity program DECOMPOSE. Then we wish to choose the

coeFFicients a. [. kJ so that the transFormed equations are in the normaL
t. J.

Form (9). The program HOPF2 is designed to automate these steps:

HOPF2() ;

2 gyy + gxx + 2 fxy
[[a -------------------

1. [2. OJ 6

a
2. [2. OJ

- 2 gxy + 2 fyy + fxx

6
a

1. [1. 1J

gxy - fyy + fxx

3

a
2. [1. 1J

gyy - gxx + fxy

3
a

1. [0. 2J

- gyy - 2 gxx + 2 fxy

6

2 gxy + fyy + 2 fxx
a = -------------------JJ

2. [0. 2J 6

[VAX 8500 TIME = 6 SEC.J

Having obtained the unknown quadratic coeFFicents a. [. kJ' we return to NF
t. J.

again to check the preceding work and to extend it to cubic terms:
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NF()$
00 YOU WANT TO ENTER NEW VARIABLE NAMES (YIN)?
N;
00 YOU WANT TO ENTER NEW D.E. 'S (YIN)?
N;
INPUT NEAR-IDENTITY TRANSFORMATION
(USE PREY FOR PREVIOUS TRANSFORMATION)
x =u + ?

The resuLts of the previous step (which may be referred to by X) may be

substituted into the previous transformation (caLLed PREY here) as foLLows:

EV(PREV .X);
2

(- gyy - 2 gxx + 2 fxy) v (gxy - fyy + fxx) u v
x =-------------------------- + ---------------------

6 3

2
(2 gyy + gxx + 2 fxy) u

- ------------------------ + U
6

y = v + ?
EV(PREV.X);

2
(2 gxy + fyy + 2 fxx) v (gyy - gxx + fxy) u v

y = ------------------------ - --------------------- + v
6 3

2
(- 2 gxy + 2 fyy + fxx) u

+ --------------------------
6

ENTER TRUNCATION ORDER (HIGHEST ORDER TERMS TO BE KEPT)
2;

du
-- = - v +
dt

dv
-- =u +
dt

This confirms that the routine is working so far. Now we add generaL cubic

terms to the previous transformation:
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00 YOU WANT TO ENTER ANOTHER TRANSFORMATION (YIN)
Y;
INPUT NEAR-IDENTITY TRANSFORMATION
(USE PREV FOR PREVIOUS TRANSFORMATION)
x = u + ?
PREV+GEN(3) ;

2
3 2 (- gyy - 2 gxx + 2 fxy) v

x = a v + a u v + --------------------------
1. [0. 3] 1. [1. 2] 6

2 (gxy - fyy + fxx) u v 3
+ a u v + --------------------- + a u

1. [2. 1] 3 1, [3. 0]

2
(2 gyy + gxx + 2 fxy) u

- ------------------------ + u
6

y =v + ?
PREV+GEN(3) ;

2
3 2 (2 gxy + fyy + 2 fxx) v

y = a v + a u v + ------------------------
2. [0. 3] 2. [1. 2] 6

2 (gyy - gxx + fxy) u v 3
+ a u v - --------------------- + v + a u

2. [2. 1] 3 2. [3. 0]

2
(- 2 gxy + 2 fyy + fxx) u

+ --------------------------
6

ENTER TRUNCATION ORDER (HIGHEST ORDER TERMS TO BE KEPT)
3;

du
-- = - v - (( (fxy + gxx + 2 gyy) fxx - 2 fxy fyy + 2 fxy gxy + 6 a
dt 2. [3. 0]

+ 6 additionat tines omitted here for brevity

dv 2 2
= u + ((gxy fxx + 2 gxy fyy - 2 gxy - 2 gxx fxy - gxx - 2 gyy gxx

dt

+ 7 additionat tines omitted here for brevity

00 YOU WANT TO ENTER ANOTHER TRANSFORMATION (YIN)
N;

[VAX 8500 TIME = 47 SEC.]

59

rand@math.cornell.edu



60 NORMAL FORMS

Next we call HOPF3 which DECOMPOSEs the last equations and selects the cubic

a coefficients such that we obtain the normal form (9). Note that thisi,[j,h.]

involves 6 linear algebraic equations in 8 unknowns and thus the general

solution contains two arbitrary constants. Happily the MACSYMA function SOLVE

automatically does the linear algebra for us, and assigns the arbitrary

constants the values %r1 and %r2:

HOPF3() ;

[[a
1, [3, 0]

2 2
(2 gyy + (gxx + 7 fxy) gyy - 3 gxyy - 2 gxy

2 2
+ (- fyy - 7 fxx) gxy - gxxx + 3 gxx + fxy gxx - fyyy - 3 fyy - fxx fyy

2
+ 2 fxy

2
- 3 fxxy - 2 fxx + 24 %r1)/24, a

2. [3, 0]
= %r2.

+ 13 additional lines giving the other a. [. h.]·s in terms of the given
t. J.

constants of the problem and the two arbitrary constants %r1 and %r2.

[VAX 8500 TIME = 34 SEC.]

Next we substitute these values of the ai,[J.h.]'s into the transformed

differential equations, stored in the variable NEWDES by the program NF:

EXPAND(EV(NEWDES, %» ;

2 3 3 3 3 2 3
du gyy v 5 gxx gyy v 5 fxy gyy v gxyy v gxy v

[-- ------- + ------------ - ------------ - ------- + -------
dt 24 48 48 16 24

+ 48 additional terms, none of which contain either of the arbitrary

constants %r1 or %r2

3 3 3 3 3 3
dv gyyy v gxy gyy v fyy gyy v gxx gxy v gxxy v fxx gxx v

------- - ---------- + ---------- - ---------- + ------- - ----------
dt 16 16 16 16 16 16

+ 47 additional terms with no %r1 or %r2 dependence.

[VAX 8500 TIME = 14 SEC.]
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Note that aLthough the transformation to normal form is not unique (since %rl

and %r2 are arbitrary), the normaL form itseLf does not depend on %rl or %r2.

Next we use the function TRANSFORM given in Chapter 2 to convert the

transformed differentiaL equations to the poLar form (7):

TRANSFORM ( );
Enter number of equations
2;
Enter symbol for original variable
U;
Enter symbol for original variable 2
V;
Enter symbol for transformed variable
R;
Enter symbol for transformed variable 2
THETA;
The RHS's of the d.e. 's are functions of the original variables:
Enter RHS of u d.e.
d u /dt =

We specify the previously obtained differentiaL equations by using the MACSYMA

symboL % :

RHS(PART(%,l»;
Enter RHS of v d.e.
d v /dt =
RHS(PART(%, 2» ;
The transformation is entered next:
Enter u as a function of the new variables
u =
R*CDS(THETA) ;
u = r cos(theta)
Enter v as a function of the new variables
v =
R*SIN(THETA) ;
v = r sin(theta)

dr
[[-- «gyyy + (fyy - gxy) gyy - gxx gxy + gxxy - fxx gxx + fxy fyy

dt

3 2
+ fxyy + fxx fxy + fxxx) r sin (theta)

+ (gyyy + (fyy - gxy) gyy - gxx gxy + gxxy - fxx gxx + fxy fyy + fxyy

3 2
+ fxx fxy + fxxx) r cos (theta»/16,
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dtheta

dt

NORMAL FORMS

2 2
((2 gyy + (5 gxx - 5 fxy) gyy - 3 gxyy + 2 gxy

+ 5 additional lines omitted for brevity.

[VAX 8500 TIME = 21 SEC.]

This polar form can be simplified by using the HACSYMA f~ction TRIGSIMP:

TRIGSIMP(%);

dr
[[-- = (gyyy + (fyy - gxy) gyy - gxx gxy + gxxy - fxx gxx + fxy fyy

dt

3 dtheta
+ fxyy + fxx fxy + fxxx) r 116. ------ ­

dt

2 2
- ((2 gyy + (5 gxx - 5 fxy) gyy - 3 gxyy + 2 gxy + (- fyy - 5 fxx) gxy

222
- 3 gxxx + 5 gxx - fxy gxx + 3 fyyy + 5 fyy + 5 fxx fyy + 2 fxy + 3 fxxy

2 2
+ 2 fxx ) r - 48)/48]]

[VAX 8500 TIME = 24 SEC.]

Here is the program listing:

1* THIS FILE (X)NTAINS NF(). A NORMAL FORM lITILlTY FUNCTION.

IT ALSO (X)NTAINS THESE ADDITIONAL FUNCTIONS:

GEN(N) WILL GENERATE A HOMOGENEOUS ORDER N TRANSFORMATION.

DE(x)MPOSE(} ISOLATES THE (X)EFFICIENTS OF THE NEW EQUATIONS.

VARS(N) GENERATES A LIST OF UNKNOWN (X)EFFICIENTS OF DEGREE N.

HOPFk(). FOR k=2.3.4.5.6.7 SOLVES FOR THE (X)EFFICIENTS OF A SYSTEM OF

2 DE' S SO AS TO PlIT THE EQS IN HOPF NORMAL FORM *1
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NF(): = BLOCK(

1* NEW VARIABLE NAMES? *1

TEST : READ ("00 YOU WANT TO ENTER NEW VARIABLE NAMES (YIN)?").

IF TEST = N THEN GO{JUMP).

N : READ ("HOW MANY EOO").

FOR I THRU N 00 (X[I] READ ("SYMBOL FOR OLD X[". I. "]"».

FOR I THRU N OO( Y[I] READ ("SYMBOL FOR NEW X[".I."]"».

FOR I THRU N 00 DEPENDS([X[I].Y[I]].T).

KILL(FLAG). 1* FLAG USED IN GEN *1

JUMP.

1* NEW D.E. 'S? *1

PRINT ("00 YOU WANT TO ENTER NEW D.E.·S (YIN)?").

TEST: READ( ) •

IF TEST = N THEN GO(LooP).

FOR I THRU N 00

(RHS[I]:READ("ENTER RHS OF EQ. NO .... I .... D... X[I] .../DT =").

PRINT("D".X[I]."/DT =".RHS[I]».

KILL{RHS2) .

RHS2[I.J] := RHS[I].

RHS3:GENMATRIX(RHS2.N.l).

LOOP.

1* NEAR-IDENTITY TRANSFORMATION *1

PRINT("INPUT NEAR-IDENTITY TRANSFORMATION

(USE PREV FOR PREVIOUS TRANSFORMATION)").

FOR I THRU N 00

(ROW: I.

PREV :TR[I].

63

rand@math.cornell.edu



64 NORMAL FORMS

TR[I] :READ (X[I],"=",Y[I],"+ ?"),

PRINT (X[I],"=",Y[I]+TR[I]»,

1* INPUT TRUNCATION ORDER *1

TRANS : MAKELIST (X[I]=Y[I]+TR[I],I,l,N),

M : READ("ENTER TRUNCATION ORDER (HIGHEST ORDER TERMS TO BE KEPT)"),

1* TRANSFORM THE D. E. 's *1

TEMP2 :EV(RHS3. TRANS).

1* SOLVE FOR THE TRANSFORMED DERIVATIVES *1

KILL(JAroB).

JAroB[I,J]:=DIFF(TR[I].Y[J]),

JAroB2:GENMATRIX(JAroB.N,N).

TEMP3:SUM«-1)~I*JAroB2~~I,I.0.M-l).TEMP2.

1* TAYLOR EXPAND THE RESULTING EQS *1

NEWRHS : TAYLOR(TEMP3.MAKELIST(Y[I];I,l.N),O.M).

NEWDES:MAKELIST(DIFF(Y[I].T)=NEWRHS[I.l],I,l.N),

FOR I =1 THRU N DO

PRINT(PART(NEWDES.I».

1* ENTER ANOTHER TRANSFORMATION? *1

BRANCH:READ("OO YOU WANT TO ENTER ANOTHER TRANSFORMATION (YIN)").

IF BRANCH = Y THEN GO(LOOP),

NEWDES) $

1* AUXILIARY FUNCfIONS *1

GEN(NN) :=(

IF NOT NUMBERP(FLAG[NNJ) THEN (

SuB:MAKELIST(K[I].I,l,N),

VAR:PRODUCf(Y[I]AK[I],I,l,N).

TEMPGEN:A[ROWDUMMY,SUB]*VAR.

FOR I: 1 THRU N DO
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TEMPGEN:SUM(EV(TEMPGEN.K[I]=J).J.O.NN).

TEMPGEN2:LAST(TAYLOR(TEMPGEN.MAKELIST(Y[I].I.I.N).O.NN».

TEMPGEN3[NN] :EXPAND(TEMPGEN2).

FLAG[NN] : I).

EV(TEMPGEN3[NN]. ROWDUMMY=ROW» $

DE<X>MPOSE( ) :=(

KILL(C) .

IF NOT NUMBERP(FLAG[M]) THEN GEN(M).

TEMP8:SUBSf( .. [ .....+... TEMPGEN3[M]).

TERMS:EV(TEMPS.A[DUMMY.SUB]:=I).

<X>EFFS:EV(TEMP8.A[DUMMY.SUB]:=e[DUMMY.SUB].MAKELIST(Y[I]=I.I.I.N».

FOR I: I THRU N OO(

FOR J: I THRU LENGrH(TERMS) OO(

EV(PART(<X>EFFS. J) .ROWDUMMY=I) : :

RAT<X>EF(EXPAND(NEWRHS[I.I]).PART(TERMS.J»»)$

VARS(NN): =(

TEMP5:SUM(EV(TEMPGEN3[NN]) .ROWDUMMY .I.N).

TEMP6:SUBSf("[". "+". TEMP5).

TEMP7:EV(TEMP6.MAKELIST(Y[I]=I.I.I.N»)$

HOPF2():=(DE<X>MPOSE().

SOLVE([C[I.[2.0]].C[I.[I.I]].C[I.[O.2]].C[2.[2.0]].

C[2.[I.I]].C[2.[O.2]]].

VARS(2»)$
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HOPF3(): =(DE(x)MPOSE().

SOLVE([C[1.[3.0]]=C[1.[1.2]].C[1.[3.0]]=C[2.[2.1]].

C[1.[3.0]]=C[2.[O.3]].C[1.[O.3]]=C[1.[2.1]].

C[1.[O.3]]=-C[2.[3.0]].C[1.[O.3]]=-C[2.[1.2]]].

VARS(3»)$

HOPF4(): =(DE(x)MPOSE( ).

SOLVE([C[1.[4.0]].C[1.[3.1]].C[1.[2.2]].C[1.[1.3]].

C[1.[O.4]].C[2.[4.0]].C[2.[3.1]].C[2.[2.2]].

C[2.[1.3]].C[2.[O.4]]].

VARS(4»)$

HOPF5():=(DEroMPOSE().

SOLVE([C[1.[5.0]]=C[1.[3.2]]/2.C[1.[5.0]]=C[1.[1.4]].

C[1.[5.0]]=C[2.[4.1]].C[1.[5.0]]=C[2.[2.3]]/2.

C[1.[5.0]]=C[2.[O.5]].C[2.[5.0]]=C[2.[3.2]]/2.

C[2.[5.0]]=C[2.[1.4]].C[2.[5.0]]=-C[1.[4.1]].

C[2.[5.0]]=-C[1.[2.3]]/2.C[2.[5.0]]=-C[1.[O.5]]].

VARS(5»)$

HOPF6():=(DE(X)MPOSE().

SOLVE([C[1.[6.0]].C[1.[5.1]].C[1.[4.2]].C[1.[3.3]].

C[1.[2.4]].C[1.[1.5]].C[1.[O.6]].C[2.[6.0]].

C[2.[5.1]].C[2.[4.2]].C[2.[3.3]].C[2.[2.4]].

C[2.[1.5]].C[2.[O.6]]].

VARS(6»)$
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HOPF7(): =(OECOMPOSE( ).

SOLVE([C[1.[7.0]]=C[1.[5.2]]/3.C[1.[7.0]]=C[1.[3.4]]/3.

C[1.[7.0]]=C[1.[1.6]].C[1.[7.0]]=C[2.[6.l]].

C[1.[7.0]]=C[2.[4.3]]/3.C[1.[7.0]]=C[2.[2.5]]/3.

C[1.[7.0]]=C[2.[O.7]].C[2.[7.0]]=C[2.[5.2]]/3.

C[2.[7.0]]=C[2.[3.4]]/3.C[2.[7.0]]=C[2.[1.6]].

C[2.[7.0]]=-C[1.[6.l]].C[2.[7.0]]=-C[1.[4.3]]/3.

C[2,[7.0]]=-C[1.[2.5]]/3.C[2.[7.0]]=-C[1.[0.7]]].

VARS(7»)$

Thus we have shown that the problem specified by eqs.(15) can be

transformed to the normal form:

67

(16)

where

S' + 0 r 2 + •••
1

( 17) 16 Bl = G + G + F + F + F G - F G
yyy xxy xyy xxx yyyy xxxx

-G G -G G +F F +F Fxx xy yy xy xx xy yy xy

and where 01 is known.

The significance of this calculation is now clear: The stability of

the origin is given by the sign of Bl . From (16). Bl > 0 (respectively < 0)

makes the origin r = 0 unstable (respectively stable).

Note that this problem could not have been handled by Lindstedt's

method. which gives no information regarding stability.

As an application of these results. we may now resolve an unfinished

question raised in connection with eqs.(l)-(ll) in Chapter 2. We showed there

that the stability of the origin in the system:
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(18. I) x' = y

NORMAL FORMS

(18.2)

(18.3)

y

z

- x - x z

2
- z + a x

could be reduced via center manifold theory to the simpler question of the

stability of the origin in the system:

(19.1) x' = y

(19.2) y'
3 3 2 2 2 2

-x-Sax +Sax y-saxy +

This system will be in the form of eqs.(6) if we interchange x and y.

Computation of the quantity BI of eq.(17) gives:

(20)

Thus the origin in the center manifold flow (19). and hence in the

original three-dimensional flow (18). is stable if a < 0 and unstable if a > O.

See Fig.8 where this behavior is confirmed by numerical integration of the

system (18).
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2 Y

a. 0.1

69

-2

B

-2

2 Y

2
x

-2

-2

a. = -0.1

2
x

Fig.S. Numerical solutions of the system (18) displayed

in the x-y plane for a. = 0.1 and -0.1. In both cases,

A corresponds to the initial condition t=O,x=l,y=O,z=O,

while B corresponrls to the system at time t=50.
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Before leaving the system (6), we note that by including damping in (6)

we may use normal forms to study the Hopf bifurcation. The system

(21.1)

(21.2)

x

y

- y + ~ x + F(x,y)

x + ~ y + G(x,y)

is best studied by embedding it in a three-dimensional system with variables

x,y and~, i.e., by appending to it the dummy equation:

(21.3) ~' o

This approach permits the ~ x and ~ y terms to be considered as

nonlinear in the neighborhood of the origin x =y =~ =O.

By applying normal forms to this system, we obtain the polar result:

(22) r' = ~ r + B
1

r 3 + ••• ,S' 1 + •••

where B
1

is given by (17), The r equation has an equilibrium at

(23) r

this being the radius of the limit cycle. Note that this result agrees with

that derived by Lindstedt's method in Chapter 1, eqs.(26),(27).

Having derived this result by both Lindstedt's method and normal forms,

a comparison between the two methods can be made, Most significant is that

normal forms provides a dynamic on the process (eq.(22», while Lindstedt's

method offers only the limit cycle radius. Moreover, Lindstedt's method

requires the inclusion of a small perturbation parameter ~ in the equations,
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while normal forms does not. On the other hand, all results of the method of

normal forms are restricted to a neighborhood of the origin, while Lindstedt's

method (which is valid in the neighborhood of the Hamitonian system

corresponding to ~ = 0) can be used to approximate limit cycles with large

amplitude, i.e. which do not necessarily lie in a neighborhood of the origin.

(See, however, Exercise I.)

The Case of a Double Zero Eigenvalue

In order to motivate our next example of the method of normal forms, we

will investigate the behavior of van der Pol's equation at infinity [19],[39].

If in van der Pol's equation,

(24)

we set [27]:

w 2
+ w - ~ (1 - w ) w o

(25) x w / w and z 1 / w'

and reparameterize time with dT w,2 dt, we obtain:

(26.1)

(26.2)

x

z

2 2 3z (1 + x - ~ x) + ~ x

322x z + ~ z (x - z )

where primes now represent derivatives with respect to T.

As w' ~ 00 , z ~ 0, from (25). Moreover x is constant along a radial

line in the w,w' plane. Thus as we move outward to infinity along such a line,

z approaches 0, and we may think of z = 0 as the "line at infinity"
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parameterized by x. Note that z 0 satisfies eq.(26.2). and thus is an

integral curve for this system.

Substituting i = 0 irito (26.1) shows that x = z = 0 is an equilibrium

at infinity for the system (26). We are interested in the nature of the local

behavior in the neighborhood of this point.

Note that the system (26) has no linear part. In order to simplify the

analysis. we set

(27) 2y z

whereupon (26) becomes:

(2B.l) 3 2x' =y - e x y + e x + x Y

(2B.2) y 222- 2 e y + 2 x y + 2 e x y

The problem here is to determine the stability of the equilibrium at

the origin in eqs.(2B). Note that linearization about the origin is no help

since (2B) has a double zero eigenvalue at the origin (cf. Hartman's theorem.

[14]).

System (2B) is a particular case of the system:

(29.1)

(29.2)

x

y

y + F(x.y)

G(x.y)

where F and G are strictly nonlinear in x.y. Takerts [45] has shown that this

class of systems can be put in the normal form:
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(30.1)

(30.2) v

where u and v are related to x and y by a near-identity transformation.

We note that Bogdanov [5] and Guckenheimer and Holmes [14] have chosen

the alternate normal form for this problem:

(31. 1)

(31. 2)

u' V

which is obtainable from (30) via the near-identity transformation:

(32)

(33.1)

u = U and v = V - 2 bn un
n=2

We write eqs.(29) in the truncated form:

2 2 3 2
x =y+F ~+F xy+F L+F ~+F ~xx2 xy yy2 xxx 6 xxy 2

2 3
+F ~+F L+

xyy 2 yyy 6

(33.2) y
2 2 3 2

G x
2

+G xy+G L+G ~+G ~
xx xy yy2 xxx 6 xxy 2

2 3
+G ~+G L+

xyy 2 yyy 6
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The following MACSYMA run applies our normal form utilities to this

problem. Our goal is to choose a near-identity transformation which puts the

system {33} into the normal form {30}:

NF{}$
00 YOU WANT TO ENTER NEW VARIABLE NAMES {YIN}?
Y;
HOW MANY EQS
2;
SYMBOL FOR OLD X[ ]
X;
SYMBOL FOR OLD X[ 2 ]
Y;
SYMBOL FOR NEW X[ ]
U;
SYMBOL FOR NEW X[ 2 ]
V;
00 YOU WANT TO ENTER NEW D.E.·S {YIN}?
Y;
ENTER RHS OF EQ. NO. 1 .D x IUf =
Y+FXX*XA2I2+FXY*X*Y+FYY*YA2I2+FXXX*XA3/6+FXXY*XA2*Y/2+FXYY*X*YA2I2+FYYY*YA316;

3 2 2 2
fyyy y fxyy x y fyy y fxxy x y

D x IUf = ------- + --------- + ------ + --------- +
622 2

3
fxxx x

fxy x y + y + ------­
6

2
fxx x

+ ------
2

2

ENTER RHS OF EQ. NO. 2 .D y IUf =
GXX*XA2I2+GXY*X*Y+GYY*YA2I2+GXXX*XA3/6+GXXY*XA2*Y/2+GXYY*X*YA2/2+GYYY*YA3/6;

3 2 2 2 3 2
gyyy y gxyy x y gyy y gxxy x y , gxxx x gxx x

D y IUf =------- + --------- + ------ + --------- + gxy x y + ------- +
62226

INPUT NEAR-IDENTITY TRANSFORMATION
{USE PREV FOR PREVIOUS TRANSFORMATION}
x = u + ?

As in the previous run. the utility program GEN is used to generate a quadratic

near-identity transformation with general coefficients:
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GEN(2) ;
2

x=a v +a
1. [0. 2] 1. [I, 1]

u v + a
I, [2, 0]

2
u + u

y = v + ?
GEN(2) ;

2 2
y = a v + a u v + v + a u

2, [0, 2] 2, [ I, 1] 2. [2, 0]

ENTER TRUNCATION ORDER (HIGHFSf ORDER TERMS TO BE KEPT)
2;

du

dt
=v +

2
«2 a + fxx) u +

2, [2, 0]
(2 a

2, [1. 1]
- 4 a + 2 fxy)

1. [2, 0]
v u

+ (2 a
2, [0. 2]

- 2 a
I, [1. 1]

2
+ fyy) v )/2 +

2 2
gxx u + (- 4 a + 2 gxy) v u + (- 2 a + gyy) v

dv 2, [2. 0] 2. [I, 1]
= ----------------------------------------------------------------- +

dt 2

00 YOU WANT TO ENTER ANOTHER TRANSFORMATION (YIN)
N;

[VAX 8500 TIME 11 SEC.]

Now we use the utility program DECOMPOSE to isolate the coefficients in the

transformed equations. Ci'[j,k] is the coefficient of uju
k

in the i
th

equation:

DECOMPOSE( )$

[VAX 8500 TIME = 4 SEC.]

We use the MACSYMA function SOLVE to eliminate the uu and u2 terms in both

equations by appropriately choosing the 6 constants ai'[j,k]' The utility

program VARS is used to generate a list of the unknowns ai'[j.k]' Since there

are 4 algebraic equations in 6 unknowns, MACSYMA returns the general solution

in terms of 2 arbitrary constants %rl and %r2:
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SOLVE([C[I.[I.I]].C[I.[0.2]].C[2.[I.I]].C[2.[0.2]]].VARS(2»;

gyy + 2 fxy gxy fyy + 2 %rl
[[a - ----------- a a = -----------

1. [2. 0] 4 2. [2. 0] 2 1. [1. 1] 2

gyy
a a =%r2. a =%rl]]

2, [1. 1] 2 1. [0, 2] 2, [0, 2]

[VAX 8500 TIME = 1 SEC.]

Next we substitute these values into the transformation by again calling NF.

We refer to the previous transformation as PREV, and the ai'[j,k] values as %

NF()$
00 YOU WANT TO ENTER NEW VARIABLE NAMES (YIN)?
N;
00 YOU WANT TO ENTER NEW D.E. 'S (YIN)?
N;
INPUT NEAR-IDENTITY TRANSFORMATION
(USE PREY FOR PREVIOUS TRANSFORMATION)
x = u + ?
EV(PREV,%);

2
2 (fyy + 2 %rl) u v (gyy + 2 fxy) u

x =%r2 v + ----------------- + ---------------- + U
2 4

y = v + ?
EV(PREV,%);

2
2 gyyuv gxyu

y =%rl v + ------- + v + ------
2 2

ENTER TRUNCATION ORDER (HIGHESf ORDER TERMS TO BE KEPT)
2;

2
du (gxy + fxx) u
-- = v + -------------- +
dt 2

2
dv gxx u
-- = ------ +
dt 2

Note that the transformed equations do not depend upon the arbitrary constants

%rl, %r2. Having accomplished the normal form computation up to quadratic

terms, we continue the process in order to include cubic terms:
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00 YOU WANT TO ENTER ANOTHER TRANSFORMATION (YIN)
Y;
INPUT NEAR-IDENTITY TRANSFORMATION
(USE PREY FOR PREVIOUS TRANSFORMATION)
x = u + ?
PREV+GEN(3) ;

77

x = a
1. [0. 3J

3
v + a

1. [1. 2J

2 2
u v + %r2 v + a

1. [2. 1J

2
u v

2

y = v + ?
PREV+GEN (3) ;

(fyy + 2 %r1) u v
+ ----------------- + a

2 1. [3. OJ

3 (gyy+2fxy)u
u + ---------------- + u

4

322
y = a v + a u v + %r1 v + a

2. [0. 3J 2. [1. 2J 2,

2 gyyuv
u v + ------- + v

[2. 1] 2

2
3 gxy u

+ a u + ------
2. [3. OJ 2

ENTER TRUNCATION ORDER (HIGHEST ORDER TERMS TO BE KEPT)
3;

2
du (gxy + fxx) u

= v + -------------- - «3 gyy gxy - 12 a + 6 gxx %r1 + 3 gxx fyy
dt 2 2. [3. OJ

3
- 2 fxxx) u + «6 %r1 - 3 fyy) gxy - 9 fxy gyy - 12 a - 6 fxx %rl

2. [2. 1J

2
- 6 fxy + 36 a

1. [3. OJ

2
- 3 fxx fyy + 12 gxx %r2 - 6 fxxy) v u

+ (- 6 fyy gyy - 24 fxy %r1 - 12 a
2. [1. 2J

- 6 fyy fxy + 24 a
1. [2. 1J

2
- 12 fxx %r2 - 6 fxyy) v u + (- 12 fyy %r1 - 12 a - 12 %r2 fxy

2. [0. 3]

+ 12 a
1. [1. 2J

3
- 2 fyyy) v )/12 +
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2
dv gxx u

NORMAL FORMS

3
-- =------ - «6 fxx gxy - 6 gxx fxy - 2 gxxx) u
dt 2

+ {(- 12 gyy - 6 fxy) gxy + 36 a + 3 fxx gyy - 6 gxx fyy - 6 gxxy) v
2. [3. 0]

2 2
u + «- 24 %r1 - 6 fyy) gxy - 6 gyy ~ 24 a - 12 gxx %r2 - 6 gxyy)

2. [2. 1]

2 3
v u + (- 12 %r2 gxy - 12 %r1 gyy + 12 a - 2 gyyy) v )/12 +

2. [1, 2]

DO YOU WANT TO ENTER ANOTHER TRANSFORMATION (YIN)
N;

[VAX 8500 TIME = 38 SEC.]

DECOMPOSE ( )$

[VAX 8500 TIME = 17 SEC.]

Once again we use DECOMPOSE and SOLVE to obtain the ai'[j.R]·s. The general

solution again involves two arbitrary constants. %r3 and %r4:

SOLVE([C[1.[2.1]].C[1.[1.2]].C[1.[0.3]].C[2.[2.1]].C[2.[1.2]].C[2.[0.3]]].
VARS(3»;

2
[[a (gyy + 3 fxy gyy + gxyy + (2 fyy + 2 %r1) gxy - 2 %r2 gxx

1. [3. 0]

2
+ fxx fyy + 2 fxy + 2 fxxy + 2 %r1 fxx)/12.

a
2. [3. 0]

(4 gxy - fxx) gyy + 2 fxy gxy + 2 gxxy + 2 fyy gxx

12

a = (gyyy + (3 fyy + 6 %ri) gyy + 6 %r2 gxy + 3 fxy fyy + 3 fxyy
1. [2. 1]

+ 12 %r1 fxy + 6 %r2 fxx)/12. a
2. [2. 1]

2
gyy + gxyy + (fyy + 4 %r1) gxy + 2 %r2 gxx

4
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a
1. [1. 2]

fyyy + 6 %rl fyy + 6 %r2 fxy + 6 %r3

6

a
2. [1. 2]

gyyy + 6 %rl gyy + 6 %r2 gxy

6
a = %r4.

1. [0. 3]
a = %r3]]

2. [0. 3]

[VAX 8500 TIME 4 SEC.]

We terminate the caLcuLation by substituting these vaLues into the transformed

differentiaL equations. which are stored in the variabLe NEWDES by NF:

EXPAND(EV(NEWDES.%));

3 3 3 3 3
du gxy gyy u fxx gyy u fxy gxy u gxxy u fyy gxx u

[-- v + ---------- - ---------- + ---------- + ------- - ----------
dt 12 12 6 6 12

3 3 2 2
%rl gxx u fxxx u gxy u fxx u

- ---------- + + ------ +
2 6 2 2

3 3 3 2
dv fxx gxy u gxxx u fxy gxx u gxx u

---------- + ------- + ---------- + ------]
dt 2 6 2 2

[VAX 8500 TIME 2 SEC.]

Note that this time the normal form does depend upon the arbitrary

constant %rl. In the case that the coeffcient gxx is not zero. %rl can be

selected so as to eliminate the u3 term in the u' equation.

Let us apply the foregoing results to eqs.(28) which represent van der

Pol's equation at infinity. In this case

F O. F = -to F = O. F 6t. F 2. F O. F = O.xx xy yy xxx xxy xyy yyy

(34)

G O. G O. G = -4t. G O. G 4t. G 4. G O.xx xy yy xxx xxy xyy yyy
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When these values are substituted into the results of our computer

algebra work. we find:

(35.1)

(35.2)

Determinacy

u' = v + ~ e u
3

+ 0(4)

v' =0 + 0(4)

Now the question is. have we taken enough terms of the series to

correctly describe the behavior in the neightborhood of the equilibrium point?

A truncated system is said to be determined if the inclusion of any higher

order terms cannot effect the topological nature of the local behavior about

the singularity. For systems of the form (30). Takens [45] has shown that if

the coefficient a2 does not vanish. then the flow of the system (30) is

topologically equivalent to the flow of the simplified system

(36.1)

(36.2)

u' = v

V
• 2= a2 u

This result is inapplicable to eqs.(35). however. since a2 = 0 there.

Takens' determinacy result (36) was extended by Rand &Keith [38] who

used MACSYMA to perform a series of "blow-up" transformations necessary to draw

the following conclusions:

Let a be the first nonzero coefficient in eq.(30.2). The determinacy
n

results fall into two cases. depending upon whether n is even or odd:
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n even: If all the coefficients bi in eq.(30.l) are zero for

< (n+2)12.

81

(37)

then in some neighborhood of the origin. the flow given by eqs.(30) is

topologically equivalent to the flow given by the simplified system:

(38.1 )

(38.2)

u

v'

v

n
a u

n

This result is a natural extension of Takens' result (36). The case where n is

odd is somewhat different. however:

n odd: If all the coefficients bi in eq.(30.l) are zero for

i < (n+l)l2.

(39) ••• = b(n-l)/2 O.

and if. in addition.

(40)
2

4 a + n+l b > 0
n 2 n+l

2

then in some neighborhood of the origin. the flow given by eqs.(30) is

topologically equivalent to the flow given by the simplified system:

(41.1)

(41.2)

n+l

b 2
u v + n+l u

2

n
v a un
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In order to apply these results to eqs.(2S). we must extend the

computer algebra treatment beyond eqs.(35) to include terms of higher order.

until the first a coefficient is nonzero. We omit the MACSYMA run since the
n

procedure is to use the functions NF. DECOMPOSE. and SOLVE just as in the

previous run. The results are as follows:

If in eqs.(2S) we perform the near-identity transformation

(42.1)

(42.2)

3 2 4+15c2 3 70c+l05c3 4 88+1OS6c2+945c4 5
x = u - 2' c u + -6-- u - 24 u + 120 u

we obtain the normal form:

(43.1)

(43.2) v' 2 5- 2 c u + 0(6)

2Eqs.(43) are of the form (30) with a5 = -2c and b3 =5c/3. For these

values. n = 5 is odd and eq.(40) is satisfied:

(44).

and so we may conclude that in the neighborhood of the origin. the flow of (43)

is topologically eqUivalent to the flow of the simplified system:
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u

v

NORMAL FORMS 83

wi th dT

gives:

Eqs.(45) may be simplified by setting q =u3 and reparameterizing time

2= u dT (recall T was defined in connection with eqs.(26». This

(46.1)

(46.2)

q'

v

5 f. q + 3 v

where primes represent differentiation with respect to T. This linear system

has eigenvalues 2f. and 3f., and thus is an unstable node for f. > a (and a stable

node for f. < 0). In view of the preceding results on determinacy, we may

conclude that eqs.(28) are also unstable for f. > a (and stable for f. < 0). See

Fig.9 where this behavior is confirmed by numerical integration of eqs.(28).

Note that it is sufficient to show that eqs.(28) are unstable for f. > 0 since

these equations are unchanged when f., t and x are respectively replaced by -f.,

-t and -x, and thus an unstable equilibrium point becomes stable when f. changes

sign.
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0.1 y

x
1-1

-0.1

Fig.9. Numerical solution of eqs.(28) for € 0.1.
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1. We have pointed out that the method of normal forms is valid locally in the

neighborhood of the equilibrium point. Thus it is not directly applicable to

finding the limit cycle in van der Pol's equation,

(PI) w" + W + to (w2 -1) w' = 0

since we have seen that Lindstedt's method gave the approximate amplitude of

the limit cycle for small to to be 2.

Nevertheless, normal forms can be used to investigate eq.(P1) by using

the singular transformation

(P2) xw
..re

which gives

(P3) + x - to x' + x2 x' 0x

which may be written in the form

(P4.1)

(P4.2)

x

y'

y

2- x + to Y - X Y

The system (P4) exhibits a Hopf bifurcation at the origin when to = O.

Show that the linear part of eqs.(P4) may be put in the canonical form

(P5.1)

(P5.2)

u

v
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by the transformation (see Chapter I, eq.(29»

(P6.I)

(P6.2)

where fl ;: JI _ :2

x ;: U

(P7)

Then show that by adding to eqs.(P5) the equation

e ;: 0

a normal forms transformation gives the polar form:

(PS.I)

(P8.2) !)' ;: fl + •••

Note that eq.(P8.1) yields the approximate amplitude of the limit cycle

for small e to be 2 vr, which agrees with Lindstedt's method in view of (P2).

2. Show that the following system of two coupled van der Pol oscillators can be

treated by the method of normal forms:

(P9.1)

(P9.2)
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Begin. as in the previous problem. by setting

87

(PlO) W.
1

Then set Yi = xi to obtain a first order system. Following eqs.(P6). set

(Pll )

Now use the method of normal forms to show that the near-identity

transformation

(P12.l)
A~ B ~

u l f l + '4 Eo f l + '4 Eo f 2
+ •••

(P12.2)
A ~ B ~

vI = 1)1 - '4 Eo 1)1 - '4 Eo 1)2 + •••

(P12.3)
D ~ C ~

u2 f 2 + '4 Eo f 2 + '4 Eo f l +

(P12.4)
D~ C~

+ ...v2 1)2 - '4 Eo 1)2 - '4 Eo 1)1

(P12.5) Eo Eo

gives. in polar coordinates defined by f
i

the approximate system:
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(P13.1)

(P13.2)

NORMAL FORMS

(P13.3)

(P13.4)

9 .
1

9 .
2

Ae Be r 2- - - - - cos(9 -9 ) + •••2 2 r 1 2 1

Dc Cc r 1- - - - - cos(9 -9 ) + •••2 2 r 2 1 2

In deriving eqs.(P13). work to order 3 but neglect terms of O(e2 ). Eqs.(P13)

were originally derived by the two variable expansion method [37] and have been

studied in [9].[10].
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CHAPTER 4

THE TWO VARIABLE EXPANSION METHOD

Introduction

The two variable expansion method [20J, also known as the method of

multiple scales [32J, is an extension of Lindstedt's method. While Lindstedt's

method is useful for approximating periodic solutions of o.d.e. 's, it offers no

information about the stability of the solutions. The two variable method is

used to construct an approximate general solution to a system of o.d.e. 's. It

can be used to obtain the behavior of the system in the neighborhood of a limit

cycle or an equilibrium point.

In order to fix our ideas, let us again think in terms of van der Pol's

equation as an example:

(I)

The method is based on the idea that the approach to a limit cycle

occurs on a slower time scale than the time scale of the limit cycle itself.

For example, if the motion around the limit cycle has frequency of order unity,

then the approach to the limit cycle may occur on a time scale of ct. In

particular, this is the case for Hopf bifurcations and perturbations off of

Hamiltonian systems. Algebraically this means that those terms in the solution

which represent the approach to steady state involve an explicit dependence on
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time t in the form ct. The method utilizes this dependence by assuming that

the solution is explicitly a function of two time variables, which we shall

call f and~. Here f will represent ordinary time t and ~ will represent slow

time ct:

(2) t,

The method assumes that the solution x explicitly depends upon both

time variables:

(3)

(4)

(5)

Substitution of (3) into (1) requires the use of the chain rule:

dx ax~ ax~ ax ax
dt = af dt + a~ dt = af + c ~

In addition to the change of independent variables given by (4) and

(5), we expand x in a power series in c:

(6)

We note at this point that we will use this method only up to terms of

order c. Although the method can in principle be extended to arbitrary order

in c, we have found that its use beyond the lowest order terms in c is awkward.

If one wanted to apply the method to higher order terms, then additional

dependence on time could be built into the method by either taking new

independent variables such as c2 t, c3 t .... , or by stretching f or ~' e.g.,
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2= (1 + w1e + w2e + ••• ) t. See [32],[20].

Substituting (4)-(6) into van der Pol's eq.(l)

91

and collecting terms, we

obtain:

(7)

(8)

2axO 2 axO- 2 -- + (1 - x )-
aEan 0 aE

Eq.(7) is a partial differential equation. Its general solution

involves two arbitrary functions of n:

(9) xo = A(n) cos E + B(n) sin E

Substituting (9) into (8) and simplifying the trig terms gives:

(10)

A2 2. B2 2
+ 4 (A - 3B ) Sln 3E + 4 (B - 3A ) cos 3E

where primes represent differentiation with respect to n.

Elimination of secular terms in (10) is accomplished by requiring the

coefficients of cos Eand sin E to vanish. This gives a pair of coupled

differential equations on A(n) and B(n) called the slow flow equations:
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(11.1)

(11. 2)

(12)

TWO VARIABLE EXPANSION METHOD

Eqs.(ll) are most easily treated by transforming to polar coordinates.

A =R cos 9. B =R sin 9

whereupon we obtain:

(13.1)

(13.2)

(14)

R R
3

R' = 2' - 8

9' = 0

Now eq.(13.l) is a separable first order o.d.e. It is easily solved:

2 R(O) eTJ/ 2

J (eTJ - 1) R(O)2 + 4

This eq. has the property that as TJ ~ 00. R ~ 2. the limit cycle amplitude. As

1) ~ -00. R ~ 0 if R(O) < 2. so that if we run time backwards. all points inside

the limit cycle approach the equilibrium at the origin. If R(O) > 2. however.

the denominator has a zero at 1) = log[l - 4IR(O)2] < O. Thus if we run time

backwards. motions starting outside the limit cycle are predicted to escape to

infinity in finite time. in agreement with numerical investigations.

In terms of Rand 9. eq.(9) for Xo becomes

(15)
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Thus the two variable expansion method to O(e} yields the result that

the limit cycle in van der Pol's equation is stable.

Computer Algebra

We shall present a MACSYMA program which will apply the two variable

expansion method to a nonautonomous (i.e. forced) system of n coupled

oscillators. We begin by giving a sample run on the van der Pol equation.

Then we give a listing of the program and follow it with a discussion of the

more general problem of n coupled oscillators:

TWOVAR() ;

00 YOU WANT TO ENTER NEW DATA (YIN)
y;
NUMBER OF D. E. 'S
I;
THE I D.E. 'S WILL BE IN THE FORM:
X[I]" + W[I]A2 X[I] = E F[I](X[I], ... ,X[ 1 ],T}
ENTER SYMBOL FOR X[ 1 ]
x;

ENTER W[ I ]
I;
ENTER F[ 1 ]
(l-xA2}*diff(x,t);
THE D.E. 'S ARE ENTERED AS:

2 dx
x " + x = e (1 - x )

dt

THE METHOD ASSUMES A SOLUTION IN THE FORM:
X[I] = XO[I] + E Xl[I]
WHERE XO[I] = A[I](ETA} COS WEI] XI + B[I](ETA) SIN WEI] XI
WHERE XI = T AND ETA = E T
REMOVAL OF SECULAR TERMS IN THE Xl[I] EQS. GIVES:

2 3
a b a

d I 1 1
2 (---- (a )} + ----- + - a 0

deta 1 4 4 1

3 2
b a b

d I I 1
- 2 (---- (b » + b = 0

deta 1 4 4 I
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DO YOU WANT TO TRANSFORM TO POLAR CDORDINATES (YIN)
y;

3

d
[[---- (r )

deta 1

r r
1

2 8

d
(theta) = 0]]

deta 1

DO YOU WANT TO SEARCH FOR RESONANT PARAMETER VALUES (YIN)
n;

[VAX 8500 TIME = 16 SEC.]

Here is the program listing:

TWOVAR():=BLOCK(

CHOICE:READ("DO YOU WANT TO ENTER NEW DATA (YIN)").

IF CHOICE = N THEN GO(JUMP1),

1* INPUT D.E. 'S *1

N:READ("NUMBER OF D.E. 'S"),

PRINT("THE".N. "D.E. 'S WILL BE IN THE FORM: ").

PRINT("X[I]" + W[I]A2 XCI] = E F[I](X[1], ....X[",N."],T)"),

FOR I: 1 THRU N DO

X[ I ] :READ( "ENTER SYMBOL FOR X[", I •"]") ,

FOR I: 1 nlim N DO

DEPENDS(X[I], T),

FOR I: 1 THRU N DO

WeI] :READ("ENTER W[", I. "]").

FOR I: 1 THRU N DO

F[I]:READ("ENTER F[",I."]"),

JUMP1.

Itt UPDATE EQS FOR SUBSTITUTION OF RESONANT VALUES ON 2ND TIME THRU ttl

FOR I: 1 THRU N DO(

W[I]:EV(W[IJ).
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F[ I J: EV (F[ I]) ) .

1* ECHO BACK THE D.E. 'S *1

PRINT("THE D.E.·S ARE ENTERED AS:").

FOR I: 1 THRU N DO

PRINT(X[I] ... ·· +".W[IY2*X[I]."=",E*F[I]).

PRINT("THE METHOD ASSUMES A SOLUTION IN THE FORM:").

PRINT("X[I] = XO[I] + E Xl[I]"),

PRINT("WHERE XO[I] = A[I](ETA) COS WeI] XI + B[I](ETA) SIN WeI] XI"),

PRINT("WHERE XI = T AND ETA = E T").

1* DON'T USE A OR B AS PARAMETERS IN THE GIVEN D.E. 'S *1

DEPENDS([A,B] ,ETA).

FOR I: 1 THRU N DO

XO[I]:A[I]*COS(W[I]*XI)+B[I]*SIN(W[I]*XI).

FOR I: 1 THRU N DO

G[I]:EV(F[I].T=XI).

FOR I: 1 THRU N DO(

FOR J: 1 THRU N DO

G[I]:EV(G[I].X[J]: :XO[J]».

FOR I: 1 THRU N DO(

G[I]:G[I]-2*DIFF(XO[I].XI.1.ETA,l).

G[I]:EV(G[I].DIFF).

G[I]:EXPAND(TRIGREDUCE(EXPAND(G[I]»»,

1* CDLLECT SECULAR TERMS *1

FOR I: 1 THRU N DO(

S[I]:CDEFF(G[I].SIN(W[I]*XI».

C[I]:CDEFF(G[I].COS(W[I]*XI»).

1* DISPLAY SECULAR TERMS *1

PRINT("REMOVAL OF SECULAR TERMS IN THE Xl[I] EQS. GIVES:"),

FOR I: 1 THRU N DO(

95
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PRINT(S[I]."= 0").

PRINT(C[I]."= 0"».
ABEQS:APPEND(MAKELIST(S[I].I.I.N).MAKELIST(C[I].I.I.N».

CHOICE2:READ("OO YOU WANT TO TRANSFORM TO POLAR rooRDINATES (YIN)").

IF CHOICE2=N THEN GO(JUMP2).

1* TRANSFORM TO POLAR rooRDINATES *1

DEPENDS([R. THETA] •ETA) .

TRANS:MAKELIST([A[I]=R[I]*OOS(THETA[I]).B[I]=R[I]MSIN(THETA[I])].I.I.N).

INTEQS:EV(ABEQS.TRANS.DIFF).

RTHEQS:SOLVE(INTEQS.APPEND(MAKELIST(DIFF(R[I].ETA).I.I.N).

MAKELIST(DIFF(THETA[I].ETA).I.I.N»).

RTHEQS:TRIGSIMP(RTHEQS).

RTHEQS:ExPAND(TRIGREDUCE(RTHEQS».

PRINT(RTHEQS) ,

JUMP2,

CHOICE3:READ("OO YOU WANT TO SEARCH FOR RESONANT PARAMETER VALUES (YIN)").

IF CHOICE3=N THEN GO(END).

1* OBTAIN FREQUENCIES WHICH APPEAR ON RHS'S OF D.E.'S *1

1* DEFINE PATTERN MATaIING RULES TO ISOLATE FREQS *1

MATCHDECLARE([DUMMYI.DlOOIY2] ,TRUE).

DEFRULE(a>8ARG.DlOOIYl*OOS(DlOOIY2) •DlOOIY2) ,

DEFRULE(SINARG,DlOOIYI*SIN(DlOOIY2) , DlOOIY2) ,

FOR I: 1 THRU N OO(

1* CHANGE SUM TO A LIST *1

TEMPI:ARGS(G[I]).

1* REMOVE <X>NSTANT TERMS *1

TEMP2: MAP(TRIGIDENTIFY •TEMPI).
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Itt ISOLATE ARGUMENTS OF TRIG TERMS ttl

TEMP3:APPLYl(TEMP2.COSARG.SINARG).

TEMP4:EV(TEMP3.XI=1).

Itt REMOVE DUPLICATE ARGUMENTS ttl

FREQ[I]:SETIFY(TEMP4».

Itt DISPLAY FREQUENCIES ttl

FOR I: 1 THRU N OO(

PRINT(X[I]."EQ·S RESONANT FREQ =".W[I]).

PRINT("FREQS ON RHS =". FREQ[IJ».

JUMP3.

PAR:READ("WHIaI PARAMETER TO SEARaI FOR ?").

Itt COMPUTE RESONANT VALUES OF DESIRED PARAMETER ttl

RESVALS: [].

FOR I: 1 THRU N OO(

FOR J: 1 THRU LENGTH(FREQ[I]) OO(

RES:SOLVE(PART(FREQ[I].J)=W[I].PAR).

IF (RES*t[] AND RES*tALL) THEN RESVALS:APPEND(RESVALS.RES).

RES:SOLVE(PART(FREQ[I].J)=-W[I].PAR).

IF (RES*t[] AND RES*tALL) THEN RESVALS:APPEND(RESVALS.RES» ).

Itt ELIMINATE DUPLICATE PARAMETER VALUES ttl

RESVALUES:SETIFY(RESVALS) .

Itt DISPLAY RESONANT PARAMETER VALUES ttl

PRINT(RESVALUES).

aIOICE4:READ("OO YOU WANT TO SEARaI FOR ANOTHER PARAMETER (YIN) ?").

IF aIOICE4=Y THEN GO(JUMP3).

END." ")$

97
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98 TWO VARIABLE EXPANSION METHOD

1* AUXILIARY FUNCfIONS *1

TRIGIDENTIFY(EXP): =IF FREEOF(SIN .EXP) AND FREEOF(OOS.EXP) THEN 0 ELSE EXP$

SETIFY(LIST): =(

SET: [LIST[ 1]] .

FOR 1:2 THRU LENGTII(LIST) OO(

IF NOT MEMBER(LIST[I].SET) THEN SET:CONS(LIST[I] .SET» .

SET)$

Systems of Coupled Oscillators

Our main interest in the two variable method will be in applications to

systems of n oscillators:

(16) 1,2•...• n

(17)

After replacing time t by the two independent variables f and ~.

f t. ~ = c t

and expanding each of the dependent variables Xi in a power series in c.

(18) 1.2•.... n

we obtain the following differential equation on XiI:

(19)
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TWO VARIABLE EXPANSION METHOD

where (cf. eq.(9»

99

(20)

The program removes secular terms from (19) and offers the user the

option of transforming to polar coordinates as in the preceding example. In

addition. the program offers the user the option of searching for resonant

parameter values. i.e .. parameter values which cause an innocuous term on the

right hand side of (19) to become a resonant term. Since we are only working

to O{e) throughout this chapter. the utility of this approach will be most

significant in problems involving several oscillators and/or several

parameters. This is in contrast to situations in which one is concerned with

obtaining many terms of a series solution. in which case computer size and

speed limitations usually prohibit problems which involve more than one or two

parameters.

As an example. we will consider the following system of two

osci llators:

(21. 1) t k Y

(21.2)
2
~ + (I + t A ) Y + t M y cos wt
dt2 y

o

This system may be described as a Duffing oscillator (x) driven by the

output from a Mathieu equation (y). The cos wt term drives the y equation

which in turn drives the x equation. The parameters are:
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100 TWO VARIABLE EXPANSION METHOD

A A = detuning coefficientsx y

v = nonlinearity coefficient

~ = forcing coefficient

w = forcing frequency

k =coupling coefficient

Here is the MACSYMA run annotated with comments in italics:

TWOVAR() ;

DO YOU WANT TO ENTER NEW DATA (YIN)
y;
NUMBER OF D.E. 'S
2;
THE 2 D.E. 'S WILL BE IN THE FORM:
X[I]" + W[I]A2 X[I] =E F[I](X[I] •... ,X[ 2 ].T)
ENTER SYMBOL FOR X[ 1 ]
x;
ENTER SYMBOL FOR X[ 2 ]
y;
ENTER W[ 1 ]
1 ;
ENTER W[ 2 ]
1 ;
ENTER F[ 1 ]
-delx*x-nu*xA 3+k*y;
ENTER F[ 2 ]
-dely*y-mu*y*cos(w*t);
THE D.E. 'S ARE ENTERED AS:

3
x + x =e (k y - nu x - delx x)

y + Y =e (- mu cos(t w) y - dely y)

THE METHOD ASSUMES A SOLUTION IN THE FORM:
X[I] = XO[I] + E Xl[I]
WHERE XO[I] =A[I](ETA) COS WEI] XI + B[I](ETA) SIN WEI] XI
WHERE XI = T AND ETA = E T
REMOVAL OF SECULAR TERMS IN THE Xl[I] EQS. GIVES:

3 2
3bnu 3abnu

1 1 1
- ------- - ---------- + b k - b
442
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2
3 a b nu

1 1

4

3
3 a nu

1

4
+ a k - a

2 1

d
delx - 2 (---- (b » = 0

deta 1

d
2 (---- (a » - b dely = 0

deta 2 2

d
- a dely - 2 (---- (b » = 0

2 deta 2

DO YOU WANT TO TRANSFORM TO POLAR moRDINATES (YIN)
n;

We wait to transform to polars until after we have searched for

resonant parameter values:

DO YOU WANT TO SEARCH FOR RESONANT PARAMETER VALUES (YIN)
y;
x EQ' S RESONANT FREQ =
FREQS ON RHS = [1. 3]
y EQ' S RESONANT FREQ = 1
FREQS ON RHS = [1. w - 1. w + 1]

In order for a term on the right hand side (RHS) of eq.(19) to be

resonant, its frequency must equal wi' The program finds all values of the

selected parameter which produce a match between a resonant Frequency wi and an

element in the associated list of frequencies appearing on the RHS:

WHICH PARAMETER TO SEARCH FOR?
w;
[w = -2. w = O. w = 2]
DO YOU WANT TO SEARCH FOR ANOTHER PARAMETER (YIN) ?
n;

[VAX 8500 TIME = 14 SEC.]

Having obtained a list of resonant driver frequencies w. we may

investigate the effect of choosing one of them:

w:2$
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102 TWO VARIABLE EXPANSION METHOD

We seLected the resonant vaLue 2 For w and assigned w this vaLue. Now

d
delx + 2 (---- (a » =0

deta 1

we again caLL the program TWOVAR which automaticaLLy inserts this new vaLue of

w into the previous equations:

TWOVAR();

00 YOU WANT TO ENTER NEW DATA (YIN)
n;
THE D. E.•S ARE ENTERED AS:

3
x + x = e (k y - nu x - delx x)

y + Y =e (- mu cos(2 t) y - dely y)

THE METHOD ASSUMES A SOLUTION IN THE FORM:
X[I] =XO[I] + E Xl[I]
WHERE XO[I] = A[I](ETA) COS WEI] XI + B[I](ETA) SIN WEI] XI
WHERE XI = T AND ETA = E T
REMOVAL OF SECULAR TERMS IN THE Xl[I] EQS. GIVES:

3 2
3 b nu 3 a b nu

1 1 1
- ------- - ---------- + b k - b
442

- ---------- - ------- + a k - a
4 4 2 1

2
3 a b nu

1 1

3
3 a nu

1 d
delx - 2 (---- (b » =0

deta 1

b mu
2 d

----- - b dely + 2 (---- (a » =0
2 2 deta 2

a mu
2 d

- ----- - a dely - 2 (---- (b » = 0
2 2 deta 2

00 YOU WANT TO TRANSFORM TO POLAR COORDINATES (YIN)
y;

d
[[---- (r )

deta 1

r sin(theta - theta) k
2 2 1

2

d
(r )

deta 2

r sin(2 theta ) mu
2 2

4

rand@math.cornell.edu



TWO VARIABLE EXPANSION METHOD 103

d

2
3 r nu

1
r cos(theta - theta) k
2 2 1 de1x

(theta)
deta 1

- ------- + -------------------------
8 2 r

1
2

d
(theta)

deta 2

cos(2 theta ) mu
2

4

dely
- ----]]

2

00 YOU WANT TO SEARCH FOR RESONANT PARAMETER VALUES (YIN)
n;

[VAX 8500 TIME = 91 SEC.]

The program has obtained the slow flow equations corresponding to the

resonant value w = 2. As always in this method there is still the problem of

dealing with the slow flow equations. Since the y equation drives the x

equation (but not vice versa). the slow flow equations on A
2

and B2 are

uncoupled from the rest:

(22. 1)

(22.2)

A •
2

B •
2

Differentiating (22.1) and substituting in (22.2) produces the

equation:

(23)

2
Thus the system (22) has bounded solutions if and only if A 2 - ~ > O. i.e ..

y 4

if and only if

(24)
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This yields the well known result [44J that for small forcing amplitudes,

Mathieu's equation (21.2) possesses a resonance instability when the forcing

frequency is approximately twice the natural frequency. In fact, an infinite

number of such regions of instability exist when w = 2/n, for n = 1,2,3, ... ,

but the perturbation method must be extended to O(cn) in order to pick up the

thn such region [35J.

When eq.(24) holds, or when the forcing frequency w is not resonant,

the general solution (20) to Mathieu's equation (21.2) is composed of terms

which are the product of a slowly varying periodic function (A2 or B2) and a

periodic function ot frequency unity (cos t or sin t). This results, in

general, in an almost periodic function.

We now consider the full slow flow system of 4 differential equations

in the resonant case (w =2). In polar form these were found to be:

(25.1)

(25.2)

(25.3)

(25.4)

r '
1

e '
1

e '
2

These equations are too complicated to hope for an exact general

solution. Instead we will look for equilibria. Note that an equilibrium of

the slow flow system (25) corresponds to a periodic solution of the original

system (21) (cf. eq.(20».

In order for eq.(25.3) to have an equilibrium, either r 2 =0 (in which

case the y oscillator is turned off so that the problem becomes the free
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undamped Duffing equation. which is integrable), or sin 292 = O.

case. cos 29
2

= ~ I, and for equilibrium, eq.(25.4) requires Ay

105

In the latter

+ ~_ 2 ' a

condition corresponding to the transition between stability and instability in

the Mathieu equation on y (cf. eq.(24)). Requiring this condition to hold. we

set the right hand sides of eqs.(25.1) and (25.2) to zero for equilibrium.

Eq.(25.1) requires either r
2

= 0 (the integrable case again) or sin(92-91) O.

In the latter case, cos(92-91) = ~ I, and eq.(25.2) requires

(26)
3 2 r 2 k Ax 0

-gvr1 +2r
1

-2"=

This equation relates the amplitude of the derived periodic motion r 1

to the amplitude of the driver r
2

and the other parameters in the case that

A + ~
y - 2

Exercises

1. Find the slow flow associated with the dynamics of two coupled van der Pol

oscillators [37],[10]:

d2x 2 dx
t k

11
x + t k

12
y + t c

11
dx ~--+ X - t (1 - x ) -+ t c 12dt2 dt dt dt

2
2 ~ dx c ~U+ y - t (1 - y) = t k21 x + t k22 y + t c21 -+ t

dt2 dt dt 22 dt
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106 TWO VARIABLE EXPANSION METHOD

2. Find the slow flow associated with the dynamics of n coupled van der Pol

oscillators:

where i = 1.2..... n and where kO = kn = O. The procedure here is to separately

consider the cases n =2.3.4. etc .. until a general pattern emerges regarding

the structure of the slow flow equations.

3. Apply the two variable expansion method to the equation

(PI) d
2
x + rw2 + Eo A + Eo cos t] X + Eo C dx + Eo a x3

dt2 L dt
o

in which w natural frequency

A detuning coefficient

c damping coefficient

a nonlinearity coefficient

1Show that w = 2 is a resonant parameter value. Obtain the associated slow

flow. Find a relation between A and c such that the trivial solution of the

slow flow (which corresponds to the rest solution x =0 of (PI)) is unstable.

The nontrivial eqUilibria of the slow flow correspond to 2:1 subharmonic

periodic solutions of (PI). Find an expression for the amplitude r of such

motions as a function of A. c and a. For given a. find a relation between A

and c such that 2:1 subharmonics exist.
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CHAPTER 5

AVERAGING

Introduction

Like normal form transformations. averaging uses a near identity

coordinate transformation to simplify a given system of ordinary differential

equations. In contrast to our treatment of normal forms. where we applied the

method to strictly autonomous systems, we shall apply averaging to

nonautonomous systems. The coordinate transformations will be chosen so as to

transform the nonautonomous system into an autonomous one called the averaged

system.

Consider the system

(l) x e f(x. t,e} ,

where f is T-periodic in t. Such a system will be said to be in general form

with respect to averaging. Since e « 1, x usually evolves on a much slower

time scale than does f. which we can consider as T-periodic forcing. Therefore

it seems natural that the main influence for the time evolution of x comes from

the mean of f over one period T. This is the basic idea of averaging which

leads to the following algorithm [14J,[41J,[16J: Set

(2) x
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and insert into (1). Then we find

AVERAGING

(3)

(4) [
awl ) 2= c gI(y,t) - --- + O(c )
at

where D is the Jacobian matrix operator, and wherey

(5) f(y,t,O).

We split gI(y,t) into a mean component gI(y) and a time dependent

component gI(y,t) with zero mean,

(6)

where

(7)

T

- 1 IgI(y) = - f(y,t,O)
T 0

dt,

~

and where gI(y,t) is given by the difference between eqs.(5) and (7). Then we

can choose wI(y,t) such that

(8)
aWl ~
--- = gi (y, t)
at

where the arbitrary constant of integration in (8) is chosen such that wI has

zero mean. This gives
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(9) y

Eq.(9) is the first order averaged system corresponding to equation

(1). There are several theorems concerning the relation between the averaged

and the general system (for details. see e.g. [41J). Since we are mainly

interested in the computational aspects of the perturbation method we shall not

state these theorems here explicitly, but we shall try to give the general idea

of their content. One can prove that a solution y(t) of the averaged system

(9) follows a true solution x(t) of the general system (1) for a time of order

lie if the initial values Yo and Xo were close to order e, i.e. if

IYO-xol = O(e). Also all the qualitative local behavior of the dynamics of (9)

corresponds to the same qualitative and local behavior of periodic orbits of

(1). In particular a stable (unstable) fixed point of (9) corresponds to a

stable (unstable) limit cycle of (I), and a Hopf bifurcation giving rise to an

attracting (repelling) limit cycle in (9) corresponds to a bifurcation to a

stable (unstable) invariant torus in (1), and so on. There are additional

results concerning global information on periodic orbits of (9) for which we

refer the reader to [14J.

Second Order Averaging

It frequently happens that the system (9) is degenerate and does not

provide enough information about the solutions of (1). In such a case the

averaging method can be extended to include order e
2

terms by replacing the

transformation (2) with

(10) x

Substitution of (10) into (1) gives
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where gl(y,t) f(y,t,O) as in (5), and where

We split g2(y,t) into a mean component g2(y) and a time dependent

component g2(y,t) with zero mean,

(13)

where

~

g2(y,t) = g2(y) + g2(y,t),

(14)

T

1 J[af=_ _ (y,t,O)
T 0 ac

~

and where g2(y,t) is given by the difference between eqs.(12) and (14). We

have chosen w1(y,t) as in (8), and have used the fact that

f(y,t,O) =gl(y,t) =gl(y) + gl(y,t) and that Dyw1 gl(y) and Dyg 1(y) WI have

zero mean.

(15)

Then we can choose w2(t) such that

where the arbitrary constant of integration in (15) is chosen such that w2 has

zero mean.

(16)

This gives
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Although we shall only work to order e2 in this Chapter, the method of

averaging can be extended in a similar fashion to include terms of order em.

See Exercise 1 at the end of this Chapter.

Van der Pol Transformation

Averaging is frequently used to treat weakly nonlinear forced

oscillators of the form

(17) z 2
+ Wo z e F(z,i,t,w,e)

where W is the forcing frequency. Although this important class of

applications is not of the form (I), it may be put in general form with respect

to averaging by the following procedure.

The unperturbed system (e = 0) has the general solution

(18)

[:] [- cos(Wot) ]

Wo sin(wot)
x ­

1

where Xl and x2 are constants given by the initial values of the unperturbed

problem. Allowing for Xl and x2 to be time dependent (the method of variation

of parameters), and replacing Wo by an as yet unspecified frequency WI' we

obtain the van der Pol transformation [14]

(19) [:]
cos(WI t)

WI sin(wl t)
- sin(w1t) ] [Xx

2

1 ]
- WI cos (wI t)

With this transformation, eq.(17) becomes
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(20)

AVERAGING

1 [2 2 .] sin(wlt)xl
4'1

(wI - Wo ) z + c F(z.z.t.w.c)

1 [2 2 .] cos(wlt)x2 wI
(wI - Wo ) z + c F(z.z.t.w.c)

A natural choice for wI is the forcing frequency w. However. in order

to include the case of subharmonic resonance of order k. i.e. the case where

w = k wOo we choose wI = w/k. Allowing for an order c detuning off of the

2 2 2subharmonic resonance. we set c 0 = w - k Wo With these substitutions. (20)

is in general form with respect to averaging. cf. eq.(l):

k 0 F(z.i:. t.w.c) sin(wt/k)xl - c _ z +
w

k
2

(21)

k 0 F(z.i:.t.w.c) ] cos(wt/k)x2= - c - z +
w

k
2

where z and z are given by (19).

An Example

As an example. let us take van der Pol's equation.

(22)

Performing the van der Pol transformation (19) with wI =Wo

(20) .

2 z sin txl - c (1 - z )

(23)

2
x2 - c (1 - z ) z cos t

1 gives. from
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where Z = xl cos t - x2 sin t. Now we may apply the transformation (2), with

wI as in (8). which turns out to give the averaged equations (cf. (9)):

(24)

Eqs.(24) may be simplified by transforming to polar coordinates,

(25)

which gives

(26) r

r cos e. Y2 r sin e

o

Equilibria for eq.(26) are r = 0 and r = 2. The latter recovers the small ~

approximation for the limit cycle in van der Pol's equation (22).

Computer Algebra

The MACSYMA program which we shall use to implement averaging takes a

system of the form (1) and transforms it to the first order averaged form (9)

or the second order averaged form (16).

In the case of first order averaging this requires only that gl(y) be

calculated from eq.(7). Instead of computing the integral in (7). however. we

use a more efficient scheme for eliminating the periodic terms. We convert all

sines and cosines to complex exponentials (a step performed by the MACSYMA

function EXPONENTIALIZE), algebraically expand the result and then kill all

terms which contain exponentials in t (a step performed using a pattern

matching rule called KILLEXP).
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In the case of second order averaging we must also compute g2(y) from

eq.(14). This involves finding wI from (8). Periodic terms are again removed

by using pattern matching instead of integration.

In order to conveniently treat weakly nonlinear oscillators of the form

(17). we include the van der Pol transformation in the program.

Before giving a sample run and the program listing. we mention two

caveats to the user:

1. The user must scale time so that averaging is performed over period

2v (except in the case of a weakly nonlinear oscillator (17). where this is

done automatically.)

2. Our scheme for replacing integration by elimination of exponentials

only works for that class of problems in which all trigonometric terms occur in

the numerator of the vector field f(x.t.e) in (1). In other cases. the program

may be easily changed to use integration to compute gl(y) and g2(y) in (7) and

(14) .

Here is a sample run on the van der Pol oscillator (22):

AVERAGE() ;

00 YOU WANT TO ENTER A NEW PROBLEM? (YIN)
Y;
ARE YOU CONSIDERING A WEAKLY NONLINEAR OSCILLATOR OF THE FORM
Z" + OMEGAO~2 Z = EPS F(Z.ZOOT.T) ? (YIN)
Y;
ENTER OMEGAO
1;
ENTER F(Z.ZOOT.T)
(1-Z~2)*ZOOT;

00 YOU WANT FIRST OR SECOND ORDER AVERAGING? (1/2)
1;

2 3 3 2
y1 y2 y1 y1 y2 y1 y2 y2

[eps (- ------ - --- + --) . eps (- - ------ + --)]
8 8 2 8 8 2

[VAX 8500 TIME 25 SEC.]

This result is the same as eq.(24) given in the text. Before

converting to polar coordinates (25). we run the program again to include
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second order effects. Note that the problem need not be reentered:

AVERAGE() ;

00 YOU WANT TO ENTER A NEW PROBLEM? (YIN)
N;
00 YOU WANT FIRST OR SECOND ORDER AVERAGING? (1/2)
2;

5 2 3 3 4 2
2 11 y2 11 y1 y2 3 y2 11 y1 y2 3 yl y2 y2

matrix([eps (------ + ---------- - ----- + --------- - -------- + --)
256 128 16 256 16 8

2 3 4 3 2 2
y1 y2 y1 y1 2 11 y1 y2 11 y1 y2 3 y1 y2

+ eps (- ------ - --- + --)], [eps (- --------- - ---------- + --------

8 8 2 256 128 16

5 3 3 2
11 y1 3 y1 y1 y2 y1 y2 y2

- ------ + ----- - --) + eps (- - ------ + --)])
256 16 8 8 8 2

[VAX 8500 TIME = 68 SEC.]

In order to transform to polar coordinates, we use the program

115

TRANSFORM given in Chapter 2. The output of the program AVERAGE is stored in a

variable called RESULT:

TRANSFORM() ;
Enter number of equations
2;
Enter symbol for original variable
Y1;
Enter symbol for original variable 2
Y2;
Enter symbol for transformed variable
R;
Enter symbol for transformed variable 2
THETA;
The RHS's of the d.e. 's are functions of the original variables:
Enter RHS of y1 d.e.
d y1 /dt =
RESULT[l,l];

5 2 3 3 4 2
2 11 y2 11 y1 y2 3 y2 11 y1 y2 3 y1 y2 y2

d y1 /dt = eps (------ + ---------- - ----- + --------- - -------- + --)
256 128 16 256 16 8

2 3
y1 y2 y1 y1

+ eps (- ------ - --- + --)
8 8 2
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Enter RHS of y2 d.e.
d y2 /dt =
RESULT[2,lJ;

2
d y2 /dt = eps

4
11 y1 y2

(- --------- -
256

3 2
11 y1 y2
---------- +

128

2
3 y1 y2

16

5
11 y1

- ------ +
256

3
3 yl y1
----- - --)

16 8

The transformation is entered next:
Enter yl as a function of the new variables
y1 =
R*O:>S(TIIETA) ;
yl = r cos(theta)
Enter y2 as a function of the new variables
y2 =
R*SIN(THETA) ;
y2 = r sin(theta)

3 2
y2 yl y2 y2

+ eps (- - ------ + --)
8 8 2

3 2 3 2
dr eps r sin (theta) + eps r cos (theta) - 4 eps r

[[-- -------------------------------------------------
dt 8

dtheta

dt

2 4
(11 eps r

424
sin (theta) + (22 eps r

2
cos (theta)

2 2
48 eps r)

2 244 222 2
sin (theta) + 11 eps r cos (theta) - 48 eps r cos (theta) + 32 eps )/256JJ

[VAX S500 TIME = 2 SEC. J

In order to simplify the algebra here we use the MACSYMA function

TRIGSIMP:

TRIGSIMP(%);

dr
[[-- = ­

dt

3
eps r - 4 eps r

8

dtheta

dt

2 4 2 2 2
11 eps r - 48 eps r + 32 eps
---------------------------------JJ

256

[VAX 8500 TIME = 13 SEC. J

This result is the O(e2) version of eq.(26). Note that on the limit

2
cycle r = 2, this result gives e= - ~6 ' in agreement with the frequency

2
- ~ given by Lindstedt's method, cf. Chapter 1.

16
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Here is the program listing:
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1* PROGRAM TO PERFORM 1ST OR 2ND ORDER AVERAGING

ON AN N-DIMENSIONAL SYSTEM OF NONAUTONOMOUS ODE'S *1

1* AVERAGING IS PERFORMED BY (X)NVERTING TRIG TERMS TO

(X)MPLEX EXPONENTIALS, THEN KILLING EXPONENTIALS *1

AVERAGE(}:=BLOCK(

G10ICEl:READ("OO YOU WANT TO ENTER A NEW PROBLEM? (YIN}").

IF G10ICEl = N THEN GO(JUMPl).

KILL{X} •

PRINT("ARE YOU (X)NSIDERING A WEAKLY NONLINEAR OSCILLATOR OF THE FORM").

G10ICE2:READ("Z" + OMEGAOA 2 Z = EPS F(Z,ZOOT.T} ? (YIN}").

IF G10ICE2 = N THEN GO(JUMP2}.

1* ENTER DATA FOR SINGLE OSCILLATOR PROBLEM *1

N:2,

OMEGAO:READ("ENTER OMEGAO"}.

F: READ( "ENTER F(Z. ZOOT. T}" }*EPS.

1* OOES F(Z,ZOOT.T} DEPEND EXPLICITLY ON T? *1

TEST:DIFF(F.T}.

IF TEST=O THEN OMEGAl :OMEGAO

ELSE (

OMEGA: READ( "ENTER THE FORCING FREQUENCY"}.

K:READ("ENTER THE ORDER OF THE SUBHARMONIC RESONANCE"}.

OMEGA1 :OMEGAIK} ,

1* VAN DER POL TRANSFORMATION *1

ZSUB:[Z:(X)S(OMEGAl*T}*Xl-SIN(OMEGAl*T}*X2.

ZOOT=-OMEGA1*SIN(OMEGAl*T}*Xl-OMEGAlM(X)S(OMEGAl*T}*X2].

1* SUBSTITUTE ZSUB INTO TRANSFORMED EQS ttl

1* SCALE TIME SO THAT AVERAGING OCXlJRS OVER PERIOD 2 PI *1
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VF:EV([-1/0MEGAl~2*(EPS*KAPOMEGAJK~2*Z + F)*SIN(OMEGAl*T),

-1/0MEGAl~2*(EPS*KAPOMEGAJK~2*Z + F)*COS(OMEGAI*T)],

ZSUB, T=TAU/OMEGAl, INFEVAL),

VF:EV(VF,TAU=T),

IF OMEGAI # OMEGAO

TIJEN PRINT("W£ WRITE EPS*KAPOMEGA =" ,OMEGA~2-K~2*OMEGAO~2)

ELSE VF: EV(VF ,KAPOMEGA=O) ,

VF2:EXPAND(EXPONENTIALIZE(VF»,

FOR I: 1 THRU 2 DO VF2[I]:MAP(FACfOR, VF2[IJ),

X: [Xl,X2],

GO(JUMPl),

JUMP2,

1* ENTER DATA FOR GENERAL PROBLEM OF NODE'S *1

N:READ("ENTER NUMBER OF DIFFERENTIAL EQUATIONS"),

X:MAKELIST(CONCAT('X,I),I,I,N),

PRINT("THE ODE'S ARE OF THE FORM:"),

PRINT("DXIDT = EPS F(X.T)"),

PRINT("WHERE X =" ,X),

PRINT("SCALE TIME T SUCH THAT AVERAGING OCCURS OVER 2 PI"),

VF:MAKELIST(READ("ENTER RHS(", I, ")=EPS* ... ")*EPS, I ,I,N),

FOR 1:1 THRU N DO PRINT("D",X[I],"/DT =",VF[I]),

VF2: EXPAND(EXPONENTIALIZE(VF) ) ,

FOR I: 1 THRU N DO VF2[I]:MAP(FACfOR. VF2[I]),

JUMPI.

1* AVERAGING *1

M:READ("DO YOU WANT FIRST OR SECOND ORDER AVERAGING? (112)"),

COEFVFEPSI :COEFF(VF2,EPS),
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OOEFVFEPS2:00EFF(YF2.EPS.2) ,

GIBAR:DEMOIVRE(APPLYI(OOEFYFEPSI,KILLEXP».

IF M=l THEN RESULT:EPS*GIBAR

ELSE(

GITILDE:OOEFYFEPSI-GIBAR.

WI: INTEGRATE(GlTILDE. T),

REMARRAY(JAOOB) ,

JAOOB[I,J] := DIFF(GITILDE[I],X[J]).

JACGITILDE:GENMATRIX(JAOOB,N,N).

G2BAR:DEMOIVRE(APPLY1 (EXPAND(JACGITILDE. W1)+OOEFYFEPS2.KILLEXP»,

RESULT:EPS*G1BAR+Eps A 2*G2BAR).

1* REPLACE X BY Y *1

FOR 1:1 THRU N DO RESULT:SUBST(OONCAT('Y.I),OONCAT('X,I),RESULT),

RESULT) $

1* AUXILIARY FUNCTIONS TO KILL EXPONENTIAL TERMS *1

OONTAINS_T(EXP):= NOT FREEOF(T,EXP)$

MATCHDECLARE(Q,OONTAINS_T)$

DEFRULE(KILLEXP,EXP(Q).O)$

Additional Examples

119

As our second example, we consider a modification of the van der Pol

equation (22) (from [41]):

(27)

Here the first order mean is zero, and we must appeal to second order averaging

for a nontrivial result. Application of our program AVERAGE as in the
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preceding example gives the RESULT:

AVERAGING

[ 2 3 2 2 2 3 ]
[ 2 5 alpha y2 yl y2 5 alpha yl y2 yl yl ]
[ eps (------------ - ------ + --------------- - + --) ]
[ 12 8 12 8 2 ]
[ ]
[ 3 2 2 2 2 3 ]
[ 2 y2 5 alpha yl y2 yl y2 y2 5 alpha yl ]
[ eps (- --- - --------------- - + -- - ------------) ]
[ 8 12 8 2 12 ]

and transformation to polar coordinates using the program TRANSFORM gives:

dt

dr
[[-­

dt

232
eps r - 4 eps

8

2 2 2
r dtheta 5 alpha eps r

= - ----------------]]
12

As an example of a nonautonomous system. we take the forced damped

Duffing equation:

(28) z + Z = C [ ~ cos wt - 6 i-a z3 ]

This equation is the natural symmetric extension of the forced damped harmonic

oscillator and thus it occurs in a wide variety of applications. Here is a

sample run of our program AVERAGE applied to eq.(28):

AVERAGE();

00 YOU WANT TO ENTER A NEW PROBLEM? (YIN)
Y;
ARE YOU CONSIDERING A WEAKLY NONLINEAR OSCILLATOR OF THE FORM
Z·· + OMEGAOA2 Z =EPS F(Z.ZOOT.T) ? (YIN)
Y;
ENTER OMEGAO
1;
ENTER F(Z.ZOOT.T)
GAMMA*COS(W*T)-DELTA*ZOOT-ALPHA*ZA3;
ENTER THE FORCING FREQUENCY
W;
ENTER THE ORDER OF THE SUBHARMONIC RESONANCE
1;
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2
WE WRITE EPS*KAPOMEGA = w - 1
00 YOU WANT FIRST OR SECDND ORDER AVERAGING? (112)
2;

3 alpha yl y2 gamma. del ta gamma.
(- ------------------- + ----------- +

2
matrix([eps

4
16 w

3
8 w

2 5
51 alpha y2

4
256 w

223
51 alpha yl y2

+ -----------------
4

128 w

3
3 alpha kapomega y2

4
8 w

2 4
51 alpha yl y2

+ ----------------
4

256w

2
3 alpha kapomega yl y2

- ----------------------- +
4

8 w

2
del ta y2
--------- +

2
8 w

2
kapomega y2
------------)

4
8 w

+ eps (-

3
3 alpha y2

2
8 w

2
3 alpha yl y2 kapomega y2 delta yl
-------------- + ----------- - --------)].

2 2 2 w
8 w 2 w

2
[eps

2 2
3 alpha y2 gamma. 9 alpha yl gamma. kapomega gamma.

(----------------- + ----------------- - --------------
4 4 4

32w 32w 8w

2 4
51 alpha yl y2

4
256w

232
51 alpha yl y2
----------------- +

4
128 w

2
3 alpha kapomega yl y2

4
8 w

2 5
51 alpha yl

- ------------- +
4

256 w

3
3 alpha kapomega yl

4
8 w

2
del ta yl

2
8 w

2
kapomega yl

- ------------)
4

8 w

2
3 alpha yl y2 delta y2

+ -------------- - -------- ++ eps (-
gamma.

2
2 w

2
8 w

2 w

3
3 alpha yl

2
8 w

kapomega yl
- -----------)])

2
2 w

[VAX 8500 TIME 162 SEC.]

These averaged equations may be simplified by transforming to polar

coordinates (25) via the program TRANSFORM. as in the previous sample run.
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2Neglecting terms of O(~ ) for simplicity. we obtain:

dr
[[-- = -

dt

(delta r w + sin(theta) gamma) eps

2
2w

3
dtheta (3 alpha r - 4 kapomega r - 4 cos(theta) gamma) eps

= ---------------------------------------------------- ]]
dt 2

8 r w

An equilibrium of this averaged system corresponds to a limit cycle in

the original system (28). Thus we set; =9 = 0 in these last equations. solve

respectively for sin a and cos a . and use the identity Sin2e + cos2e = 1 to

obtain an equation on the amplitude r of the limit cycle:

222
delta r w

3 2
(3 alpha r - 4 kapomega r)

------------ + ---------------------------- = 1

See Fig. 10.

2
gamma

2
16 gamma

The purpose of our next example is to offer a check on our program by

comparison with previously published second order averaging computations done

by hand. Holmes and Holmes [17] studied the stability and bifurcation of

subharmonic periodic solutions in the equation:

(29) u - u +

Note that when ~ =O. eq.(29) has equilibria at u =O. !1. The equilibrium at

u = 0 is an unstable saddle. while those at !1 are stable centers.

Let u = U(t) be a periodic solution to (29) and set

(30) u = U(t) + ~ z
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Fig.l0. Averaging O(~) solution for the steady state periodic response

of the forced damped Duffing eq. (28). 0 = detuning. r = response

amplitude. Using w2 ~ 1 + 0 ~. we plot

o

for three cases: A (~ = O. 6 = O. a = 1)

B (~ 1. 6 O. a = 1)

C (~ 1. 6 1. a = 1)
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where z is a variation from the periodic solution. Substitution of (30) into

(29) gives to 0(e3):

Eq.(31) governs the stability of. and bifurcations from. the solution u = U(t).

Holmes and Holmes [17] used regular perturbations to obtain an

approximate expression for U(t). a periodic solution about the e =0

equilibrium u = 1:

(32) U(t)

where

where

(33)

Uo(t) = f cos wt

2
f ='Y/(2-w )

Substitution of (32) into (31) gives

• 2
z + 2 Z =e ( - 0 Z - 6f Z cos wt - 3 z ) +

2 [ 2 2 2 fow .e -(3f cos wt + 6 [-3f /4 + SIn wt

2_w2

3f2 2 3- cos wt]) Z - 3f z cos wt - z

4_8w2
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Holmes and Holmes [17] used second order averaging on eq.(33) to

125

investigate the bifurcation of subharmonics of order 2, i.e. the phenomenon of

period doubling. We replicate their "tedious but elementary calculations" in

the following run of the program AVERAGE. We begin by assigning the right-hand

side of eq.(33) to a variable called RHS:

RHS:-DEL*ZDOT-6*GAM*COS(W*T)*Z-3*ZA2+
EPS*(-(3*GAMA2*COS(W*T)A2+6*(-3*GAMA2/4+GAM*DEL*W/(2-WA2)*SIN(W*T)
-3*GAMA2/(4-8*WA2)*COS(2*W*T»)*Z-3*GAM*COS(W*T)*ZA2-ZA3);

gam w sin(t w) del
eps (- z (6 (-----------------­

2
2 - w

2
3 gam cos(2 t w)

2
4 - 8 w

2
3 gam

- ------)
4

2
+ 3 gam

2 3 2 2
cos (t w» - z - 3 gam cos(t w) z ) - zdot del - 3 z

- 6 gam cos(t w) z

AVERAGE() ;

00 YOU WANT TO ENTER A NEW PROBLEM? (YIN)
Y;
ARE YOU CX>NSIDERING A WEAKLY NONLINEAR OSCILLATOR OF THE FORM
Z" + OMEGAOA2 Z = EPS F(Z,ZDOT,T) ? (YIN)
Y;
ENTER OMEGAO
SQRT(2) ;
ENTER F(Z,ZooT,T)
RHS;
ENTER THE FORCING FREQUENCY
W;
ENTER THE ORDER OF THE SUBHARMONIC RESONANCE
2;

2
WE WRITE EPS*KAPOMEGA = w - 8
00 YOU WANT FIRST OR SECX>ND ORDER AVERAGING? (112)
2;

2
w (w - 2)

2
matrix([eps

2
y2 del 6 gam yl del

(------- ­
2

2 w

6 gam yl del

3
w

3
3 y2

- ----- +
2

2 w

3
60 y2

4
w

2
3 yl y2

2
2 w

2
60 yl y2

+ --------- +
4

w

2
6 gam y2

2
w

2
kapomega y2

+ ------------ +
4

8 w

3 gam kapomega y2

4
w
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(- ------ + ----------- +
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2
9 gam y2

+ ---------)
4

w

+ eps
w

AVERAGING

2
2 w

6 gam y2
--------)].

2
w

2 2 2 3
2 y1 del 6 gam y2 del 6 gam y2 del 3 y1 y2 50 y1 y2 3 y1

[eps (- ------- + ------------ + ------------ + -------- - --------- + -----
2 2 3 2 4 2

2 w w (w - 2) w 2 w w 2 w

3 2 2 2
50 y1 6 gam y1 kapomega y1 3 gam kapomega y1 9 gam y1

- ------ - --------- - ------------ + ----------------- - ---------)
4 2 4 4 4

w w 8 w w w

+ eps (-
y2 del

w

kapomega y1
- ----------- +

2
2 w

6 gam y1
--------)])

2
w

[VAX 8500 TIME 271 SEC.]

These averaged equations agree with eq.(25) in [17] (but note that our

definitions for t and n are different from those in [17].)

The equilibria of the averaged equations correspond to periodic motions

for the unaveraged system (33). The averaged equations always possess an

equilibrium at the origin, corresponding to the solution u = U(t). Any

additional equilibria correspond to subharmonics of order 2. Note that the

order c terms in the averaged equations are linear in Y1 and Y2' and thus

cannot account for such additional equilibria. Hence in order to investigate

period doubling, it is necessary to go to O(c2 ) in this example. We refer the

reader to [17] for further analysis of this system.
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Exercises

1. One may envision bifurcation problems where second order averaging still

127

leads to a degenerate autonomous dynamical system. In such a case a program to

perform m-th order averaging would be welcome. It is not too difficult to

write such a program bearing in mind that in order to find the m-th order mean

gm(y} we have to find the transformation

2 m-lx y + c wI + c w2 + ... + c wm_l

Sketch of a solution:

One way to organize such a procedure is as follows: Since we are

interested in the m-th order mean we can work with the Taylor expansion of

eq.(3} up to order m:

(PI)

Performing first order averaging on (PI) gives gl and WI. Substituting the

latter back into (PI) gives a new vector field f(y,t,c} which we now have to

average to second order. This time we determine the Taylor expansion to order

m of

and so on. A listing of the crucial portion of the function AVERAGE(} is given

below [2J:
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JUMP1,

1M AVERAGING MI

M:READ("ENTER ORDER OF AVERAGING"),

IF M=I

1M FIRST ORDER AVERAGING MI

THEN (TEMPO: DEMOIVRE (APPLY1 (VF2,KILLEXP) ),

RESULT:TAYLOR(TEMPO,EPS,O, 1»

1M AVERAGING OF ORDER M> 1 MI

ELSE

Y:MAKELIST(CONCAT('Y,I),I,I,N),

WLIST:MAKELIST(CONCAT('W,I),I,I,N),

DEPENDS(WLIST,CONS(T,Y»,

TRAFO:Y,

XSUB: MAPLIST( "=" ,Y, X) ,

1M WNULL SETS WLIST TO ZERO MI

WNULL:YFUN(WLIST ,0),

JACOB[I,J] := DIFF(WLIST[I],Y[J]),

JAC:GENMATRIX(JACOB,N,N),

1M MAIN LOOP MI

FOR I :1 THRU M-I 00 (

TEMPI: MAPLIST("=" ,X, Y+EPS~IMWLIST),

1M HERE X IS THE LIST [XI,X2, ... ,XN], Y IS THE LIST [YI,Y2, ... ,YN],

WLIST IS THE TRANSFORMATION VECTOR [WI, W2, ... ,WN] MI

TEMP2:TAYLOR(SUM«-EPS)~(IMJ)MJAC~~J,J,O,M-I).

(EY(YF2,TEMPI) - DIFF(WLIST,T)MEPS~I),EPS,O,M),

1M JAC IS THE JACOBIAN 0 WLISTIDY OF THE TRANSFORMATION WLIst MI

TEMP3:MATTOLIST(TEMP2,N),

TEMP4:MAP(EXPAND,TAYLOR(EV(TEMP3.WNULL,DIFF),EPS,O, I»,

1M THE ITH ORDER MEAN MI
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MEAN:APPLY1(TEMP4,KILLEXP),

TEMP6:EXPAND(TEMP4-MEAN),

TEMP7:EV(INTEGRATE(TEMP6,T).EPS=1).

f* THE ITH ORDER TRANSFORMATION *f

TEMP8:MAPLIST("=", WLIST. TEMP7).

TEMP9:RATSIMP(TEMP8),

f* THE TRANSFORMED DE *f

VF2:EXPAND(EV(TEMP3,TEMP9.DIFF.XSUB,INFEVAL»,

f* THE SUM OF ALL TRANSFORMATIONS *f

TRAFO:EXPAND(TRAFO+EV(EPSAI*WLIST.TEMP9»).

f* END OF MAIN LOOP *f

PRINT("THE TRANSFORMATION: ",X, "=").

PRINT(RATSIMP(DEMOIVRE(TRAFO»).

f* THE FINAL AVERAGING *f

RESULT: APPLYl (VF2.KILLEXP).

f* REPLACE X BY Y *f

FOR I:l THRU N DO RESULT:SUBST(CDNCAT('Y.I).CDNCAT(·X.I).RESULT).

RESULT) $

129

f* AUXILIARY FUNCTIONS *f

VFUN(LIST. VALUE): =MAP (LAMBDA ( [U], U=VALUE) ,LIST)$

MATTOLIST(MAT,DIM):=IF DIM>! THEN MAKELIST(MAT[I.l].I.!.DIM) ELSE [MAT]$

For most practical purposes this program is probably too slow and

creates intermediate expressions which are too large. However it works for a

one-dimensional problem like the following:
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AVERAGE();

00 YOU WANT TO ENTER A NEW PROBLEM? (YIN)
Y;
ARE YOU <X>NSIDERING A WEAKLY NONLINEAR OSCIU.ATOR OF THE FORM
z·, + OMEGAOA2 Z = EPS F{Z,ZDOT,T) ? (YIN)
N;
ENTER NUMBER OF DIFFERENTIAL EQUATIONS
1;
THE ODE' S ARE OF THE FORM:
DXIDT = EPS F{X,T)
WHERE X = [xl]
SCALE TIME T SU<lI TIlAT AVERAGING ()(L'lJRS OVER 2 PI
ENTER RHS{ 1 )=EPS*...
{Xl-XlA2)*SIN{T)A2;

2 2
D xl IDT = eps sin (t) (xl - xl )

ENTER ORDER OF AVERAGING
3;
THE TRANSFORMATION: [xl] =

223
[- ({2 eps cos{4 t) - 8 eps cos{2 t» yl

2 2 2
+ (--3 eps cos{4 t) - 16 eps sin{2 t) + 12 eps cos{2 t» yl

2 2
+ (eps cos{4 t) + 16 eps sin{2 t) - 4 eps cos(2 t) - 54) yl)/54]

343332 2
eps yl eps yl eps yl eps yl eps yl

[- -------- + -------- - -------- - ------- + ------]
54 32 54 2 2

[VAX 8500 TIME = 48 SEC.]
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2. Find a solution of the undamped Duffing equation «28) with 0 =0) via

Lindstedt's method up to first order in~. Show that to this order the

131

amplitude of the periodic solution is identical to the steady state solution of

the first order averaged system of (28) with 0 =O.

Hint: We showed that the latter is of the form:

3 a r
3 - 4 n r

4 "l

2where r is the amplitude of the limit cycle and n = (w -1)/~. Use Lindstedt's

method to obtain YO(wt) =A cos wt, where w = 1 + k1 ~, and where
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CHAPTER 6

LIE TRANSFORMS

Introduction

The method of Lie transforms is a normal form method for Hamiltonian

systems. Like the method of normal forms (Chapter 3). Lie transforms involves

finding a change of variables so that the system of differential equations

becomes simpler. That is. the perturbation expansions are performed on the

transformation of coordinates rather than on the solution as a function of time

(as. e.g., in Lindstedt's method.)

The difference between Lie transforms and normal forms lies in the

special nature of Hamiltonian systems. Such systems occur extensively in

physics. engineering, astronomy and classical mechanics, and normally involve

models which do not dissipate energy through damping. The differential

equations for a Hamiltonian system are generated by a single scalar quantity.

the Hamiltonian. which often can be identified with the total energy of the

system.

(1. l)

(1.2)

The equations take the form:
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where H =H(qi ,Pi ,t) is the Hamiltonian, and where qi(t) and Pi(t) are the

dependent variables describing the state of the system. For a system with n

degrees of freedom, goes from I to n.

As an example of a Hamiltonian system, let us take a simple harmonic

oscillator. In this case the Hamiltonian is:

(2)

whereupon the differential equations of motion become:

(3. I)

(3.2)

dql
d't = PI

dPI 2
d't = - w ql

where ql corresponds to the displacement of the oscillator, and Pl to its

velocity. (The qi and Pi are traditionally called the generalized coordinates

and momenta, respectively.)

In the method of Lie transforms, we are concerned with generating a

change of coordinates which will simplify the Hamiltonian, whereas in the

method of normal forms we deal directly with the differential equations of

motion. All quantities, including the original Hamiltonian H and the change of

coordinates, are expanded in a power series in a small parameter c:

(4) H

The method generates a canonical coordinate transformation, i.e., it preserves

the Hamiltonian form of the equations. Thus the original system based on H

with variables qi,Pi is transformed into a new system with a new Hamiltonian K

with variables Qi'P i , The transformation itself is specified by a generating
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function W.

(5)

LIE TRANSFORMS

Both K and Ware expanded in perturbation series:

(6) W

Up to terms of order ~n, the method gives that K
n

depends upon W
n

and other

quantities which are already known. The strategy of the method is to choose Wn

so as to simplify Kn as much as possible. As usual in normal form methods. the

choice of the final canonical form K is strongly dependent on the specific

details of the problem at hand.

We shall now present the explicit details of the method. We refer the

reader to [7].[24] for a derivation of the following results. We consider a

system with N degrees of freedom. Let us denote the Poisson bracket of two

(7)

N

(f.g} = l ~~ -~~
i=1 aQi aP i aP i aQ i

We define the operators Ln and Sn as follows:

(8)

(9.1 ) Id (the identity operator)

(9.2) L Sn-m m . n 1,2.3....

Then the near-identity change of variables from (qi,Pi) to (Qi'Pi ) is given by
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(10. I) [SO + c SI +
2 ... ] Qiqi c S2 +

( 10.2) [SO + c Sl +
2 + ••• ] P.Pi c S2

1

and the nth term K of the resulting Hamiltonian K of eq.(5) is
n

(11.1)

135

(11.2)

(11.3) K
n

H
n

+ _ [aWn + {W ,Hal] + .!. n~
1

[L K + m
n at n n L n-m m

m=l

S H
m
],n-m

n = 2.3,4, ...

in which the functions H., K. and W. are written as functions of the
1 1 1

transformed variables Qi and Pi' By choosing Wn appropriately in eqs.(ll), we

may simplify the expression for Kn

Action-angle Variables

In this Chapter we shall be interested in applying the method to

systems which, when c = 0, correspond to N linear oscillators, cf. eq.(2). In

this case all the computations are greatly simplified by using a polar

coordinate system called action-angle variables for the c = 0 problem. In the

case of eq.(2), if we make the (canonical) transformation from q1,Pl to ¢l,J l

via the equations (see Exercise 3 at the end of this Chapter)

(12.1)

(12.2)
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we obtain

(13)

LIE TRANSFORMS

Here the coordinate ¢l is called the angle and the momentum J l is the action.

Note that the eq.(13) is much simpler algebraically that the equivalent eq.(2).

While the use of action-angle variables is not an essential part of the method

of Lie transforms. we shall find it useful for the systems of forced. coupled

nonlinear oscillators which we shall consider.

As an example of the method. we consider the following nonlinear

Mathieu equation [30]:

(14)
d2 3
~ + (0 + e cos t) u + e a u =0
dt2

which may be written in the Hamiltonian form (1) by setting

(15) q = u.
du

p =-.
dt

with the Hamiltonian

(6)

We shall set

(17)

2 2 4
H =~ + (0 + e cos t) 9- + e a 9-

2 2 4

where w is the frequency of the e =0 problem and the 0i are detuning

parameters. The Hamiltonian may be simplified by using action-angle variables
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¢. J of eq.(12):

(18) H = w J+ E. [° 1 + cos t] ~ sin
2¢ + E. a J: sin

4¢ + 0(E.
2

)
w

The near-identity transformation of variables (10) from ¢.J to. say.

~.I coordinates is given by:

137

(19.1)
aWl 2

¢ = ~ - E. --- + O(E. )
aI

(19.2) J
aWl 2

I + E. --- + O(E. )
a~

where we have used. e.g .. Sl~ = L1~ = {W1'~}

aWl a~ aWl ~
=---------=

a~ aI aI a~

In the new coordinates. the terms of the transformed Hamiltonian are:

(20)

(21. 1)
aWl

+ --- +
at

(21.2) [ ]
I . 2 12 . 4 aw1 aw1°1 + cos t - Sin ~ + a - Sin ~ + --- + W ---
w w2 at a~

In order to choose WI judiciously. we trigonometrically reduce the

right hand side of eq.(21.2):

(21.3) K1 =~ [- cos(t+2~) - cos(t-2~) + 2 cos t - 2 °1 cos 2~ + 2 °1)

aI
2

[ )+ 8w2 cos 4~ - 4 cos 2~ + 3
aWl aWl

+---+w---
at a~
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Each term on the right hand side of (2l.3) which is of the form

(22) A cos (B t + C ~)

may be removed by including a corresponding term in WI of the form:

(23) D sin (B t + C ~)

which leads to the choice

(24) WI = I sin(t+2~}

4<..1 (l+2w)

2aI sin 4~

32 w3

I sin(t-2~} + {o Iw + aI2 } sin 2~ _ I sin t
4<..1 {-1+2w} 1 4<..13 2 w

and thus yields the expression

{25}

Note that we do not remove the constant terms from Kl , as these would require a

term in WI that is linear in t or ~. and such a term would destroy the uniform

validity of the asymptotic expansion for WI as t or ~ goes to infinity.

The significance of eq.{25} is that now the transformed Hamiltonian K

does not involve ~ or t to order ~:

{26}

Thus the transformed problem is easy to solve:
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d~ aK °l
c

3ac
-=-=w+--+-I
dt aI 2w 4w

2

139

(27.2)

from which

dI

dt

aK = 0

a~

(28.1)

(28.2) I

By substituting (28) and (24) into (19) we may obtain expressions for

the original action-angle variables ~ and J. Then an expression for the

original variable u = q =~ sin ~ is obtainable.

Computer Algebra

The key formulas (7)-(9) of the method of Lie transforms are ideally

suited for implementation on MACSYMA [22]. We shall demonstrate a program

called LIE on the foregoing example, and then give the program listing. We

annotate the run in Italics:

LIE();

00 YOU WANT TO INPUT A NEW PROBLEM (YIN) ?
Y;
ENTER NUMBER OF DEGREES OF FREEDOM
1;
ENTER SYMBOL FOR Q[ ]
Q;
ENTER SYMBOL FOR P[ ]
P;
THE HAMILTONIAN DEPENOO ON THE Q'S, P'S, T AND E (SMALL PARAMETER)
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2

THE E=O PROBLEM MUS[ BE OF THE FORM:

222
w q + P

1
H =

2

ENTER THE HAMILTONIAN
PA2/2+(WA2+DELI*E+DEL2*EA2+E*COS(T»*QA2/2+E*A*QA4I4;

2 2 2 4 2
q (w + e cos(t) + del2 e + dell e) a e q p

H = ------------------------------------- + ------ +
2 4

THE ACfION-ANGLE VARIABLES ARE J' S FOR ACfION, PHI'S FOR ANGLE

H = j
1

w -

j e cos(t + 2 phi)
1 1

4w

j e cos(t - 2 phi)
I 1

-------------------- +
4 w

j e cos(t)
1

2 w

2
j cos(2 phi ) del2 e

I 1

2
j del2 e j cos(2 phi ) dell e

1 1 1
j dell e

1
- ---------------------- + ---------- - --------------------- + ---------

2w 2w 2w 2w

2
j cos(4 phi) a e

1 1

2 2
j cos(2 phi ) a e 3 j a e
III

+ ------------------ - ------------------ + --------
222

8w 2w 8w

ENTER HIGHEST ORDER TERMS IN E TO BE KEPT
1 ;

The program up to this point has involved entering data and

transforming to action-angle variables i l , phil. These preliminary steps

completed. the program begins the Lie transform computation. The transformed

action-angle variables are denoted by i l , psi l , and the first result displayed

is the generating function Wl , referred to as WGEN[l] to avoid confusion with

w
l

. This equation corresponds to eq.(24) above:
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WGEN[ I ]

141

i
I

sin(t + 2 psi)
I

sin(t - 2 psi)
I

sin(2 psi) (i
I I

2
dell w + i a)

I

2 2
8w +4w 8w -4w

+ ------------------------------
3

4 w

i sin(t)
I

2
i sin(4 psi ) a

I I

2 w 3
32 w

Having obtained WI' the program computes K1 as in eq.(25) above:

THE TRANSFORMED HAMILTONIAN K[ I ]

i dell
I

2
3 i a

I
------- +

2 w 2
8 w

The foregoing steps of computing Wi and Ki would now be iterated until

the specified truncation order is reached. Since we specified truncation at

order t, the main loop is now exited, and the resulting expression for the

transformed Hamiltonian K (called the Kamiltonian after Goldstein [12]) is

displayed:

THE TRANSFORMED HAMILTONIAN IS

K i
I

w + e

i dell
I

(------- +
2 w

2
3 i a

I
------)

2
8 w

The user is now given the option of generating the near-identity

canonical transformation from jl' phil to iI' psi 1 action-angle coordinates:
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00 YOU WANT TO SEE TIIE NEAR IDENTITY TRANSFORMATION (YIN) ?
Y;

j
1

2 i cos(t + 2 psi)
1 1

e (-------------------- +
2

8 w + 4 w

2 i cos(t - 2 psi)
1 1

2
8 w - 4 w

+ ------------------------------ -
3

2 w

cos(2 psi ) (i dell w +
1 1

2
i a)

1

2
cos(4 psi) a

1 1
----------------) + i

3 1
8 w

phi
1

sin(t + 2 psi)
1

e (- --------------- +
2

8 w + 4 w

sin(t - 2 psi)
1

2
8 w - 4 w

sin(2 psi ) (dell w + 2 i a)
1 1

3
4 w

i sin(4 psi) a
sin(t) 1 1

+ ------ + ----------------) + psi
2 w 3 1

16 w
[VAX 8500 TIME 52 SEC.]

Note that the D(c) computation would not be valid For w = 1/2 due to

vanishing denominators. Such singular parameter values are called resonances.

IF we had extended the computation to include c2 terms. we would have Found the

additional resonances w = 1 and w =1/4. This behavior is typical of nonlinear

systems: as we extend the computation to higher and higher order in c. we Find

more and more resonant parameter values.

In order to examine typical behavior at a resonant parameter value. we

assign w the value 1/4 (corresponding to 4:1 subharmonics) and again call the

program LIE:

W: 1/4$

LIE()$

00 YOU WANT TO INPUT A NEW PROBLEM (YIN) ?
N;
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By choosing not to input a new probtem. the previous Hamittonian is

used. subject to any parameter assignments that have been made since the

program was tast run.

We choose to truncate at c2 terms in order to see the effect of the

resonance (which does not show up at order c):

ENTER HIGHEsr ORDER TERMS IN E TO BE KEPT
2;
WGEN[ 1 ] =

143

2 i sin(t + 2 psi)
1 1

-------------------- + 2 i
3 1

sin(t - 2 psi) - 2 i
1 1

sin(t)

+ sin(2 psi) (4 i
1 1

THE TRANSFORMED HAMILTONIAN K[ 1 ]

2
2 i dell + 6 a

1

WGEN[ 2 ]

2 2
dell + 16 i a) - 2 i

1 1

2

sin(4 psi) a
1

4 i sin(2 t + 2 psi )
I I

4 i sin(2 t - 2 psi )
I I

16 a sin(t + 4 psi)
I

---------------------- + ---------------------- - -----------------------
15 3 3

+ 5 additionat tines omitted for brevity

THE TRANSFORMED HAMILTONIAN K[ 2 ] =

2
B a cos(t - 4 psi) + 2

1

2 2 3 2
de12 - 8 i dell - 96 a dell - 272 a

1

4 i
1

+ ----
3
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THE TRANSFORMED HAMILTONIAN IS

LIE TRANSFORMS

2 2
K =e (8 i a cos(t

1
4 psi ) + 2 i

1 1

2 2
del2 - 8 i dell - 96 i a dell

1 1

4 i
3 2 1

- 272 i a + ----) + (2 i
1 3 1

i
2 1

dell + 6 i a) e +
1 4

As a checR on the program. we note that this resuLt agrees with a

previousLy pubLished hand caLcuLation [30].

00 YOU WANT TO SEE THE NEAR IDENTITY TRANSFORMATION (YIN) ?
1'1;

[VAX 8500 TIME = 145 SEC.]

Note that in this resonant parameter case the transformed HamiLtonian K

is not independent of angLe terms as it was for nonresonant w. cf. eq.(26).

This is due to the unremovabiLity of terms with vanishing denominators.

Nevertheless by making the canonicaL transformation from ~l.Il to ~.I via

(29) ~ = ~1 - t/4 •

the new Hamiltonian becomes autonomous. and is therefore reLativeLy easy to

analyze. See Exercise 1 at the end of this Chapter.

Here is the program listing:

PE(): =BLOCK(

Itt INPUT PROBLEM ? ttl

CHOICEI :READ( "00 YOU WANT TO INPUT A NEW PROBLEM (YIN) ?").

IF CHOICEI=N THEN GO(JUMPI).

Itt INPUT PROBLEM ttl

N: READ( "ENTER NUMBER OF DEGREES OF FREEOOM").

rand@math.cornell.edu



LIE TRANSFORMS

FOR II: 1 THRU N DO (

Q[II]:READ("ENTER SYMBOL FOR Q[" ,II,"]"),

P[ II] : READ ( "ENTER SYMBOL FOR P[", II, "]")) ,

KILL(W) ,

PRINT("THE HAMILTONIAN DEPENDS ON THE Q'S, P'S, T AND E (SMALL PARAMETER)"),

PRINT("TH£ E=O PROBLEM MUST BE OF THE FORM: "),

PRINT("H =" ,SUM( (P[II]~2+W[IIY2*Q[II]~2)/2, II ,I,N»,

HORIGINAL:READ("ENTER THE HAMILTONIAN"),

PRINT( "H =", HORIGINAL),

/* TRANSFORM TO ACTION-ANGLE VARIABLES */

/* FIND THE W[II]'S */

HO:EV(HORIGINAL,E=O),

FOR II: 1 THRU N DO

W[II]:SQRT(DIFF(HO,Q[II],2»,

PRINT("TH£ ACTION-ANGLE VARIABLES ARE J'S FOR ACTION, PHI'S FOR ANGLE"),

FOR II: 1 THRU N DO

TR[II]:[Q[II]=SQRT(2*J[II]/W[II])*SIN(PHI[II]),

P[II]=SQRT(2*J[II]*W[II])*COS(PHI[II])],

TRAN:MAKELIST(TR[II],II,I,N),

H:EV(HORIGINAL,TRAN,ASSUME-PQS:TRUE,INFEVAL),

H:TRIGSIMP(H) ,

H:EXPAND(TRIGREDUCE(EXPAND(H»),

PRINT("H =" ,H),

JUMP1,

/* INPUT TRUNCATION ORDER */

NTRUNC:READ("ENTER HIGHEST ORDER TERMS IN E TO BE KEPT"),

FOR I I :0 THRU NTRUNC DO

H[II]:RATOOEF(H,E,II),

145
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Itt LIE TRANSFORMS ttl

Itt NEAR IDENTITY TRANSFORMATION FROM (J, PHI) •S TO (I. PSI) •S ttl

Itt UPDATE VARIABLES ttl

FOR II: 1 THRU N oo(

P[II]: 1[11],

Q[II] :PSI[II]),

Itt REPLACE J AND PHI BY I AND PSI IN H'S ttl

FOR II: 0 THRU NTRUNC 00

H[II]:EV(H[II].MAKELIST(J[III]=I[III].III,I.N).

MAKELIST(PHI[III]=PSI[III].III.I.N»,

K[O]:H[O].

Itt DECLARE WGEN[I] TO BE A FN OF T. Q'S AND P'S ttl

KILL(WGEN) ,

DEPEfIDC>(WGEN. [T]) ,

FOR II: 1 THRU N 00

DEPENDS(WGEN.[Q[II],P[II]]),

Itt E--o PROBLEM IS OF FORM SUM(W[II]ttl[II]) ttl

Itt CHOOSE WGEN[II] TO KILL AS MUCH AS POSSIBLE IN EQ(II) ttl

Itt EQUATE K[II] TO UNREMOVABLE TERMS ttl

Itt DEFINE PATTERN MATCHING RULES TO ISOLATE ARGS OF TRIG TERMS ttl

MATCHDECLARE([~1,D~2] ,TRUE) •

DEFRULE(rosARG,D~IM(l)S(D~2) ,D~2).

DEFRULE(SINARG.D~lttSIN(~2).~2).

FOR I I : 1 THRU NTRUNC oo(

EQN[II]:EXPAND(TRIGREDUCE(EXPAND(EQ(II»».

TEMP:EXPAND(EV(EQN[II].WGEN[II]=O».

Itt CHANGE SUM TO A LIST ttl

TEMPI :ARGS(TEMP).
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Itt REMOVE CONSTANT TERMS ttl

TEMP2:MAP(TRIGIDENTIFY.TEMPl).

Itt ISOLATE ARGUMENTS OF TRIG TERMS ttl

ARGl:APPLYl(TEMP2.COSARG.SINARG).

Itt REMOVE DUPLICATE ARGUMENTS ttl

ARG2:SETIFY(ARGl) •

Itt REMOVE RESONANT ARGUMENTS ttl

ARG3 :SUBLIST(ARG2 •NOTRESP) •

Itt CHOQSE WGEN TO ELIMINATE NONRESONANT TERMS ttl

LENG: LENGTII (ARG3) •

WGENTEMP1:0 •

FOR JJ: 1 THRU LENG OO(

WGENTEMP2:AAA*COS(PART(ARG3.JJ»+BBBttSIN(PART(ARG3.JJ».

TEMP4:EV(EQN[II].WGEN[II]=WGENTEMP2.DIFF).

TEMP5:SOLVE([RATCOEF(TEMP4.COS(PART(ARG3.JJ»).

RATCOEF(TEMP4.SIN(PART(ARG3.JJ»)].[AAA.BBB]).

WGENTEMP1: WGENTEMPI+EV(WGENTEMP2 •TEMPS) ) •

WGEN[ II ] :WGENTEMP1 •

PRINT("WGEN[". II. "] =").

PRINT(WGEN[II]).

K[II]:EXPAND(EV(EQN[II].DIFF».

K[II]:EXPAND(RATSIMP(K[II]».

PRINT("THE TRANSFORMED HAMILTONIAN K[". II. "] =").

PRINT(K[II]» •

KAMILTONIAN:SUM(K[II]ttE~II.II.O.NTRUNC).

PRINT ("THE TRANSFORMED HAMILTONIAN IS ").

PRINT ("K =" .KAMILTONIAN).

aIOICE2:READ("OO YOU WANT TO SEE THE NEAR IDENTITY TRANSFORMATION (YIN) ?").

IF CHOICE2=N THEN GO(END).
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1M THE NEAR IDENTITY TRANSFORMATION MI

FOR II: 1 TIIRU N OO(

JTRANS[II]:SUM(S(III.P[II])MEAIII,III.O,NTRUNC),

PHITRANS[II]:SUM(S(III,Q[II])MEAIII,III.O,NTRUNC»,

FOR II: 1 TIIRU N OO(

PRINT(J[II], "=" .JTRANS[II]),

PRINT(PHI[II], "=". PHITRANS[II]»,

END,

KAMILTONIAN)$

1M AUXILIARY FUNCTIONS MI

POISSON(F.G):=

SUM(DIFF(F,Q[II])MDIFF(G.P[II])-DIFF(F.P[II])MDIFF(G,Q[II]),II,l,N)$

L(II,F):=POISSON(WGEN[II].F)$

S(II.F):=(IF 11=0 THEN F ELSE SUM(L(II-M,S(M.F»,M,O,II-l)/II)$

EQ(II):=(H[II]+(DIFF(WGEN[II],T)+POISSON(WGEN[II],H[O]»/II

+SUM(L(II-M,K[M])+MMS(II-M,H[M]).M,l.II-l)/II)$

LZAP(ANY):=DIFF(ANY,T)+POISSON(ANY,H[O])$

TRIGIDENTIFY(EXP) :=IF FREEOF(SIN,EXP) AND FREEOF(OOS,EXP) THEN 0 ELSE EXP$

NOTRESP(EXP): =NOT IS(LZAP(EXP) = 0)$
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SETIFY(LIST): =(

SET: [LIST[I]],

FOR I: 2 THRU LENGTH(LIST) OO(

IF NOT MEMBER(LIST[I] ,SET) THEN SET:CONS(LIST[I] ,SET»,

SET)$

Example with Two Degrees of Freedom

In order to illustrate a two degree of freedom example, we take the

problem of two identical nonlinear oscillators with nonlinear coupling

[28], [29]:

149

This problem involves a resonance associated with the fact that the frequencies

of the uncoupled linear oscillators are equal. Here is the MACSYMA run of the

program LIE applied to this example:

LIE() ;

00 YOU WANT TO INPUT A NEW PROBLEM (YIN) ?
Y;
ENTER NUMBER OF DEGREES OF FREEOOM
2;
ENTER SYMBOL FOR Q[ ]
QI;
ENTER SYMBOL FOR P[ ]
PI;
ENTER SYMBOL FOR Q[ 2 ]
Q2;
ENTER SYMBOL FOR P[ 2 ]
P2;
THE HAMILTONIAN DEPENDS ON THE Q'S. P'S, T AND E (SMALL PARAMETER)
THE E=O PROBLEM MUST BE OF THE FORM:

2 2 2
w q2 + p2

2
H =------------ +

2

2 2 2
w ql + pI

I

2
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ENTER TI{E HAMILTONIAN
Pl~2/2+Ql~2/2+P2~212+Q2~2/2+E*K*(Ql~414+Q2~414)+E*(QI-Q2)~414;

4 4
q2 ql

H = e k (--- + ---)
4 4

2 4 2 2 2
q2 e (ql - q2) ql p2 pI

+ --- + ------------ + --- + --- + ---
2 4 2 2 2

THE ACTION-ANGLE VARIABLES ARE J'S FOR ACTION. PHI' S FOR ANGLE

222
j cos(4 phi) e k j cos(2 phi) e k j cos(4 phi) e k
2 2 2 2 1 1

H =------------------ - ------------------ + ------------------
828

+ 8 additional lines omitted for brevity

2
3 j j e 3 j e

1 2 1
+ --------- + ------ + j + j

2 8 2 1

ENTER HIGHEST ORDER TERMS IN E TO BE KEPT
1 ;

WGEN[ 1 ]

2 2
sin(2 psi ) (i k + i + 3 i i)

2 2 2 1 2

4

2 2
sin(4 psi ) (i k + i )

2 2 2

32

+ 5 additional lines omitted for brevity

THE TRANSFORMED HAMILTONIAN K[ 1 ] =

2
3 i k

2

2
3 i k 3 i i cos(2 psi - 2 psi )

1 1 2 2 1
------ + ------ + ----------------------------

8 8 4

3/2 3/2 2
3 sqrt(i ) cos(psi - psi) 3 i sqrt(i) cos(psi - psi) 3 i

12 21 1 2 21 2
- -------------------------------- - -------------------------------- +

2
3 i 3 i

1 2 1
+ ------- +

2 8

2 2 8
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THE TRANSFORMED HAMILTONIAN IS

151

K

2 2
3 k 3 k

2
e (------ + ------ +

8 8

3/2

3 i i cos(2 psi - 2 psi )
1 2 2 1

4

3/2 2
3 sqrt(i ) i cos(psi - psi) 3 i sqrt(i) cos(psi - psi) 3 i

12 21 1 2 2 2
- -------------------------------- - -------------------------------- +

2

2
3 i i 3

1 2 1
+ ------- + ----) + i + i

2 8 2 1

2 8

DO YOU WANT TO SEE THE NEAR IDENTITY TRANSFORMATION (YIN) ?
N;

[VAX 8500 TIME 181 SEC.]

The resulting Kamiltonian,

can be simplified by the canonical transformation:

(32)

The resulting expression for K in terms of t 1,I 1,t2 ,I2 does not involve t
2

.

Thus 12 is a constant in time (since 8K18t2=O), and to O(E) the problem can be

reduced to that of a single degree of freedom system.
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Exercises

1. For eq.(14) with w

obtained,

LIE TRANSFORMS

1/4 in eq.(17), show that the Hamiltonian K which we

gives equations of motion which are equivalent to those corresponding to the

new Hamiltonian K(~,I) under the transformation (29):

(PI) K

9005 12 - 272a2J3 + ii]1 3

The equilibria of the corresponding equations of motion represent 4:1

subharmonic periodic motions of the original system (from eqs.(29),(12».

Obtain an asymptotic expansion for the location of the equilibria of this

system. neglecting terms of O(e2). Using the fact that I must be non-negative,

show that there exists a bifurcation curve in the 5-e plane given by:

(P2)

such that points lying to the left of thi~ curve exhibit two 4:1 subharmonics,

while points lying to the right exhibit no such subharmonics [30J.
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2. Consider eq.(14) with w = 1/2 in eq.(17). From eq.(24) this choice of w

leads to a resonance in the order ~ terms. Investigate the equilibria in the

resulting Kamiltonian equations. Show that there are two bifurcation curves in

the D-~ plane given by:

(P3) + •••

which separate regions with 0, 2, and 4 nontrivial equilibria. Show that these

respectively correspond to 0, 1, and 2 2:1 subharmonic periodic motions

[18J,[30J.

3. A transformation is said to be canonical if it preserves the Hamiltonian

structure of the differential equations of motion. The conditions for a

transformation from (qi,Pi) to (Qi'P i ) variables to be canonical is [3J:

(P4)

where the wedge product ~ is anticommutative:

(P5) df ~ dg - dg ~ df, df ~ df o

In computing the differentials dqi and dPi in (P4). we use the ordinary chain

rule based on the transformation of variables. This gives dqi and dPi as

linear combinations of the dQ
i
's and dPi's. Show that the transformations

(12), (29) and (32) used in this Chapter are canonical.

rand@math.cornell.edu



154 LIE TRANSFORMS

4. Use Lie transforms to treat the undamped Duffing equation:

(P6)

(P7)

d2x 3--- + (1 + ~ A) x + ~ a x ~ A cos t
dt2

dxTake q = x and p = d t and use the Hami 1tonian:

224
H =~ + (1 + ~ A) ~ + ~ a ;r- - ~ A q cos t

2Neglecting terms of O(~ ). find an approximate relationship between the

amplitude of the periodic response and the parameters A. a and A.
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CHAPTER 7

LIAPUNOV-SCHMIDT REDUCTION

Introduction

Like the center manifold reduction. the Liapunov-Schmidt reduction is a

method which replaces a large and complicated set of equations by a simpler and

smaller system which contains all the essential information concerning a

bifurcation. The method is applicable to a system of nonlinear evolution

equations of the form

(1) dy

dt
F(y.a)

where a is a parameter. A solution to (1). y = y(t.a). is said to exhibit a

bifurcation as a passes through a critical value a
c

' if the nature of the

solutions exhibits a qualitative change at ac ' e.g. in the case of an

equilibrium solution. if the number of equilibria or their type of stability

changes. Here (1) describes either a finite dimensional or infinite

dimensional system. The former we may think of a system of ordinary

differential equations. whereas the latter would be represented by one or more

partial differential equations or integrodifferential equations.

The aim of the Liapunov-Schmidt reduction is to reduce (1). which. even

if finite dimensional. may be a very large system. to a small system of

algebraic equations (typically one or two dimensional). This will be
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accomplished by means of a perturbation expansion near a bifurcation point of a

known solution of (1). It can be shown [13],[42] that solutions of these

algebraic equations are locally in one to one correspondence to the solutions

of (1). An important restriction for our programs will be that we confine

ourselves to a nondegenerate bifurcation from a stationary solution to another

stationary solution. This excludes the important case of Hopf bifurcations,

which in principle one can treat with similar methods (cf.[13]). Thus we shall

be interested in steady state solutions to the system (1):

F(y,a) O.

Example: Euler Buckling

In order to introduce the method we perform an ad hoc perturbation

analysis of the buckling problem. We will generalize our approach in the next

section. A model for static beam buckling under compression (Euler's elastica,

[25]) is given by

(2) + a sin y 0, y' (0) y'(l) o

where x is the arc length along the deformed beam, y(x) is the angle which the

tangent to the beam makes with the undeformed beam axis, a is the load

parameter and where the beam's length is normalized to 1. The boundary

conditions correspond to pinned ends. Eq.(2) has an analytical solution in

terms of elliptic integrals (cf.[40])

(3) a m 1,2,3, ...
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where
~/2 2 2 -1/2

K(k) = f (1-k sin ~) d~

o
is the complete elliptic integral of the

first kind and k sin a/2 where a = y(O) is the beam angle at x = O.

If we linearize (2) we have the equation for an harmonic oscillator

(4) + a y o . y' (0) y'(1) o

Note that y - 0 is the only solution satisfying the boundary conditions if

a # n2~2. n = 1.2.3.· ••. If a =n2~2 then y =A cos n~ is an admissible

solution with undetermined amplitude A. Let us assume we increase a from O.

Then a = a
c

~2 is the first value where a nontrivial solution may branch off

from the solution y = O. In order to find the deflectiop amplitude A as a

function of a parameter X = a - a c ' we make the following ansatz:

(5) y A cos ~ + w(x;A.X)

where A is assumed to be small and where w and X are of second order in A. We

require that a Fourier decomposition of W(X:A,A) has no component cos ~, since

if it had we could include it in the A cos ~ term. Expanding (2) up to third

order we find

d2y 3
+ a (y - ~ )

dx2 3!

3
( ) ( 2) [A (A cos ~ + w) ]A cos ~ + w + X + ~ cos ~ + w - _

3!

(6)
3

+ (X + ~2) [w _ (A cos ~ + w) ]
3!

o
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Since {cos nrrx} is a complete orthogonal set on [0.1]. we can split the Fourier

decomposition of (6) into two parts: The cos rrx component and all other modes.

To obtain the coefficient of the cos rrx component of (6). we take the inner

1
product of (6) with cos rrx and divide it by S cos2rrx dx = 1/2. Since w. and

o
hence w··. have. by hypothesis. no cos rrx components. we obtain (after some

trigonometric simplification):

(7.1)

1[3 2 2 3] ]~ 2" A w cos 3rrx + 3A w (1 + cos 2rrx) + 2w cos rrx dx = 0

All the other modes may be accounted for by subtracting the cos rrx component

(the coefficient of which is given by Eq(7.1» from (6):

(7.2)

(A + 11"2) [_1 A3cos 3~ + _3 A2 w 2 3,,~ (1+ cos 2rrx) + 3A w cos rrx + w
6 4 2

1[3 2 2 3] ]- cos rrx S _ A w cos 3rrx + 3A w (1 + cos 2rrx) + 2w cos rrx dx
o 2

o

We will later recognize eq. (7.1) as the bifurcation equation. Note that to

solve (7.1) we have to know w and hence we must first solve (7.2). A closer

look at (7.2) reveals that we are dealing with a forced nonlinear de tuned

oscillator. Since w is assumed to be of second order in A and A. eq.(7.2)

reduces. for small A and A, to a linear forced harmonic oscillator
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(8) o

The solution of the unforced system is given by w B cos wx + C sin wx. A

particular solution to (8) is given by

(9) w
A

3
- __ cos 3wx

192

and hence, in order to fit the boundary conditions w'(O) = w'(l) = 0, we must

set C =O. Morever B must be zero since w must not have a Fourier component

cos wx. Thus (9) represents the solution w of (7.2). Therefore up to order

A
3

, the integrated terms in eq.(7.1) are negligible and we calculate the

response function A(~) to be a solution of

5However, if we include terms in eq.(2) up to order A , and then determine the

Fourier coefficient of the cos wx mode and insert (9) into the resulting

equation, we find:

(10) o

We solve (10) for ~ and expand the result up to fourth order:

(11 )
2

rr

A Taylor expansion of the elliptic integral in the exact solution (3) with

respect to a, the beam angle at x = 0 , gives
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(12)
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If we take into account that a = yeO) = A + A
3

w(O;A,O) = A - + •••
192

and that

2a =A + ~ , then (11) and (12) are identical up to order 4.

Formal Setup

In the previous example we made several assumptions about the size of

small terms, e.g. w and A were assumed to be 0(A2). These assumptions are, as

we will show, both unnecessary and, from the point of view of an automated

computer algebra program, undesirable. In this section we shall generalize the

perturbation analysis using the language of functional analysis in order to

prepare for the approach used in the MACSYMA program. We assume a physical

system whose dYnamics are governed by the evolution equation (1), where y is an

element of an appropriate Banach space E and y =0 is a trivial solution. E is

typically a subspace of the Hilbert space L2(O) where 0 is a bounded domain in

~n, furnished with the standard inner product

(13) <u,v> f u(x)·v(x) dx
o

where u(x) and vex) are n-vectors whose elements are functions of x, and where

u(x)·v(x) is the scalar product of u and v in ~n.

If D F(O,a), the linear part of the operator F (i.e. its Frechet
y

derivative), has only eigenvalues with negative real parts, then every

perturbation of y =0 in (1) is damped and will die away. However if we have

an eigenvalue of L which is zero at a = ac ' then the situation is marginal and

signifies the onset of branching at the bifurcation point A =a - ac = O. We

define the linear operator L to be D F(O,a). Since we only want to deal with
y c
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nondegenerate bifurcations, the eigenvalues ~n and the eigenfunctions Yn of L

will satisfy LY I = 0 and LYn = ~nYn where Re ~n< O. We call Yl the critical

* *eigenfunction and define the adjoint critical eigenfunction via L Y
I

= 0

where L* is the adjoint operator of L, i,e., <L*f,g> = <f,Lg>. We assume that

we can decompose the Banach space E N + R into kernel N and range R of L at

'l\ =0 such that we can write Y =A Yl + w, where A Eo IR is a "state variable" or

"amplitude" and Yl Eo N, w Eo R. Thus LY
I

= 0 and w Lu for some u. In all our

examples this splitting is always possible. Let us define projections onto the

subspaces Nand R:

(14.1) p Y

(14.2) Q Id - P, i.e., Q Y Y----

P projects onto the kernel N of Land Q onto the image R of L. Observe that

P * *Yl = Y1 and Q Y1 = O. Since by defini tion L Y1 o and since w is an element

* * * *of the range of L we find that <L Yl'u> = <yl,Lu> <Yl'w> = O. Hence from

(14.2) we find that Q w = w. Next we replace the parameter a by 'l\ = a - a inc

F(y,a) = 0, and we write it in the form

(15) F(y,'l\) L Y + F(y,'l\) o

Thus we can split (15) into two equations on the subspaces N and R:
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(16.1)
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o

-(16.2) Q F =Q [L (A Y1 + w) + F(A Y1 + w,X}] =L w + Q F(A Y1+ w,X} =0

By this splitting we restrict L to operate on the complement of the kernel of L

and hence L is invertible on R. Therefore we can find a unique solution

w(x;A.X} to (16.2). Inserting this into (16.1) we get a simple algebraic

equation g(A.X,w(x;A.X}} =0 (or simply g(A.X) = O} which is the so-called

bifurcation equation. In our previous example. eq.(7.1} corresponds to the

projection P F =0 and eq.(7.2} to Q F =O. Since w(x;A.X} can rarely be found

analytically in closed form as a solution of (16.2), one determines w(x;A.X} as

a Taylor series in A and X to a fixed order. This leads consequently to a

truncated Taylor series for g(A.X}. Note that in order to determine g(A,X} to

order n. we need w(x;A,X} only to order n-1. since w enters (16.1) nonlinearly

in y and X. This gives us the nice possiblity of determining g to order n

without solving (16.2) if we know a priori (e.g. from symmetry arguments) that

w is of order n. We illustrate the method by reworking the elastica problem.

Euler Buckling Revisited

In this section we will redo the elastica problem in the way abstractly

described in the previous section. The method we follow here will be used in

our computer algebra implementation of the Liapunov-Schmidt reduction. Let us

recall the differential equation for beam buckling

(17)
2
~ + a sin y = 0 .
~2

y'(O) = y'(l) o

Based on our previous analysis, we take Y1 cos vx as critical eigenfunction
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M 2
and Y1 = Yl as adjoint critical eigenfunction at a = a c = ~ We define

A = a - ~2 and substitute y = A cos ~ + W(X;A,A) into (17) to give

163

(IS) 2 d
2w 2- ~ A cos ~ + + (A + ~ ) sin(A cos ~ + w) = 0

dx
2

d
2

2Our linear operator L is given by + ~ and since we bifurcate from the

dx
2

trivial solution y = 0 we have

(19)

Since g(A,A) and W(X;A,A) are polynomials in A and A, we can calculate

them via Taylor expansions of equations (16). The bifurcation equation g(A,A)

M
of (16.1) is obtained by taking the inner product of eq.(lS) with Y1:

(20) g(A,A) = f~os ~ [ - ~2 A cos ~ + :; + (A + ~2) sin(A cos ~ + w) ] dx

o

- ~:A + f~os ~ [ :; + (A + ~2) sin(A cos ~ + w) ] dx

o

Eq.(16.2) is obtained by operating with Q on (IS), i.e., by subtracting

M
g(A.A) Y1/(Y1'Y1> = 2 g(A,A) cos ~ from (IS) (cf. (14.2». which gives

(21) d
2

w 2
--- + (A + ~ ) sin(A cos ~ + w)
dx

2

- 2 cos ~ f~os ~ [:; + (A + ~2) sin(A cos ~ + w) ] dx = 0

o
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We will now obtain the first few terms of the Taylor expansion of g(A.X). We

use subscripts to represent the partial derivatives of g and w evaluated at

A = 0 and X = O. e.g. gx = dgl . We begin by setting A = X = 0 in (20) and
dX A=X=O

using (19) to obtain:

(22) g(O.O) =0

Next we differentiate (20) with respect to X

~ = J~os 1TX [d
3

; + sin(A cos 1TX + w) + (X + 11"2) dw cos (A cos 1TX + w) ] dx.
o dxdX dX

set A = X = O. and use (19) to obtain

. d2 dw 2 dw dwThe last equality holds SInce --- -- + 11" -- = L -- and
dx2 dX dX dX

* dw * * dw * *<Yl.L dX> <L Yl'dX> = 0 since L Yl = O. This result may be obtained directly

from (23) by using integration by parts.

Next we differentiate (20) with respect to A.

~ = _ ;2 + J~os 1TX [d
3
; + (X + 11"2) (cos 1TX + dW) cos(A cos 1TX + w) ] dx.

o dxdA dA

set A = X = O. and use (19) to obtain
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J~os 1TX [d
3
; + Tr

2
cos 1TX + Tr

2
dw ] dX I

o dx dA dA A=A=O

r~os 1TX [d
3

W + Tr
2 dw ] dx I 0

J' dX2dA dA A=A=Oo

165

The last equality holds by the same reasoning as used in deriving (23).

Next we take the mixed partial derivative of (20) with respect to A and

A. set A = A = O. and use (19) to obtain

(25) J~os [ d
2

2
]dXgAA 1TX 2 wAA + cos 1TX + WA + Tr wAA

0 dX

J~os 1TX [ cos 1TX + WA ] dX

0

1 J~os wA dX=2"+ 1TX

0

* *where we have again used L Y1 = O. We see that in order to find gAA we need to

know wA. This is accomplished via eq.(21). the Q-projection of eq.(18). We

differentiate (21) with respect to A. set A = A = O. and use (19) to obtain

(26)

The integral in (26) can again be simplified by integrating by parts and using

L** 0 h 1 1Y1 = . giving t e simp e resu t
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(27) o

Hence we have to solve L wA =0 for wA. However since w c R and since L is

invertible on R, we can conclude that

(28) o

d2 2For our specific case this can be seen by noting that L q =~ + v q 0 with

dx2

q'(O) =q'(1) =0 has the solution q =cos vx, which is the critical

eigenfunction Yl' Since we defined w to lie in the complement of the critical

eigenfunction, we arrive at the desired conclusion. Therefore, from (25),

(29)

In this manner one can determine g as a polynomial in A and ~ up to any

desired order. It turns out that the first nontrivial coefficient for w is

given by wAAA . To find it, we differentiate (21) three times with respect to

A, set A = ~ = 0, and use (19) and (28) to obtain

which can be more concisely written as

(31)
2 3

L wAAA - v Q(cos vx) = 0

3 1We write cos vx as _ (cos 3vx + 3 cos vx) and note that for this bifurcation
4

problem the projection Q can be performed by simply deleting the critical
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eigenmode in the nonhomogeneous part of (31). This leaves us with

2
IT

L wAAA = __ cos 3rrx. Taking into account that the homogeneous equation has
4

zero as a solution in R. we find that

167

(32)

Computer Algebra

- ~ cos 3rrx
32

The MACSYMA program REDUCTIONl which we present in this section applies

the Liapunov-Schmidt method to the problem of steady state bifurcations

governed by a single nonlinear differential equation of the form

(33) dy+ F(y. __.a)
dx

o

where the linear differential operator is required to be of the form

(34) L + constant

We assume that the differential equation is defined on a one-dimensional space

interval with either zero or zero-flux boundary conditions. Note that if we

answer "N" to the question of whether some Taylor coefficients are known to be

zero a priori. the program runs fully automatically. However we may reduce the

execution time dramatically by setting to zero those coefficients of g and w

which vanish for symmetry reasons. We assume that y = 0 is a trivial solution

of the differential equation for all a. and that the bifurcation parameter a

enters the problem only linearly such that no terms of the form AMpILAMJ for

J > 1 exist in g and w.
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Here is a sample run on the Euler buckling problem. Since this problem

is invariant when y is changed to - y. all odd order derivatives with respect

to amplitude A (= AMP) in wand g are zero:

REDucnON 1( ) ;

ENTER DEPENDENT VARIABLE
Y;

USE X AS THE INDEPENDENT VARIABLE AND ALPHA AS A PARAMETER TO VARY
ENTER THE CRITICAL BIFURCATION VALUE ALPHA
%PI~2;

2
WE DEFINE LAM = ALPHA - %PI
ENTER THE CRITICAL EIGENFUNCTION
ct:lS(%PI*X) ;
wHAT IS THE LENGTH OF THE X-INTERVAL
1;

SPECIFY THE BOUNDARY CONDITIONS
YOUR CHOICE FOR THE B.C. ON Y AT X=O AND X=
ENTER 1 FOR Y=O. 2 FOR y'=O
B.C. AT O?
2;
B.C. AT 1 ?
2;
THE D.E. IS OF THE FORM Y" + F(Y.Y· .ALPHA) = O. ENTER F
ALPHA*SIN(Y) ;

2
d Y 2
--- + (LAM + %PI ) SIN(Y)

2
<IX
00 YOU KNOW A PRIORI THAT SOME TAYLOR COEFFICIENTS ARE ZERO. YIN
Y;
TO WHICH ORDER 00 YOU WANT TO CALCULATE
5;
IS DIFF(W.AMP. 2. LAM. 0) IDENTICALLY ZERO. YIN
Y;
IS DIFF(W.AMP. 3. LAM. 0) IDENTICALLY ZERO. YIN
N;

3
d W COS(3 %PI X)

[----- =- ------------]
3 32

dAMP

Compare this resuLt to eqs. (9) and (31).
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IS DIFF(W.AMP. 4. LAM. 0) IDENTICALLY ZERO. YIN
Y;
IS DIFF(W.AMP. 1. LAM. 1) IDENTICALLY ZERO. YIN
N;

2
d W

[--------- = 0]
dAMP dLAM

IS DIFF(W.AMP. 2, LAM, 1) IDENTICALLY ZERO. YIN
Y;
IS DIFF(W.AMP. 3 LAM. 1 IDENTICALLY ZERO. YIN
N;

4
d W 9 008(3 %PI X)

[---------- = - --------------]
3 2

dAMP dLAM 256 %P I

IS GJQLY( 1.0 IDENTICALLY ZERO. YIN
Y;
IS GJQLY( 2.0 IDENTICALLY ZERO, YIN
Y;
IS GJQLY( 3,0 IDENT!CALLY ZERO. YIN
N;
IS GJQLY( 4,0 IDENTICALLY ZERO. YIN
Y;
IS GJQLY( 5,0 IDENTICALLY ZERO. YIN
N;
IS GJQLY( 1, 1 IDENT!CALLY ZERO. YIN
N;
IS GJQLY( 2,1 IDENT!CALLY ZERO, YIN
Y;
IS GJQLY( 3.1 IDENT!CALLY ZERO. YIN
N;
IS GJQLY( 4.1 IDENTICALLY ZERO, YIN
Y;

3 2 5 2 3
AMP LAM AMP LAM 3 %PI AMP %PI AMP

- -------- + ------- + ----------- - ---------

169

16

[VAX 8500 TIME = 390 SEC.]

2 1024 16

This is the bifurcation equation. We manipuLate this resuLt to be abLe to

compare with our introductory caLcuLations:

SOLVE(%.LAM) ;
2 4 2 2

3 %PI AMP - 64 %PI AMP
[LAM = --------------------------]

2
64 AMP - 512
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TAYLOR(X.AMP.0.4);

ITI

LIAPUNOV-SCHMIDT REDUCTION

2 2 2 4
XPI AMP (5 XPI ) AMP

[LAM + ... = --------- + ------------- + ... J
8 512

This result agrees with equation (11).

Here is a listing of the MACSYMA functions:

1* This file contains REDUCTIONl(). a function to perform a Liapunov-Schmidt

reduction for steady state bifurcations of nonlinear d.e. 's of the form

Y" + F(Y.Y· .ALPHA) = O. Y = Y(X) is defined on a real interval with Dirichlet

or Neumann boundary conditions and F depends only linearly on ALPHA.

It also contains these additional functions:

SETUP() allows the problem to be entered.

G-PQLY(I.J) calculates the coefficient of AMP~I LAM~J in the bifurcation

equation.

W-PQLY(I.J) calculates the coefficient of AMP~I LAM~J in W(X;AMP.LAM).

PROJECf(EXP) ensures that <CF1JN.EXP>=O.

NEUMANNBC(EXP) accounts for Neumann boundary conditions.

G-EQ() assembles the bifurcation equation. *1

REDUCTIONl():=BLOCK(

SETUP().

ORDER:READ("TO WHIm ORDER 00 YOU WANT TO CALCULATE").

FOR 1:2 THRU ORDER-l 00 W-PQLY(1.0).

FOR I: 1 THRU ORDER-2 00 W-PQLY( 1.1).

FOR I: 1 THRU ORDER 00 G-PQLY( I. 0) .

FOR I: 1 THRU ORDER-l 00 GJOLY(I. 1) .

G.J;Q() )$
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1* The function SETUP asks for the variables of the d.e .. the bifurcation

point. the critical eigenfunction. the x-interval. the boundary conditions and

the differential equation. *1

ASSUMEJ'OS: TRUE.

LSJ.IST: [].

Y:READ("ENTER DEPENDENT VARIABLE").

PRINT("USE X AS THE INDEPENDENT VARIABLE AND ALPHA AS A PARAMETER TO VARY").

CAL:READ("ENTER THE CRITICAL BIFURCATION VALUE ALPHA").

PRINT("WE DEFINE LAM = ALPHA - ".CAL).

CFUN: READ( "ENTER THE CRITICAL EIGENFUNCTION").

DEPENDS([ZW.Y.W].[AMP.LAM.X]).

LEN:READ("WHAT IS THE LENGTH OF THE X-INTERVAL").

NORM:INTEGRATE(CFUN~2.X.0.LEN).

PRINT("SPECIFY THE BOUNDARY CX>NDITIONS").

PRINT("YOUR CHOICE FOR THE B.C. ON Y AT X=O AND X=" .LEN).

PRINT("ENTER 1 FOR Y=O. 2 FOR Y·=O").

BCL:READ("B.C. AT O?").

BCR:READ("B.C. AT" . LEN . "?").

EQ:DIFF(Y.X.2)

+ READ("THE D.E. IS OF THE FORM Y" + F(Y.Y· •ALPHA) = O. ENTER F").

EQLAM: EV (EQ. ALPHA=LAM+CAL) .

PRINT(EQLAM) .

DATABASE: [DIFF(W.AMP)=O.DIFF(W.LAM)=O].

SUB:Y=AMP*CFUN+W.

TEMPI :EV(EQLAM. SUB. DIFF) .

NULLANS:

READ("OO YOU KNOW A PRIORI THAT SOME TAYLOR CX>EFFICIENTS ARE ZERO. YIN") )$
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G-PQLY(I.J):=BLOCK(

LIAPUNOV-SCHMIDT REDUCTION

1* This is a function to determine a particular Taylor coefficient of the

bifurcation equation G(AMP.LAM) =0. It requires knowledge about the Taylor

coefficients of W(AMP.LAM). This knowledge is stored in the list DATABASE. *1

LSJ.,ISf: CONS( [K=I .L=J) .LSJ.,ISf) .

IF NULLANS = Y THEN (

ZEROANS:READ("IS G-PQLY(". l, ...... J ... ) IDENTICALLY ZERO. YIN").

IFZEROANS = Y THEN RETURN(BIFEQ[l,J):O».
~.:~.

TEMP2:DIFf(TEMP1.AMP.I.LAM.J).

DERIVSUBST:TRUE.

1* This derivative of w will be annihilated by the projection onto the critical

eigenfunction. hence we set it to zero here. *1

TEMP3:SUBST(·DIFF(W.AMP.I.LAM.J)=O.TEMP2).

1* Here we insert all knowledge gained through W-PQLY *1

D....BASEJ..ENGTH: LENGTH(DATABASE) ,

FOR I I THRU D-BASLLENGTH DO

TEMP3:EV(SUBS(DATABASE[D....BASLLENGTH+l-II]. TEMP3) .DIFF).

DERIVSUBST:FALSE.

TEMP4:EV(TEMP3.AMP=O.LAM=O,W=O).

1* Projection onto CFUN. the critical eigenfunction. *1

TEMP5:TRIGREDUCE(CFUN*TEMP4).

BIFEQ[I.J]:RATSIMP(INTEGRATE(TEMP5.X.O.LEN»

)$

W-PQLY(I.J):=BLOCK(

1* This function allows the iterative determination of any particular Taylor

coefficient of the function W(AMP.LAM). The result is fed into DATABASE. *1

IF NULLANS = Y THEN (

ZEROANS:READ("IS DIFF(W.AMP .... l, ... LAM .... J ... ) IDENTICALLY ZERO .YIN").
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IF ZEROANS = Y THEN

(ADDBASE:['DIFF(W.AMP.I,LAM,J)=O].

DATABASE:APPEND(DATABASE.ADDBASE).

RETURN(ADDBASE»).

TEMP2:DIFF(TEMPI.AMP.I,LAM.J).

DERIVSUBST:TRUE.

1* We substitute ZW for the unknown Taylor coefficient and solve an o.d.e. for

ZW in TEMP7 *1

TEMP3:SUBST(DIFF(W.AMP,I,LAM.J)=ZW.TEMP2),

1* Now we insert all knowledge gained through previous iterations. *1

D-BASE-LENGTH:LENGTH(DATABASE).

FOR I I THRU D-BASEJ..ENGTH DO

TEMP3:EV(SUBST(DATABASE[D-BASEJ..ENGTH+I-II].TEMP3).DIFF).

DERIVSUBST:FALSE,

TEMP4:EV(TEMP3.AMP=O,LAM=O.W=O).

TEMP5:TRIGREDUCE(TEMP4) ,

1* This ensures that the r.h.s. of the d.e. TEMP6 is orthogonal to the solution

of the homogeneous equation. *1

TEMP6:PROJECT(TEMP5),

TEMP7:0DE2(TEMP6.ZW.X).

1* Satisfy boundary conditions *1

IF BCL*BCR=1 THEN TEMP8:BC2(TEMP7.X=O.ZW=O.X=LEN.ZW=O)

ELSE

TEMP8:NEUMANNBC(TEMP7),

1* Make sure that <CFUN.W>=O *1

TEMP9:PROJECT(TEMP8),

ADDBASE:[·DIFF(W.AMP,I.LAM,J)=RHS(TEMP9)].

DATABASE:APPEND(DATABASE,ADDBASE).

PRINT(ADDBASE»$

rand@math.cornell.edu



174 LIAPUNOV-SCHMIDT REDUCTION

PROJECf(EXP):=(

PR01:EV(EXP,ZW=O),

PR02:INTEGRATE(PR01*CFUN,X,O,LEN)/NORM,

EXPAND(EXP-PR02*CFUN»$

NEUMANNBC(EXP):=(

REXP:RHS(EXP) ,

NBC1:DIFF(REXP,X),

IF BCL=l AND BCR=2 THEN

NBC2:SOLVE([EV(REXP .X=O) .EV(NBC1,X=LEN)], [%I(l,%K2]).

IF BCL=2 AND BCR=l THEN

NBC2:SOLVE{[EV(REXP ,X=LEN) ,EV(NBC1,X=O)], [%I(l.%K2]),

IF BCL=2 AND BCR=2 THEN

NBC2:SOLVE([EV(NBC1,X=LEN) ,EV(NBC1,X=O)], [%I(l.%K2]),

EV(EXP, NB(2»$

G-EQ() :=

SUM(EV(AMpAK*LAMALIK!*BIFEQ[K,L].LS-LIST[N]) ,N, l,LENGTH(LS-LIST»$

The following theoretical results have gone into the design of the

functions G-POLY(I,J) and W-POLY(I.J):

(i) We want to study the bifurcation from y = 0 at A = O. With

y(A,A) = A Yl+ W(X;A,A) and y(O,O) = 0 we have that w(x;O,O) = O.
~

(ii) From (16) we see that Q F(A Yl + W,A) does not contain a simple

linear term in A Y1. Hence L wA = 0 and since L is invertible on R, wA = o.

This is the first entry into the list DATABASE. Since we assume that y =0 is

a trivial solution, we have that F(O,O,a) = 0 and hence from differentiating

(16.2) with respect to A and evaluating at A = A = 0, we find that wA =O.

This is the second entry into DATABASE.
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O. since this

(iii) Eq(l6.l} does not contain the term L w since P L w = O. This is

di+jw
obtained in G-PQLY(} at the stage TEMP3 where we set

is the unknown variable in W-PQLY for the(iv) The same term

dAid~j

term can only occur linearly (cf. the argument leading to Eq.(23)}.

di+jw

dAid~j

Taylor coefficient Ai~j in w(A.~}. We replace it by the variables ZW in TEMP3

of W-PQLY().

(v) The projection Q is performed by the function PROJECT(EXP}. Since

the linear problem is self-adjoint. the projection is given by

Q(exp}

LEN
S exp CFUN dx
oexp - .::....------

NORM
CFUN

LEN 2
with NORM S CFUN dx. This ensures that the ordinary differential equation

o
TEMP6 has a nontrivial particular solution. The ode-solver in MACSYMA. ODE2.

adds the solution of the homogeneous equation to any particular solution it

finds. After haVing fitted the boundary conditions we then have to perform the

Q-projection again. This ensures that the projection of w onto the critical

eigenfunction <CFUN.W) is always zero. For the Euler buckling problem (indeed

for all problems with Neumann boundary conditions at both ends of the defining

interval). this final projection is trivial and amounts to deleting the term

which contains the critical eigenfunction explicitly. However. in some cases

(e.g. quadratic nonlinearities with Dirichlet boundary conditions) we encounter

resonance terms which make the projection Q nontrivial (cf. Exercise 4).
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Liapunov-Schmidt Reduction for a.D.E's

In the following Sections we will increase the complexity of the

Liapunov-Schmidt reduction program in steps. While we dealt in the last

Section with bifurcations of steady-state solutions in one partial differential

equation depending on one space variable. our next step will be to treat n

coupled differential equations. As a starting point we confine ourselves to n

coupled ordinary differential equations. Since we consider only steady-state

solutions, we are effectively dealing with purely algebraic equations. Hence a

Liapunov-Schmidt reduction for a steady state bifurcation in a system of

o.d.e. 's is very simple. The projections P and Q are simple products of two

mn-vectors involving the eigenvector corresponding to the eigenvalue zero.

Inverting the linear operator L amounts to inverting a matrix or solving a

linear system of algebraic equations.

Why would one want to perform a Liapunov-Schmidt reduction on ordinary

differential equations when techniques are available (notably the center

manifold reduction) which allow not only the determination of the bifurcated

steady state solutions but also the dynamical behavior of the solutions

approaching these steady states. We offer three answers to this question:

First, it is instructive to see to what degree both methods give the same

results and when and how they differ. Second, there are criteria (see below)

which tell when the result of a Liapunov-Schmidt reduction can be augmented

with some simple dynamics. And third, a Liapunov-Schmidt reduction often

involves less computation than a center manifold reduction.

In order to explain the latter fact, let us imagine a steady state

bifurcation in an n-dimensional dynamical system (n say) 5). If the

bifurcation is nondegenerate, then the center manifold is one-dimensional. In

order to calculate the flow on the center manifold we perform nonlinear

coordinate transformations on the whole n-dimensional system, although we are
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finally interested only in one Taylor coefficient. say the third order term for

the flow on the center manifold. Since the Liapunov-Schmidt reduction permits

us to find a specific coefficient in the bifurcation equation directly, less

computation time is required for the Liapunov-Schmidt reduction than for the

center manifold reduction. This is supported by experience with both methods

for nontrivial research problems. Problems where a MACSYMA program for a

center manifold reduction could not finish in a reasonable time were able to be

handled by a Liapunov-Schmidt reduction program.

To show the equivalence and differences of both methods we consider

again the Lorenz system of Chapter 2.

(35)

We calculated in Chapter 2 that for P = lone of the eigenvalues of (35) is

zero with the corresponding critical eigenvector [l.l.OJ. The linear operator

L at p = Pc = 1 associated with (35) is the matrix:

L

-a a 0

-1 0

0 0 -~

-a 0

a -1 0

0 0 -~

is the adjoint matrix. This leads to the adjoint critical eigenfunction

[l/a.l.OJ. The following is a sample run of a MACSYMA program REDUCTION2 to
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determine the bifurcation equation for this instability. See Exercise 1 at the

end of the Chapter.

REDUCTION2() ;

NUMBER OF EQUATIONS
3;
ENTER VARIABLE NUMBER 1
Xl;
ENTER VARIABLE NUMBER 2
X2.
ENTER VARIABLE NUMBER 3
X3;
ENTER THE BIFURCATION PARAMETER
RHO;
ENTER THE CRITICAL BIFURCATION VALUE RHO
1;

WE DEFINE LAM = RHO - 1
ENTER THE CRITICAL EIGENVEcroR AS A LIST
[l,l,OJ;
ENTER THE ADJOINT CRITICAL EIGENVEcroR
[lISIGMA,l,0J;

ENTER THE DIFFERENTIAL EQUATION
DIFF( Xl •T)=
SIGMA*(X2-Xl) ;
DIFF( X2 ,T)=
Xl*X3+RHO*Xl-X2;
DIFF( X3 ,T)=
Xl*X2-BETA*X3;

[SIGMA (X2 - Xl), - Xl X3 - X2 + (LAM + 1) Xl, Xl X2 - BETA X3J
00 YOU KNOW A PRIORI mAT SOME TAYLOR roEFFICENTS ARE ZERO, YIN
N;
TO WHIG! ORDER 00 YOU WANT TO CALaJLATE
3;

2
d WI

[----- =O.
2

dAMP

2
d W2

----- = O.
2

dAMP

2
d W3 2

----- =----]
2 BETA

dAMP

2 2
d WI SIGMA d W2

[--------- = - -------------------- --------- = --------------------
dAMP dUM 2 dAMP dUM 2

SIGMA + 2 SIGMA + 1 SIGMA + 2 SIGMA + 1

2
d W3

--------- = 0]
dAMP dUM
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[SYMBOLICS 3670 TIME 95 SEC.]

3
AMP

AMP LAM -
BETA

We find a bifurcation equation

179

(36)

with nontrivial solutions A = ! (~ A)(1/2) which are identical to the

solutions found for the steady states on the center manifold (eq.(28) in

Chapter 2). In general these two reductions do not lead to identical results

for the steady state solutions but the topological character of the branching

(i.e. here a pitchfork bifurcation) is the same in both cases. However one can

*show (cf.[13]) that if <YI'YI> > 0 then the stability of the solutions of the

bifurcation equation g(A,A) =0 with respect to perturbations in the direction

of the critical eigenfunction are given by the stability of the corresponding

solutions of the dynamical system

(37) dA

dt
g(A,A)

Non-uniqueness of the Liapunov-Schmidt reduction and a change of

stability is demonstrated by choosing a different critical eigenvector. We

multiply the critical eigenvector by a term (-const) and perform the reduction:

REDUCTION2() ;

some input tines omitted For brevity

ENTER THE CRITICAL EIGENVECTOR AS A LIST
[ -<X>NST . -(x)NST ,0] ;

some input tines omitted For brevity ...

[SIGMA (X2 - Xl).- Xl X3 - X2 + (LAM + 1) Xl, Xl X2 - BETA X3]
00 YOU KNOW A PRIORI THAT SOME TAYLOR (X)EFFICENTS ARE ZERO, YIN
N;
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TO WHICH ORDER DO YOU WANT TO CALCULATE
3;

2 2 2 2
d WI d W2 d W3 2 CONST

[----- 0, 0, --------J
2 2 2 BETA

dAMP dAMP dAMP

2
d WI

[---------
dAMP dLAM

2
CONST SIGMA d W2

2 dAMP dLAM
SIGMA + 2 SIGMA + 1

2
d W3

=OJ
dAMP dLAM

CONST

2
SIGMA + 2 SIGMA + 1

[SYMBOLICS 3670 TIME = 72 SEC.J

3 3
AMP CONST

- AMP CONST LAM + ----------­
BETA

We find

(38) 3 3- const A A + (const /~) A 0

as the bifurcation equation which has nontrivial solutions A +

const

Let us determine the stability of the trivial solution A = 0 for the

dA dAtwo reduced systems __ = gL ' __ = gL and of the corresponding trivial
dt orenz dt orenz

solution xl = x2 = x3 = 0 of the original Lorenz system (35). For p ~ - 00 the

eigenvalues of these systems become - 00, sign(const) 00, and

[-~-
2

a + 1
00, - + i 00, - ~J (cf. Chapter 2). respectively. Hence for

2

a > -1 and const > 0 we confirm that the solutions of dA = gLorenz have the
dt

same stability as the corresponding solutions of the original system of

o.d.e. 's. *Also since the norm (Yl'Yl> = 1 + l/a. we find that if a ( -1 and

dA ~

const > 0 then the solutions of __ = gL have the same stability as the
dt orenz

corresponding solutions of the Lorenz system, thus verifying the aforementioned

proposition of [13J.
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Application to Systems of Partial Differential Equations

181

Clearly there is no hope of writing a general program in MACSYMA which

can deal with bifurcations in all physically interesting partial differential

equations (p.d.e. 's) which may range over such fields as general relativity,

plasmaphysics, hydrodynamics, elasticity and reaction diffusion equations. The

major restriction to that task is not lack of memory space or slow performance

(although this may become important), but rather the absence of suitable

abstract datatypes in MACSYMA. E.g. it is difficult to write a Frechet

derivative and it is not clear how to define function spaces like a Banach

space, etc. Hopefully the next generation of computer algebra systems (whose

first member is SCRATCHPAD II [46]) will give us the tools to work with

differential operators on specifically defined function spaces.

Therefore the program which we are going to describe now is designed to

work for steady state bifurcations of a system of p.d.e. 's of the form

a
at

where Lin[::2] is a linear differential operator of even order defined on some

function space of ffi, and NL is a nonlinear (differe~tial) operator. A typical

example of the type of equations which can be handled by this program are

coupled reaction diffusion equations depending on one spatial dimension. Since

the differential equation solver ODE2 in MACSYMA works only for one-dimensional

o.d.e's of first or second order, we solve the differential equation for the

Taylor coefficients of w(x;a,A), eq.(16.2), via a Fourier mode ansatz. However

this has its own problems: Partial differential equations with Dirichlet

boundary conditions and quadratic nonlinearities leaq to ordinary differential
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2
equations for the Taylor coefficient ~ which have no finite Fourier mode

dA
2

expansion satisfying the boundary conditions (see Exercise 4 at the end of the

Chapter.) Instead, these o.d.e's display "resonant" terms. Solutions to these

equations can readily be found for a single ordinary differential equation (see

Exercise 4). For n-coupled o.d.e. 's, this is not so easy and certainly goes

beyond the scope of this book. Therefore the program we are giving here

cannot, in general, handle quadratic nonlinearities with sine-functions as

critical eigenfunctions of the linearized problem. (See however the specific

case in Exercise 5).

The following example taken from Carr [6] shall demonstrate the

program. Let us consider the semilinear wave equation

(39) Vtt + v t - Vxx - a v + f(v) 0, f(v)
3 5v + p v ,

with v = 0 at x = O,~. Eq.(39) can be rewritten setting Y1

two coupled first order equations,

Yl Y2
t

(40)

3 5
Y2 Yl + a YI - Y2 - Yl - P Y1

t xx

The linear operator L(a) is given by

v
t

as

(41) L(a)

where d denotes the second partial derivative with respect to the spatial
xx

variable. The eigenvalues of the linearized system are
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1
2"

for eigenfunctions of the form [ EF 1 ] sin nx. Therefore for the interval
EF

2

o ~ a < 1, all eigenvalues have negative real parts and the trivial solution is

stable. +For a = 1 the eigenvalue EV1 is zero and the n = 1 mode becomes

unstable. The corresponding eigenfunction is CFUN =

u = t~] and v = [:~] we find

[ 0
1 ] sin x. Setting

7r

<u,L(a) v> f u 1v2 + u2 (av 1 + vI - v2 ) dx
0 xx

7r

f u 1v2 + u2(av 1 - v
2

) + u2 vI dx
0 xx

7r

f v 1(au2 + u2 + v
2

(u
1
-u

2
) dx

o xx

<L*(a) u,v>

where we define the adjoint linear operator L*(a) by

(integration by parts)

d +
xx[~ a]

-1

*Hence the adjoint critical eigenfunction is given by Yl A sin x [ ] .

normalize such that <YI*'Yl> = 1 which gives us AFUN = ~ sin x [ ].

We

To calculate the bifurcation equation for (40) near a = 1 we make the

now fami liar ansatz y = t1]
2

substitute this into (40).

[1] [WI (X;A,A)] .
A sin(x) 0 + w

2
(x;A,A) WIth a = A + 1 and
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d
2wLet us demonstrate how we can calculate the two Taylor coefficients

and an example. We show that the former coefficient is always zero: By

entering the ansatz into (40). differentiating twice with respect to A and

setting A = ~ = O. we obtain the two equations

o

which may be written in the form

o
L(I) :2 [:~] A=O

~=O

Now since L(I) y = 0 has only YI as nontrivial solution and since we require

* d
2

wthat <YI ,w> is zero. we have that the Taylor coefficient A=O is zero.

dA2 ~=O

We could have concluded this right from the beginning. since (40) is invariant

with respect to a reflection y ~ -y and hence the bifurcation equation and the

function w(x;A.~) inherit this symmetry and are equivariant with respect to the

transformation A ~ -A [43]. i.e. all terms of even order in A are zero.

Our next step is to find the third order coefficient of w with respect

to A. If we set zW I =

3
d WI
--A=O
dA3 ~=O

and zw2 = , we find after elementary

calculations the following two equations for zW I and ZW2 :
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o
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(42.2) 9/2 sin x - 3/2 sin 3x

Substituting (42.1) into (42.2) and using the boundary conditions zw1 = 0 at

x = O.rr. we see that (42.2) has no solution. By the Fredholm alternative

theorem. since the homogeneous equation has a nontrivial solution. the

nonhomogeneous equation will have a solution only if the nonhomogenity is

orthogonal to the null space of the adjoint operator L*(l). This is guaranteed

(cf. eq.(14.2» by replacing [ 0 ] by9/2 sin x - 3/2 sin 3x

*Then <Y1 .eq.(43» is always zero. We calculate

rr
2/rr J {9/2 sin2x - 3/2 sin 3x sin x} dx 9/2.

o

Hence the Q-projected differential equations (42) become

zW2
- 9/2 sin x

2d zW
1 - zW2 = 9/2 sin x - 3/2 sin 3x

dx2
+ ZW

1

and a general solution to these equations with the zero boundary conditions at

x = O.rr is given by
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k1 sin x + 3/16 sin 3x

-9/2 sin x

where k1 is an undetermined constant.

*Now since we require <Yl ,w> = 0, we have to perform the same

projection on this solution again. giving us, with

sin x + 3/16 sin

- 9/2 sin x -9/2 + k
l

the third order Taylor coefficient

3
d WI

3/16 sin 3x + 9/2 sinA=O x

dA3 ;\=0
3d w

2 - 9/2 sin x-- A=O
dA3 ;\=0

Since the fourth order term is again zero for symmetry reasons, we can now

calculate the Taylor coefficients of A for the bifurcation equation g(A.;\) 0

up to fifth order. Evaluating the fifth order term is in principle the same as

for the one-dimensional bifurcation problems treated preViously. However the

projection P of eq.(14.1) now involves an inner product (13) which includes the

*. 2scalar product with the adjoint eigenfunction Yl In m

At this point we shall present a MACSYMA program, REDUCTION3, which

accomplishes the Liapunov-Schmidt reduction for n coupled d.e. 's in one spatial

variable. We begin with a sample run on the bifurcation problem of eq.(40),

followed by the program listing:
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REDUCTION3( ) ;

ENTER THE NUMBER OF DIFFERENTIAL EQUATIONS
2;
ENTER THE DEPENDENT VARIABLES AS A LIST
[Yl.Y2];
ENTER THE SPATIAL CDORDINATE
X;
ENTER THE BIFURCATION PARAMETER
ALPHA;
ENTER THE CRITICAL BIFURCATION VALUE
1 ;
WE DEFINE LAM = ALPHA - 1
ENTER THE CRITICAL EIGENFUNCTION AS A LIST
SIN(X)*[I,O];
ENTER THE ADJOINT CRITICAL EIGENFUNCTION AS A LIST
2;o~PI*SIN(X)*[I,I];

ENTER THE DIFFERENTIAL EQUATION NUMBER 1
Y2;
ENTER THE DIFFERENTIAL EQUATION NUMBER 2
DIFF(Yl.X.2)+ALPHA*YI-Y2-YI A 3-A*YI A 5;

2
d Y1 5 3

[Y2, - Y2 + ---- - A Yl - Yl + (LAM + 1) Yl]
2

dX

WHAT IS THE LENGTH OF THE SPACE INTERVAL
%PI;
DO YOU KNOW A PRIORI THAT SOME TAYLOR COEFFICIENTS ARE O. YIN
Y;
TO WHIm ORDER DO YOU WANT TO CALCULATE
5;
IS DIFF(W(AMP, 2 .LAM. 0 ) IDENTICALLY ZERO, YIN
Y;
IS DIFF(W(AMP, 3 .LAM. a ) IDENTICALLY ZERO, YIN
N;

3 3
d WI 3 SIN(3 X) + 72 SIN (X) d W2 9 SIN (X)

[----- = ----------------------. ----- = - --------]
3 16 3 2

dAMP dAMP

IS DIFF(W(AMP. 4 .LAM, a ) IDENTICALLY ZERO. YIN
Y;
IS DIFF(W(AMP. •LAM, IDENTICALLY ZERO • YIN
N;

2 2
d WI d W2

[--------- = - SIN(X), --------- =SIN(X)]
dAMP dLAM dAMP dLAM

IS DIFF(W(AMP. 2 .LAM, 1 ) IDENTICALLY ZERO, YIN
Y;
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IS DIFF(W(AMP. 3 .LAM. 1 ) IDENTICALLY ZERO. YIN
N;

4
d WI 69 SIN(3 X) + 2304 SIN(X)

[---------- =- -------------------------.
3 128

dAMP dLAM

IS GJ'QLY( 1 0 ) IDENTICALLY ZERO. YIN
Y;
IS GJ'QLY( 2 o )IDENTICALLY ZERO. YIN
Y;
IS GJ'QLY( 3 o )IDENTICALLY ZERO. YIN
N;
IS GJ'QLY( 4 o )IDENTICALLY ZERO. YIN
Y;
IS GJ'QLY( 5 o )IDENTICALLY ZERO. YIN
N;
IS GJ'QLY( ) IDENTICALLY ZERO. YIN
N;
IS GJ'QLY( 2 1 )IDENTICALLY ZERO. YIN
Y;
IS GJ'QLY( 3 )IDENTICALLY ZERO. YIN
N;
IS GJ'QLY( 4 1 )IDENTICALLY ZERO. YIN
Y;

[SYMBOLICS 3670 TIME = 328 SEC.]

4
d W2

3
dAMP dLAM

18 SIN(X)]

5 3
3 (- 1200 %PI A - 3195 %PI) AMP 3 AMP

3 AMP LAM + AMP LAM + ------------------------------ - ------
1920 %PI 4

This is the bifurcation equation. We maniputate this resutt to obtain A as a

function of A:

SOLVE(%.LAM) ;
4 2

(80 A + 213) AMP + 96 AMP
[LAM =---------------------------]

2
384 AMP + 128

TAYLOR(%.AMP.0.4);

IT/

2 4
3 AMP (80 A - 75) AMP

[LAM + ... = ------ + ---------------- + ... ]
4 128
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The following is a listing of the functions which perform the

Liapunov-Schmidt reduction:

189

1* This file contains REDUCTION3(), a function to perform a Liapunov-Schmicit

reduction for steady state bifurcations from n coupled partial differential

equations defined on one spatial dimension. The following additional functions

are supplied:

SETUP() allows the problem to be entered.

G-PQLY(I.J) calculates the coefficient of AMP~I LAM~J in the bifurcation

equation G(AMP,LAM).

W-PQLY(I,J) calculates the coefficient of AMP~I LAM~J in W(X;AMP.LAM).

SOLVE_ODE(EXP) solves certain ordinary differential equations via a Fourier

mode ansatz.

FEEDW(EXP) ensures that <AFUN.W> = 0 .

FIND_TRIG(EXP) identifies Fourier modes.

SETIFY(LIST) transforms a list into a set.

G-EQ() assembles the bifurcation equation.

VFUN(LIST.VALUE) creates the substitution list:

[LIST[l] = VALUE, LIST[2] = VALUE .... ]

DIFFNULL(I.J) sets the derivative diff(w.amp,i,lam.j) to zero. *1

REDUCTION3():=BLOCK(

SETUP() ,

ORDER:READ("TO WHIm ORDER DO YOU WANT TO CALCULATE").

FOR 1:2 THRU ORDER-1 DO W-PQLY(1.0),

FOR I: 1 THRU ORDER-2 DO W-PQLY (I, 1) .

FOR I: 1 THRU ORDER DO G-PQLY( 1. 0) ,

FOR 1:1 THRU ORDER-l DO G-PQLY(I,l),

G-EQ() )$
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SETUP():=( 1* This function performs the input for the Liapunov-Schmidt

reduction*1

ASSUME-PQS:TRUE.

LSJ..IST: [] •

N:READ("ENTER THE NUMBER OF DIFFERENTIAL EQUATIONS").

Y:READ("ENTER THE DEPENDENT VARIABLES AS A LIST").

XVAR:READ("ENTER THE SPATIAL CXX>RDINATE").

ALPHA:READ("ENTER THE BIFURCATION PARAMETER").

CAL:READ("ENTER THE CRITICAL BIFURCATION VALUE").

PRINT("W£ DEFINE LAM = ".ALPHA - CAL).

CFUN: READ( "ENTER THE CRITICAL EIGENFUNCTION AS A LIST").

AFUN:READ("ENTER THE ADJOINT CRITICAL EIGENFUNCTION AS A LIST").

KILL(W) •

W:MAKELIST(CONCAT(W.I).I.I.N).

ZWLIST:MAKELIST(CONCAT(ZW.I).I.I.N).

NULLIST:MAKELIST(O.I.l.N).

DEPENDS(APPEND(ZWLIST. W. Y) .CONS(XVAR. [AMP .LAM]».

EQS:MAKELIST(READ("ENTER THE DIFFERENTIAL EQUATION NUMBER". I). I .I.N).

EQLAM:EV(EQS.EV(ALPHA) = LAM + CAL).

PRINT(EQLAM) •

LEN:READ("WHAT IS THE LENGTH OF THE SPACE INTERVAL").

WNULL:VFUN(W.O) •

SUB: MAPLIST( "=" •Y•AMP*CFUN+W) •

DATABASE:APPEND(DIFNULL(I.O).DIFNULL(O.I».

ZWNULL: VFUN (ZWLIST •0) •

NORM : INTEGRATE (AFUN .CFUN .XVAR •0 •LEN) .

TEMP1:EV(EQLAM.SUB.DIFF).

NULLANS:READ("OO YOU KNOW A PRIORI THAT SOME TAYLOR COEFFICIENTS ARE O. YIN")

)$
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1* This is a function to determine a particular Taylor coefficient of the

bifurcation equation G(AMP.LAM) = O. It requires kowledge about the Taylor

coefficients of W(AMP.LAM). This knowledge is stored in the list DATABASE. *1

LSJ.IST:CDNS([K=I .L=JJ .LSJ.,IST) .

IF NULLANS = Y THEN (

ZEROANS:READ("IS G-PQLY( ... I ....... J ... )IDENTICALLY ZERO. YIN").

IF ZEROANS = Y THEN RETURN(BIFEQ[I.J]:O)).

TEMP2:DIFF(TEMPI.AMP.I.LAM.J).

DERIVSUBST:TRUE.

1* Set the derivatives diff(w.amp.i.larn.j) to zero. *1

TEMP3:SUBST(DIFNULL(I.J).TEMP2).

1* Enter all information in DATABASE. *1

D-.BASEJ.,ENGTH: LENGTH (DATABASE) .

FOR I I THRU D-.BASEJ.,ENGTH DO

TEMP3:EV(SUBST(DATABASE[D-.BASEJ.,ENGTH+1-II].TEMP3).DIFF).

DERIVSUBST:FALSE.

TEMP4: EXPAND(EV(TEMP3.AMP=O. LAM=O.WNULL. INTEGRATE)).

1* Project onto AFUN. *1

TEMP5:RATSIMP(TEMP4.AFUN).

BIFEQ[I.J]:INTEGRATE(TRIGREDUCE(TEMP5).XVAR.O.LEN))$

W-PQLY(I.J):=BLOCK(

1* This function allows the iterative determination of any particular Taylor

coefficient of the function W(AMP.LAM). It returns a differential equation for

the particular coefficient of interest (called ZW1.ZW2 ... ). This d.e. is

solved via SOLVE_ODE and the result is fed into DATABASE from FEEDW. *1

IF NULLANS = Y THEN (

ZEROANS:READ("IS DIFF(W(AMP. ". I. ... LAM .... J.") IDENTICALLY ZERO. YIN").
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IF ZEROANS = Y THEN (

ADDBASE:DIFNULL(I.J).

DATABASE: APPEND( DATABASE. ADDBASE) .

RETURN (ADDBASE) ) ) .

~IFF:MAP(LAMBDA([U]. ·DIFF(U.AMP.I.LAM.J) = OONCAT(Z.U».W).

TEMP2:DIFF(TEMP1.AMP.I.LAM.J).

DERIVSUBST:TRUE.

1* Rename the derivatives diff(w.amp.i.lam.j) to zw *1

TEMP3:SUBST(~IFF.TEMP2).

1* Enter all information stored in DATABASE *1

D..BASE-LENGTH :LENGTH(DATABASE) .

FOR I I THRU D..BASE-LENGTH DO

TEMP3:EV(SUBST(DATABASE[D..BASE-LENGTH+I-II].TEMP3).DIFF).

DERIVSUBST:FALSE.

TEMP4: EV (TEMP3 .AMP=O .LAM=O •WNULL . INTEGRATE) .

1* This is the projection Q onto the range of the

linear differential operator in the problem. *1

TEMPS: INTEGRATE(EV (TEMP4. ZWNULL) .AFUN .XVAR. 0. LEN) .

TEMP6:TEMP4-TEMPSINORM*CFUN.

TEMP7 :TRIGREDUCE (TEMP6) .

1* The set of o.d.e.·s to solve.*1

W-DE: EXPAND (TEMP7) .

TEMP8:EV(W-DE.VFUN(ZWLIST.O».

1* If the particular solution of W-DE is zero then w=O. HI

IF NULLIST=TEMP8 THEN ( ADDBASE:DIFNULL(I.J).

DATABASE: APPEND(DATABASE. ADDBASE) .

RETURN(ADDBASE».

TEMP9 :SOLVE_ODE (TEMPS) .

FEEDW(TEMP9) )$
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SOLVE_ODE(EXP):=(/* This function solves the d.e. W-DE by a Fourier mode

ansatz. *1

TRIGFUN: [].

CDNST :FALSE.

FOR I THRU N DO

1* Determine the Fourier modes *1

TRIG1:EXP[I].

IF TRIGI ** 0 THEN

TRIG2:APPLYI(TRIGI.SINNULL.CDSNULL).

IF TRIG2 ** 0 THEN (

CDNST :TRUE .

TRIG1:TRIG1-TRIG2).

TRIGFUN:APPEND(FIND_TRIG(TRIGI).TRIGFUN))).

SOLI:DELETE(DUMMY.SETIFY(TRIGFUN)).

1* Make an ansatz *1

ANSATZ:MAKELIST(SUM(AM[I.J]*SOLI[I].I.I.LENGTH(SOL1)).J.1.N).

SOL2: EV(W-DE. MAP( "=" .ZWLIST .ANSATZ) .DIFF) .

SOL3:MAKELIST(RATCDEF(SOL2.I).I.SOLI).

EQLIST:[].

FOR I THRU LENGTH(SOL3) DO EQLIST:APPEND(EQLIST.SOL3[I]).

VARLIST:[].

FOR I THRU N DO FOR J THRU LENGTH(SOLl) DO

VARLIST:CDNS(AM[J.I].VARLIST).

1* Find the amplitudes of the Fourier modes *1

SOL4:S0LVE(EQLIST.VARLIST).

1* Solve for the constant Fourier mode if necessary *1

CANSATZ:O.

IF CDNST = TRUE THEN (CANSATZ:MAKELIST(CDNCAT(CDN.I).I.l.N).

CSOLl :EV(W-DE.MAP("=" .ZWLIST .CANSATZ) .DIFF).
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CSOL2:APPLY1(CSOLI.SINNULL.OOSNULL).

CSOL3:SOLVE(CSOL2.CANSATZ» .

EV(ANSATZ+CANSATZ.SOL4.CSOL3) )$

FEEDW(EXP):=(/* This function allows the result of the ode-solver to be entered

into the list DATABASE. It checks for orthogonality to the

critical adjoint eigenfunction and removes solutions of the

homogeneous equation (i.e. nonorthogonal terms). *1

F2: INTEGRATE(EXP .AFUN .XVAR.O.LEN).

IF RATSIMP(F2)=O

THEN

ADDBASE:MAP("=" .MAKELI 'DIFF(W[U] .AMP . I,LAM.J). U.1.N) .EXP)

ELSE (ORTHO....RESULT:RATSIMP(EXP- F2/NORM*CFUN).

ADDBASE:MAP("=" .MAKEL1ST( 'DIFF(W[U] .AMP. I .LAM.J). U.1.N).

ORTHO....RESULT» •

DATABASE: APPEND(DATABASE. ADDBASE) •

PRINT(ADDBASE»$

1* Collect all information stored in BIFEQ and assemble the bifurcation

equation. *1

G-EQ():= SUM(EV(AMpAK*LAMALIK!*BIFEQ[K.L].LS-LIST[N]).N.I.LENGTH(LS-LIST»$

SETIFY(LIST):=(/* Transforms a list into a set. i.e. removes duplicates. *1

SET: [LIST[I]].

FOR I :2 THRU LENGTH(LIST) DO

IF NOT MEMBER(LIST[I].SET) THEN

SET:OONS(LIST[I].SET).

SET)$
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FIND_TRIG{EXP):={/* Finds the Fourier modes. *1

F....Al :ARGS{EXP+DUMMY).

F-A2:APPLYl{F....Al.SINFIND.COSFIND)

)$

1* Auxiliary Functions *1

MATQIDECLARE{[DUMMYl.DUMMY2]. TRUE) $

DEFRULE{COSFIND.DUMMYl*COS{DUMMY2) .COS (DUMMY2) )$

DEFRULE{SINFIND.DUMMYl*SIN{DUMMY2).SIN{DUMMY2»$

DEFRULE{COSNULL.COS{DUMMYl).O)$

DEFRULE{SINNULL.SIN{DUMMYl).O)$

VFUN{LIST.VALUE):=MAP{LAMBDA{[U].U=VALUE).LIST)$

DIFNULL{I.J):=MAP{LAMBDA{[U]. ·DIFF{U.AMP.I.LAM.J)=O).W) $

Comments on the programs:

195

The main difference between these programs and those presented earlier in this

Chapter is just bookkeeping:

(i) Most of the variables which occur become n-dimensional lists. E.g.the

unknown y is a N-dimensional list as well as the critical eigenfunction CFUN

and its adjoint critical eigenfunction AFUN.

(ii) The inner product <u.v> involves a scalar product in mN with subsequent

integration.

(iii) In order to keep the amount of calculation to a minimum we also assumed

again that the differential equations depend only linearly on the bifurcation

parameter a. This can. however. easily be changed by changing the iteration

range in the function REDUCTION3{).

(iv) A major addition is the program called SOLYE-PDE which solves the
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differential equation associated with the Taylor coefficients of w(x;A,A) (cf.

eq.(16.2)). It first identifies all trigonometric terms in a given expression

using the function FIND_TRIG and the rules OOSFIND, SINFIND. OOSNULL and

SINNULL. The function SETIFY removes multiple occurrences of the same

trigonometric functions such that one can make an ansatz for a solution of the

differential equation W-DE. This ansatz is then inserted into the differential

equation. We assume that these trigonometric functions are the solutions of

the linear eigenvalue problem for the original set of p.d.e. 's and form a

complete set of orthogonal eigenfunctions on the defining space interval.

Hence one can find the amplitudes of the ansatz by solving the algebraic

equations which result from setting the coefficients of the trigonometric

eigenfunctions to zero. The function FEEDW then guarantees that the projection

*<Yl .w) is always zero.

(v) VFUN(LIST.VALUE) is a function which creates the substitution list

[LIST[l] = VALUE. LIST[2] = VALUE .... ] effectively.

Liapunov-Schmidt Reduction and Amplitude Equations

In this Section we shall use the Liapunov-Schmidt reduction to treat

problems which involve coupled systems of nonlinear p.d.e. 's in more than one

independent variable. We begin with the description of an example.

We have dealt with the Lorenz system in Chapter 2 as well as earlier in

this Chapter. This system originated from an amplitude expansion and was

thought to describe the onset of two dimensional convection rolls [34]. The

corresponding experimental situation is known as the 2D Rayleigh-Benard

problem: A fluid is confined to a box. heated from below and cooled from

above. At a certain critical temperature (manifested in the Navier-Stokes

equations as a critical nondimensional number. the Rayleigh number Ra). the

pure heat conductive state becomes unstable and stationary parallel convection
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rolls develop. This onset of convection is conveniently described by two

partial differential equations for the stream function ~(x,z) (the

197

Navier-Stokes equations) and the deviation 8(x.z) of the temperature from the

purely conducting state, which are defined on a two-dimensional interval

o ~ x ~ Lx' 0 ~ z ~ Lz ' Usually one makes several approximations (the

Boussinesq approximation) of which the most important ones are

incompressibility of the fluid, temperature independent material parameters and

so-called free boundary conditions which allow for simple trigonometric

solutions of the linearized problem. The governing equations for the

stationary problem become:

(44)

2
- v 8 + Ra dx~

where v2 = dxx + dzz is the Laplace operator. and where Pro the Prandtl number,

is a nondimensional number given by the quotient of the kinematic viscosity

coefficient and the thermal diffusivity coefficient. It turns out that for

Ra = 8.

(45)
sin x sin z ]

-4 cos x sin z

is a critical eigenfunction for the linearized problem (the left hand side of

(44)) with eigenvalue zero. With the adjoint linear operator defined by

(46)

4
v

d
x

-Ra d
2 x

- v

we find the adjoint critical eigenfunction
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(47)
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*'iJc
sin x sin z

fJ* 1 sin- 2" cos x zc

A bifurcation analysis shows that at Ra = Rac = 8 there exists a supercritica1

pitchfork bifurcation to stable convecting rolls. described by the bifurcation

equation ~ A ~2/8 - A3 ~2/16 = 0 with. as usual, ~ = Ra - Ra .
c

Supercritical

means that if one varies ~ and approaches the bifurcation point on the branch

A = 0 from the stable side, then the branching solutions bifurcate in the

forward direction (cf. Fig.4 in Chapter 1). Using the o.d.e. (37) it can

easily be shown that supercritical solutions are stable and subcritical

solutions (those branching backwards) are unstable.

In the following sample run of the Liapunov-Schmidt reduction for this

problem we show how we can use slightly extended versions of the building

blocks SETUP. G-PQLY, W-PQLY and FEEDW given in the previous section to deal

with coupled partial differential equations in more than one space variable.

Since it is impractical to write a general program which performs a Fourier

transformation of the coupled partial differential equations which have to be

solved to find w(a;A,~). we perform this step interactively. The solution is

then given as input to the function FEEDW which puts the result into DATABASE.

LAPLACE(FUN) := DIFF(FUN.X.2)+DIFF(FUN.Z.2)$
Warning - you are redefining the MACSYMA function LAPLACE

SETUP() ;
ENTER THE NUMBER OF DIFFERENTIAL EQUATIONS
2;
ENTER THE DEPENDENT VARIABLES AS A LIST
[PSI. THETA];
ENTER NUMBER OF SPATIAL (X)()RDINATES
2;
ENTER THE SPATIAL (X)()RDINATES AS A LIST
[X.Z];
ENTER THE BIFURCATION PARAMETER
RA;
ENTER THE CRITICAL BIFURCATION VALUE
S;
WE DEFINE LAM = RA - 8
ENTER THE CRITICAL EIGENFUNCTION AS A LIST
[SIN(X)*SIN(Z).-4*COS(X)*SIN(Z)];
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ENTER THE ADJOINT CRITICAL EIGENFUNCTION AS A LIST
[SIN(X)*SIN(Z).-COS(X)*SIN(Z)/2];
ENTER THE DIFFERENTIAL EQUATION NUMBER 1
(DIFF(PSI.X)*DIFF(LAPLACE(PSI).Z)-DIFF(PSI.Z)*DIFF(LAPLACE(PSI),X»*
PRANDTL A -1-(LAPLACE(LAPLACE(PSI»-DIFF(THETA,X»;
ENTER THE DIFFERENTIAL EQUATION NUMBER 2
DIFF(PSI.X)*DIFF(THETA.Z)-DIFF(PSI.Z)*DIFF(THETA.X)-RA*DIFF(PSI.X)
+LAPLACE(THETA);

ENTER THE LOWER LEFT CORNER OF THE 2 DIMENSIONAL SPACE INTERVAL
[X = ... ,]

1
[X = O.Z = 0];

ENTER THE UPPER RIGHT CORNER OF THE 2 DIMENSIONAL SPACE INTERVAL
[X = ...• ]

1
[X = %PI.Z = %PI];

[SYMBOLICS 3670 TIME = 270 SEC.]
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- ----- + ---------------------------------------------
PRANDTL

dTHETA
[-----­

dX

4
d PSI

4
dZ

dPSI

dX

3 3
d PSI d PSI

(----- + ------)
3 2

dZ dX dZ

3 3
d PSI d PSI dPSI

- (----- + ------)
3 2 dZ

dX dX dZ

4 4
d PSI d PSI

- ----- - 2 -------,
4 2 2

dX dX dZ

2 2
d THETA dPSI dTHETA d THETA dPSI dTHETA
------- + ---- ------ + ------- - ---- ------ -

2
dZ

dX dZ 2
dX

dZ dX

dPSI
(LAM + 8) ----]

dX

GYOLY( 1.0) ;
[SYMBOLICS 3670 TIME = 13 SEC.]

o

This is a check on whether we soLved our Linear probLem correctLy. If we are

deaLing with a bifurcation probLem. this coefficient is aLways zero.

WYOLY(O.1) ;
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NOW SOLVE THE EQUATIONS
4 4 4

dZW2 d ZWI d ZWI d ZWI
[---- - ----- - ----- - 2 -------,
dX 4 4 2 2

dZ dX dX dZ

2 2
d ZW2 d ZW2 dzwi
----- + ----- - 8 ----]

2 2 dX
dZ dX

=O! THEY ARE GIVEN IN W...DE

[SYMBOLICS 3670 TIME = 5 SEC.]

CALL FEEDW() TO PROCEED

This is the linearized equation, and so the only nontrivial solution is given

by CFUN. Since <CFUN,W> = O. we find that ZWI = ZW2 = O.

FEriJW() ;
ENTER ZWI
0;

ENTER ZW2
0;

tSYMBOLICS 3670 rIME = 3 SEC.]

dWI dW2
[---- =O. ---- =0]
dLAM dLAM

WPOLY(2,0) ;

4 4 4
dZW2 d ZWI d ZWI d ZWI

NOW SOLVE THE EQUATIONS [---- - ----- - ----- - 2 -------,
dX 4 4 2 2

dZ dX dX dZ

2 2
d ZW2 d ZW2 dZWl 2 2
----- + ----- - 8 ---- + (- 4 SIN (X) - 4 cos (X» SIN(2 Z)]

2 2 dX
dZ dX

=O! THEY ARE GIVEN IN W...DE

[SYMBOLICS 3670 TIME = 15 SEC.]

CALL FEEDW() TO PROCEED

TRIGREDUCE(W...DE,X) ;
[SYMBOLICS 3670 TIME = 1 SEC.]

4 4 4
dZW2 d ZWI d ZWI d ZWI

[---- - ----- - ----- - 2 -------,
dX 4 4 2 2

dZ dX dX dZ

2 2
d ZW2 d ZW2 dZWI
----- + ----- - 8 ---- - 4 SIN(2 Z)]

2 2 dX
dZ dX
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EV(%.ZWI = AMP1*SIN(2*Z).ZW2 = AMP2*SIN(2*Z),DIFF);
[SYMBOLICS 3670 TIME = 1 SEC.]

[- 16 AMPI SIN(2 Z). - 4 AMP2 SIN(2 Z) - 4 SIN(2 Z)]

FEEDW() ;
ENTER ZWI
0;
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ENTER ZW2
-SIN(2*Z) ;

[SYMBOLICS 3670 TIME 13 SEC.]

2
d WI

[----- = O.
2

dAMP

2
d W2

2
dAMP

- SIN(2 Z)]

BIFEQ;G-POLY(l,l)*AMP*LAM+G-POLY(3,O)*AMP~3/3!;

[SYMBOLICS 3670 TIME = 1 SEC.]

2
%PI AMP LAM

2
%PI

3
AMP

8 16

Since the program largely duplicates the corresponding functions given

in the the previous Section, we do not supply a complete listing of the

functions used here. but rather we only discuss some important new features.

The major difference between the programs used here and those given in

the previous Section is that we are dealing with more than one independent

variable, say SPACE variables. These have to be entered into a list. say XVAR.

and the dependency of the independent variables Y and the variables Wand ZW on

XVAR has to be declared. Also the projections P and Q now involve integration

over several space intervals. This is most effectively performed via the

following auxiliary function. (Do not use multiple definite integration in

MACSYMA. It is very slow and keeps asking you annoying questions about the

sign of totally uninteresting quantities):
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INT(EXP):=(INTINT:EXP.

FOR I THRU SPACE DO

INTINT:INTEGRATE(TRIGREDUCE(INTINT.XVAR[I]).XVAR[I]).

RATSIMP(EV(INTINT.UBOUND) - EV(INTINT.LBOUND»$

where LBOUND is the lower left corner of the SPACE-dimensional simplex given as

a list [XI= .X2= , ... ] and UBOUND is the corresponding upper right corner.

What has all this to do with the Lorenz equations? We observe from the

last demonstration run that for the steady state bifurcation of the Navier

Stokes equations there are only three relevant modes for a bifurcation equation

up to third order: the two modes of the critical eigenfunction sin x sin z and

cos x sin z and the perturbation mode in the temperature equation sin 2z. If

one makes the ansatz

[~.e] [A ~ sin x sin z , -4 ~ B cos x sin z - B C sin 2z ]

we can recover the Lorenz model. as we show next:

EQ';;
2 2 2

dTHETA d d PSI d PSI
[------ - (----- + -----)

dX 2 2 2
dZ dZ dX

2 2
dPSI d d PSI d PSI

(-- (----- + -----»
dX dZ 2 2

dZ dX

2 2
dPSI d d PSI d PSI

(-- (----- + -----»
dZ dX 2 2

dZ dX

+ -----------------------------------------------------
PRANDTL

PRANDTL

2 2 2
d d PSI d PSI

(----- + -----) +
2 2 2

dX dZ dX

d

dT

2
d PSI

(----­
2

dZ

2
d PSI

+ -----)
2

dX
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2 2
d THETA dPSI dTHETA d THETA dPSI dTHETA THETA
------- + ---- ------ + ------- - ---- ------ - ------ - RA

2 dX dZ 2 dZ dX dT
dZ dX

EV(EQS.PSI = A*2*2A (l/2)MCFUN[1].
THETA = B*2*2A (l/2)MCFUN[2]-e*B*SIN(2*Z).DIFF)$

TRIGREDUCE(%.X)$

TRIGREDUCE(%.Z);
dA

4 SQRT(2) -- SIN (X) SIN(Z)
dT

[- -------------------------- + B SQRT(2) B SIN(X) SIN(Z)
PRANDTL

- B SQRT(2) A SIN(X) SIN(Z).

SIN(3 Z) SIN(Z)
2 SQRT(2) A (- 16 C COS(X) (-------- - ------)

2 2

dPSI
----]

dX

203

- 2 SQRT(2) B COS(2 X) SIN(2 Z) - 2 SQRT(2) B SIN(2 Z»

1 COS(2 X) dC
- 16 A B (- - --------) SIN(2 Z) + B -- SIN(2 Z) + 32 C SIN(2 Z)

2 2 dT

dB
- 2 SQRT(2) A RA COS(X) SIN(Z) + B SQRT(2) -- COS(X) SIN(Z)

dT

+ 16 SQRT(2) B COS(X) SIN(Z)]

SOLVE([RATOOEF(%.COS(X)*SIN(Z»[2],RATOOEF(%,SIN(X)*SIN(Z»[1].
RATOOEF(%,SIN(2*Z»[2]],[DIFF(A.T),DIFF(B.T).DIFF(C.T)]);

dB ARA-BAC-BBdA
[[-- = 2 B PRANDTL - 2 A PRANDTL.

dT

dC
-- = 2 A B - 4 C]]
dT

dT 4

Note that with rescaling time d/dt ~ 2( )' and setting ~ = 2. RA = Bp.

the amplitude equations for A.B,C are identical to the Lorenz equations (35).

Even the bifurcation equation for the Liapunov-Schmidt reduction from the

Navier-Stokes equations and the reduction starting with the Lorenz model are

identical for ~ = 2.
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Whereas most of the amplitude expansions which are popular especially

in hydrodynamics seem to be constructed on physical arguments. we can offer

here a rigorous procedure to determine the necessary modes for an ansatz

(cf.[15]): If we want to be exact up to a certain order. we have to take into

account all the modes which occur in the Liapunov-Schmidt reduction up to this

order. Note that this does not require that we actually perform the reduction.

It is much simpler to find the relevant modes than to perform the reduction.

especially since it does not involve solving the differential equation (16.2)

but only orthogonal expansions as in the foregoing sample run (cf. also the

following Section). Hence sometimes it pays to do a "reduced" Liapunov-Schmidt

reduction. i.e .. determining only the relevant modes and then making an

amplitude expansion with respect to these modes. Then one can use such

powerful techniques as normal form transformations or center manifold

reductions on the set of modal equations. These are o.d.e. 's and hence involve

only polynomial manipulations for which MACSYMA is much better equipped than

for dealing with p.d.e. ·s. A last remark: Obviously these modal expansions

cannot say anything more about the true solutions of the p.d.e. than the

corresponding Liapunov-Schmidt reduction. In particular all solutions are

valid only locally and are isomorphic to the true solutions up to the degree

for which the modes of the amplitude expansion correspond to the modes in the

Liapunov-Schmidt reduction. Hence the chaotic solutions for which the Lorenz

system is famous are not directly related to the solutions of the Navier-Stokes

equations.
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Determination of Higher Order Coefficients
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If we try to find the bifurcation equation for some nontrivial partial

differential equations up to higher order we may run into trouble. For

instance the intermediate expressions which one encounters using the function

G-PQLY and W-PQLY on the Benard problem to determine a fifth order coefficient

are quite large. This situation becomes even worse when we think of

calculating bifurcation equations up to higher order for degenerate problems.

i.e. bifurcations with more than one critical eigenfunction becoming

simultaneously unstable. In principle the procedure is straightforward: For a

problem with n critical eigenfunctions we have an n-dimensional kernel N which

is spanned by Alu lc ' A2u2c '" .Anunc ' the n critical eigenfunctions and their

amplitudes. The projection P onto the kernel leads now to n coupled algebraic

bifurcation equations gl(AI , .... An.A) ..... gn(A1 , .... An,A) and the function w

which lies in the complement of N is also a function of n amplitudes

w(x;A I ..... An,A). Hence it is conceptually not difficult to extend the

function G-PQLY and W-PQLY to the n-fold degenerate steady state bifurcation

problem. However. due to intermediate expression swell. this program will be

of very limited use for coefficients higher than third order. Also we

encounter one of the basic issues of Computer Algebra: Even if it is possible

to calculate nontrivial fifth order coefficients, these are usually large and

complicated algebraic expressions, depending on the parameters of the problem.

In general these expressions are too difficult to interpret and hence are

meaningless. However in some interesting cases we have been able to reduce the

number of coefficients involved by fixing them at critical values such that

lower order terms in the bifurcation equations vanish. Then the next higher

order terms are the leading order terms and therefore their signs determine the

whole local bifurcation structure. If we are lucky then the relevant

coefficients depend only on one or two parameters and can be plotted as
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functions of these parameters.

The following interactive procedure describes a highly efficient way of

calculating these higher order coefficients and plotting their graphs. Its key

requirement is that products of the critical eigenfunctions must have a finite

decomposition into a complete set of suitable orthogonal eigenfunctions. For

trigonometric eigenfunctions this means that we need such nonlinear terms that

the Fourier decomposition of the occurring products of the critical

eigenfunctions are finite. The aim of the procedure is to create a FORTRAN

program out of MACSYMA which eventually feeds into a plotting routine.

Rather than presenting the procedure in full generality, we treat the

Benard problem of (44) as an example (cf.[1],[2l]). We write the Boussinesq

equations as

(48) NL (-p,e)

where -P,e are the stream function and the temperature variation respectively, L

is the linear operator and NL (-p.e) a vector-valued nonlinear differential

operator. For a 2-dimensional infinitely extended problem and "free"

horizontal boundary conditions at z = -1/2 and 1/2, we find two simultaneously

unstable critical modes at a critical periodicity length defined by a:

-Pc [A sin(ax+~) + B sin(2ax+x)] sin ~(z+~)

(49)

e
c

(50)

.1. _ A .,.(1) + B -p(2)
"'c '"

2 2 2 -1 2 2 2 -1 1
- [A (~ +a) a cos(ax+~) + B (~ +4a) (2a) cos(2ax+X)] sin ~(z+2)
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For this degeneracy the critical Rayleigh number Rac and the critical
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wavelength a are given by Ra
c

769.234, a = 1.5501534. In this way we model

a very large Benard problem (length of container » l/a) as an infinitely

extended problem with periodic boundary conditions. The critical wavevector a

then corresponds to a periodicity length L such that the modes a and 2a become

simultaneously unstable. Such an L can always be found. Since we impose only

periodic boundary conditions we allow for arbitrary variations in the phases ~

and J(.

Symmetry arguments [1] reveal that the generic system for this problem

is of the form

A' 2 2 3 2(X + all A + a 12 B ) A + c
i

A B cos 24>

(51) B' 2 2 4(X + a
21

A + a
22

B ) B + c
2

A B cos 24>

4>' 2 2 2
24>- A (2c

1
B + c

2
A ) sin

where 4> = 2~ - J(. The first occurrence of the phase 4> in the bifurcation

equations is in fifth order terms. These terms are crucial for the solution

structure of the bifurcation equations (51). To determine them we make the

following ansatz:

~ ~c + ~l + w~2 + ....

(52)

i+l i+lwhere w~i,wei = O(A ,B ). Clearly in order to determine a fifth order term

in the bifurcation equation for a p.d.e. with quadratic nonlinearity we have to

know the function w, i.e. here w~ and we. to order four in A and B. The key
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observation to reducing the necessary calculations is that. in order to

determine a specific fifth order coefficient. we do not need w up to fifth

order exactly. We only need to know certain Fourier coefficients of it.

We proceed stepwise:

~: Insert (52) into (48) and expand to order 2 in A and B. This

gives:

(53)

since L [~c ] = 0 by defini tion. Now we use the command TRIGREDUCE in MACSYMA
c

on the right hand side of equation (53) to give NL (~c.ec) decomposed into its

Fourier modes. say

Here trig w~t and trig we~ with I ~ j ~ n. I ~ 1 ~ m stands for one of the n

and m possible Fourier modes in w~k and wek (cf. eq.(52». respectively. E.g.

we find for the Boussinesq eq.(48)

and

The coefficients f i and gi depend on A or B or both. Now we set

w~1
I trig I n . ~nc
i w~1 + ... c

i trig w I

(54)

weI
I I dm

trig we7= d l trig weI + ... I

iwhere the coefficients c
i

dl are as yet unknown functions of 0(2) in A and B.
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which have the same argument as the corresponding coefficients f i ,gj' We do

not solve (53) in this step.

Step 2: Insert (52) with (w~l,we1) given by (54) into (48) and expand

to order 3 in A and B. This gives:

(55)

where NL is that part of the Boussinesq equations which is quadratic in ~

(cf. (44». We convert the right hand side again to Fourier modes whose

coefficients now depend on 1 n 1 m and setA,B,c 1,··· ,c1 ,d1,··· ,d1

w~2
1 trig 1 v trig ~vc2 w~2 + ... + c2 2

(56)

we
2 d 1 trig 1 dS trig swe2 + ... + we22 2

where v and s are the number of Fourier modes in w~2 and we2 respectively.

i d jAgain, the c2 ' 2 have the same functional dependence on the above set of

parameters as the corresponding coefficients of the r.h.s. of (55). We proceed

in this way to order 5 and project the nonlinear part of 0(5) onto the

eigenspaces given by and In each of the resulting

algebraic equations there is only one term which depends on the phases ~ and ~,

namely cos 2~-~, which are the coefficients c 1 and c2 of (51), respectively.

Th d d h . ff' . i d j k h' h .ey epen on t e preVIOUS coe IClents c3 ' 3' c2 ' w IC In turn

d . h . I d . .,.i . ej . .,.k I f hetermine t e crucia mo es trIg W~3' trIg w 3' trIg W~2' re evant or t e

fifth order terms c 1 and c2 . In order to evaluate c 1 and c2 ' we trace back the

above calculation and determine in each step the inverse L- 1 for these critical

modes. In this way we find the coefficients ck as functions of the
I

j I
coefficients c i - 1 and d i - 1

However we solve each step separately such that
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we never accumulate large algebraic expressions. Instead we write the results

out from MACSYMA into FORTRAN and finally plot a graph c l =cl(Pr),

c2 =c2(Pr). Our example shows the efficiency of this method: There are of the

order of 100 modes in the function w which contribute to fifth order. However

for the coefficients c l and c2 the only relevant modes are:

~2 ~ [sin(x-2~) + sin(3ax+2x-~)] sin v(z+~)

~3 ~ [sin(ax-x+~) + sin(2ax+2x-2~)] sin 2v(z~)

and corresponding cosine modes for wei' 1.2.3.
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Exercises

1. Change the program REDUCTIONI such that it runs correctly and most

211

efficiently for steady state bifurcations from o.d.e. 's. Reproduce the results

of the sample run of REDUCTION2 on the Lorenz equations (35).

Hint: You are dealing with purely algebraic equations. Here the differential

equation (16.2) reduces to a system of nonlinear algebraic equations. The

resulting equations for the Taylor coefficients of w{x;A,X) are systems of

linear equations which can easily be solved automatically.

2. A variant of the problem of eqs.(39),{40) is the following

integrodifferential equation [6] which describes the motion of an elastic rod

with hinged ends.

YI Y2
t

(PI)

2 I
Y2 - YI + a YI - Y2 + 4" Yl S {y1 (f»2df

t xxxx xx 11" xx o f

with Yl = Y2 = 0 at x = 0,1. Use the program REDUCTION3 to show that the

bifurcation equation up to fifth order for (PI) is given by
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3. The semilinear wave equation (39) can be treated in an alternate fashion:

Since we are only interested in stationary bifurcations. we can perform the

Liapunov-Schmidt reduction on the one-dimensional differential equation

(P2) - v - av + v3 + pv5 0xx

with v = 0 at x = O.~. Use the program REDUCTION1 to determine the bifurcation

equation up to fifth order for (P2). Compare your result with the result

obtained in the text by using REDUCTION3.

The differences can be understood in the following way: for the

[
c sin x + d sin 3X]two dimensional version is proportional to _ c sin x . whereas for

the one dimensional is proportional only to sin 3x. Hence the

fifth order coefficient in the bifurcation equation in the former case contains

an additional term of the form f~ sin x P
o

. 2 d
3wSln x __ dx '"

dA
3

This is a good example of the nonuniqueness of the Liapunov-Schmidt

reduction. Note however that the local information for A.A near zero is the

same in both cases. This is manifested by the solutions of the bifurcation

equation which are A =3/4 A2
+ terms of higher order. where the two reductions

differ only by these higher order terms. For a more extensive discussion of

the equivalence of different Liapunov-Schmidt reductions and the question where

to truncate a bifurcation equation. see [13].
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4. Calculate the bifurcation equation for the one-dimensional problem

(P3) y
2

+ay+y 0

Note that the differential equation forthe form sin me

with Dirichlet boundary conditions yeO} = yell = O.

For a =~2 the trivial solution is unstable against a perturbation of

d
2w

- A=O ( = zw)
dA

2
A=O

becomes

(P4) zw 2
+ ~ zw - 2 . 2

SIn 1TX - (1 - cos 21TX).

If we try to solve this equation via a Fourier transformation with those

Fourier modes that satisfy the boundary conditions {i.e. a pure sine-series}.

we find that the solution zw is given by an infinite series. The approach in

REDUCTIONl avoids this by solving the o.d.e.(P4} directly. introducing a

"resonant" term of the form x sin 1TX. Check that the solution for does

indeed satisfy the boundary conditions and is orthogonal to sin 1TX. Can you

think of a way of extending this approach to n-dimensional systems. n>l?
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5. The Brusselator is a well-known example of a reaction diffusion equation

[33]. Its steady state bifurcations from a homogeneous distribution of two

chemical substances Yl and Y2 is described by

(P5)

where

and where a and b are externally controllable chemical substances and d
l

d
xx

and d
2

d
xx

describe the diffusion. Usually one treats b as the bifurcation

parameter. Let us define the system on the interval [O.v] with Dirichlet

boundary conditions.

2 2
Show that for a = d l d2 . (P5) has a zero eigenvalue at b = (1 + d l )

with critical eigenfunction sin x [ _ ~2_ d
l
] and adjoint critical

eigenfunction sin x [ 1 +ll/d l ]. Find the bifurcation equation up to second

order. Determine why the program SOLVE_ODE encounters inconsistent equations

when attempting to calculate W-POLY(2.0) (cf. exercise 4 and [4]). Show that

for d
l

= I the first nonvanishing term in the bifurcation equation is of third

order and calculate this term.
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APPENDIX

INTRODUCfION TO MACSYMA

Introduction

The purpose of this Appendix is to provide an introduction to the

computer algebra system MACSYMA. We have included this introduction so that

the book would be understandable to the reader with no familiarity with

MACSYMA. However. it is by necessity so brief that the reader is referred to

other sources for further information ([26J.[35J).

If. as we intend. the reader plans to use our MACSYMA programs to

perform perturbation calculations. it is unquestionably desirable that some

first-hand experience with MACSYMA be available before trying our programs.

For a reader with no MACSYMA experience. we suggest reading this introduction

in front of a computer terminal running MACSYMA. Then the reader may wish to

duplicate our run. punctuated with explorations of the reader's design. At the

end of the AppendiX we offer some elementary exercises for the beginning

MACSYMA user.

To invoke MACSYMA on most machines. type:

MACSYMA (return)

The computer will display a greeting of the sort:
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This is MACSYMA 304

[copyright message ... J

Loading fix file <MACSYM>TOPS20.FIX.304

(CI)

The (CI) is a "label". Each input or output line is labelled and can be

referred to by its label for the rest of the session. C labels denote your

Commands and D labels denote Displays of the machine's response. Never use

variable names like Cl or 05. as these will be confused with the lines so

labeled.

Special Keys and Symbols

1. To end a MACSYMA session, type QUIT(); . On some machines AC or Ay or AZ

will also work. (Here A stands for the control key, so that AC means

simultaneously press both the key marked control and the C key).

2. To abort a computation without leaving MACSYMA, type AG or AC or press the

ABORT key. This step will differ from machine to machine. It is important for

you to know how to do this on your machine, in case, for example, you begin a

computation which is taking too long.

3. In order to tell MACSYMA that you have finished your command, use the

semicolon (;). On some machines you must follow the; with a return. Note

that the return key alone does not signal that you are done with your input.

4. An alternativ~ input terminator to the semicolon (;) is the dollar sign ($),

which, however. supresses the display of MACSYMA's computation. This is useful

if you are cqmputing some long intermediate result, and you don't want to waste

time having it displayed on the screen.
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5. If you want to completely delete the current input line (and start this line

fresh from the beginning), type a double question mark (??).

6. If you wish to repeat a command which you have already given, say on line

(C5), you may do so without typing it over again by preceding its label with a

double quote (' '), i.e., "C5. (Note that simply inputing C5 will not do the

job - try it.)

7. If you want to refer to the immediately preceding result computed by

MACSYMA, you can either use its D label, or you can use the special symbol

percent (%).

8. The standard quantities e (natural log base), i (square root of -1) and pi

(3.14159 ... ) are respectively referred to as %E, %1 and %PI. Note that the use

of % here as a prefix is completely unrelated to the use of % to refer to the

preceding result computed.

9. In order to assign a value to a variable, MACSYMA uses the colon (:), not

the equal sign. The equal sign is used for representing equations.

Arithmetic

The common arithmetic operations are:

+ addition

- subtraction

* scalar multiplication

/ division

~ or ** exponentiation

matrix multiplication

factorial

SQRT{X) square root of X

MACSYMA's output is characterized by exact (rational) arithmetic. E.g.,
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(C1) 1/100+1/101:

(01)

INTRODUCTION TO MACSYMA

201

10100

If irrational numbers are involved in a computation, they are kept in symbolic

form:

(C2) (1+SQRT(2»~5;

(02)

(C3) EXPAND(%);
(03)

5
(SQRT(2) + 1)

29 SQRT(2) + 41

However. it is often useful to express a result in decimal notation. This may

be accomplished by following the expression you want expanded by ".NUMER":

(C4) %.NUMER;
(04) 82.012194

Note the use here of % to refer to the previous result. In this version of

MACSYMA, NUMER only gives 8 significant figures. of which the last is often

unreliable. However. MACSYMA can offer arbitrarily high precision by using the

BFLOAT function:

(C5) BFLOAT(03);
(05) 8.201219330881976B1

The number of significant figures displayed is controlled by the MACSYMA

variable FPPREC, which has the default value of 16:

(C6) FPPREC;
(06) 16

Here we reset FPPREC to yield 100 digits:

(C7) FPPREC: 100;
(07) 100
(CS) "C5;
(DB) 8.20121933088197564152489730020812442785204843859314941221237124017312#
4187540110412666123849550160561B1
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Note the use of the double quote (' ') in (CB) to repeat command (CS). MACSYMA

can handle very large numbers without approximation:

(C9) lOO!;
(D9) 9332621544394415268169923885626670049071596826438162146859296389521759#
9993229915608941463976156518286253697920827223758251185210916864OOOOOOOOOOO#
OOOOOOOOOOOOO

Algebra

MACSYMA's importance as a computer tool to facilitate perturbation calculations

becomes evident when we see how easily it does algebra for us. Here's an

example in which a polynomial is expanded:

(D1)
(C2) EXPAND(%);

2 3
(X Y + 3 Y + X)

63 43 23 3 52
(D2) X Y + 9 X Y + 27 X Y + 27 Y + 3 X Y

3 2 2 4 2 3
+ 18 X Y + 27 X Y + 3 X Y + 9 X Y + X

Now suppose we wanted to substitute 5/Z for X in the above expression:

(C3) D2,X=5/Z;

2 3 2 3
135 Y 675 Y 225 Y 2250 Y 125 5625 Y

(D3) ------ + + ----- + + --- +
Z 2 2 3 3 4

Z Z Z Z Z

2 3
1875 Y 9375 Y 15625 Y 3

+ ------ + ------- + -------- + 27 Y
4 5 6

Z Z Z

The MACSYMA function RATSIMP will place this over a common denominator:
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(C4) RATSIMP(%);

INTRODUCTION TO MACSYMA

3 6 2 5 3 4
(04) (27 Y Z + 135 Y Z + (675 Y + 225 Y) Z

2 3 3 2 2
+ (2250 Y + 125) Z + (5625 Y + 1875 Y) Z + 9375 Y Z

3 6
+ 15625 Y )/Z

Expressions may also be FACTORed:

(C5) FACTOR(%);
2 3

(3 Y Z + 5 Z + 25 Y)
(D5)

6
Z

MACSYMA can obtain exact solutions to systems of nonlinear algebraic equations.

In this example we SOLVE three equations in the three unknowns A.B.C:

(C6) A+B*C=1 ;
(00) B C + A = 1
(C7) B-A*C--0;
(07) B-AC=O
(CS) A+B=5;
(DS) B + A = 5

(C9) SOLVE([OO.07.DS].[A.B.C]);

25 SQRT(79) %1 + 25 5 SQRT(79) %1 + 5
(09) [[A = -------------------. B = -----------------.

6 SQRT(79) %1 - 34 SQRT(79) %1 + 11

SQRT(79) %1 + 1 25 SQRT(79) %1 - 25
C = ---------------]. [A = -------------------.

10 6 SQRT(79) %1 + 34

5 SQRT(79) %1 - 5 SQRT(79) %1 - 1
B = -----------------. C = - ---------------]]

SQRT(79) %1 - 11 10

Note that the display consists of a "list". i.e .. some expression contained

between two brackets [ ••• ]. which itself contains two lists. Each of the

latter contain a distinct solution to the simultaneous equations.
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Trig identities are easy to manipulate in MACSYMA. The function TRIGEXPAND

uses the sum-of-angles formulas to make the argument inside each trig function

as simple as possible:

(CIa) SIN(U+V)*COS(U)A3;

(DlO)
3

cos (U) SIN(V + U)

(DIl)

(Cll) TRIGEXPAND(%);

3
cos (U) (COS(U) SIN(V) + SIN(U) COS(V»

The function TRIGREDUCE. on the other hand. converts an expression into a form

which is a sum of terms. each of which contains only a single SIN or COS:

(C12) TRIGREDUCE(DlO);

SIN(V + 4 U) + SIN(V - 2 U)
(D12) ---------------------------

8
3 SIN(V + 2 U) + 3 SIN(V)

+ -------------------------
8

The functions REALPART and IMAGPART will return the real and imaginary parts of

a complex expression:

(C13) W:3+K*%I;
(D13)
(C14) WA2*%EAW;

(D14)

%1 K + 3

2 %1 K + 3
(%1 K + 3) %E

(C15) REALPART(%);

(DI5)
323

%E (9 - K ) COS(K) - 6 %E K SIN(K)
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Calculus

INTRODUCTION TO MACSYMA

(Dl )

MACSYMA can compute derivatives and integrals. expand in Taylor series. take

limits. and obtain exact solutions to ordinary differential equations. We

begin by defining the symbol F to be the following function of X:

(el) F:XA 3*%EA (K*X)*SIN(W*X);

3 K X
X %E SIN(W X)

We compute the derivative of F with respect to X:

(C2) DIFF(F.X);

3 KX 2 KX
(D2) K X %E SIN(W X) + 3 X %E SIN(W X)

3 K X
+ WX %):: ro8(W X)

Now we find the indefinite integral of F with respect to X:

(C3) INTEGRATE(F.X);

6345273
(D3) «(K W + 3 K W + 3 K W + K ) X

6244262
+ (3 W + 3 K W - 3 K W - 3 K ) X

4 32 5 4 22
+ (- 18 K W - 12 K W + 6 K ) X - 6 W + 36 K W

4 KX 7 25 43
- 6 K ) %E SIN(W X) + «- W - 3 K W - 3 K W

63 5 33 52
- K W) X + (6 K W + 12 K W + 6 K W) X

5 23 4 3 3 KX
+ (6 W - 12 K W - 18 K W) X - 24 K W + 24 K W) %E

8 26 44 628
ro8(W X»/(W + 4 K W + 6 K W + 4 K W + K )

A slight change in syntax gives definite integrals:
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(C4) INTEGRATE(1IXA 2.X.I.INF);
(D4) 1
(CS) INTEGRATE(llX.X.O.INF);
INTEGRAL IS DIVERGENT

223

Next we define the symbol G in terms of F (previously defined in Cl) and the

hypebolic sine function. and find its Taylor series expansion (up to. say.

order 3 terms) about the point X=O:

3 K X
X %E SIN(W X)

(00)
4

SINH (K X)

(C7) TAYLOR(G.X.0.3);
2 3 2 2 3 3

W WX (W K + W ) X (3 WK + W ) X
(D7)/T/ -- + - -------------- - ---------------- + ...

4 3 4 3
K K 6 K 6 K

The limit of G as X goes to 0 is computed as follows:

(CS) LIMIT(G.X.O);

(00)
W

4
K

MACSYMA also permits derivatives to be represented in unevaluated form (note

the quote):

(C9) 'DIFF(Y .X);

(00)
dY

dX

The quote operator in (C9) means "do not evaluate". Without it. MACSYMA would

have obtained 0:

(CIO) DIFF(Y.X);
(DlO) o

rand@math.cornell.edu



224 INTRODUCTION TO MACSYMA

Using the quote operator we can write differential equations:

(CII) 'DIFF(Y,X,2)+'DIFF(Y,X)+Y;

2
d Y dY

(Dll ) --- +
2 dX

dX

+ Y

MACSYMA's ODE2 function can solve some first and second order ODE's:

(C12) ODE2(DII,Y,X);

- X/2 SQRT(3) X SQRT(3) X
(DI2) Y = %E (%Kl SIN(---------) + %K2 COS(---------»)

2 2

Matrix Calculations

MACSYMA can compute the determinant, inverse and eigenvalues and eigenvectors

of matrices which have symbolic elements (i.e., elements which involve

algebraic variables.) We begin by entering a matrix M element by element:

(Cl) M:ENTERMATRIX(3,3);
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer I, 2, 3 or 4
4;
Row Column 1: 0;
Row Column 2: 1;
Row 1 Column 3: A;
Row 2 Column 1: 1;
Row 2 Column 2: 0;
Row 2 Column 3: 1;
Row 3 Column 1: 1;
Row 3 Column 2: 1;
Row 3 Column 3: 0;
Matrix entered.

(Dl )

[ 0 A ]
[ ]
[ 0 ]
[ ]
[ 0 ]

Next we find its transpose, determinant and inverse:
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(C2) TRANSPOSE(M);
[ 0 ]
[ ]

(D2) [ 0 ]
[ ]
[ A 0 ]

(C3) DETERMINANT(M);
(D3) A + 1

(C4) INVERT(M).DETOUT;

[ - 1 A ]
[ ]
[ - A A ]
[ ]
[ - 1 ]

(D4) -----------------
A + 1

In (C4). the modifier DETOUT keeps the determinant outside the inverse. As a

check. we multiply M by its inverse (note the use of the period to represent

matrix multiplication);

(CS) RATSIMP(M.D4);

(D5)

[ 0 0]
[ ]
[ 0 0 ]
[ ]
[0 0 ]

In order to find the eigenvalues and eigenvectors of M. we use the function

EIGENVECTORS:

(el) EIGENVECTORS(M);

SQRT(4 A + 5) - 1 SQRT(4 A + 5) + 1
(D7) [[[- -----------------. ----------------- - 1].

2 2

[1. 1. 1]]. [1.
SQRT(4 A + 5) - 1

2 A + 2

SQRT(4 A + 5) - 1
- -----------------].

2 A + 2

SQRT(4 A + 5) + 1 SQRT(4 A + 5) + 1
[1. ----------------- -----------------]. [1. - 1. 0]]

2A+2 2A+2

In D7. the first triple gives the eigenvalues of M and the next gives their

respective multiplicities (here each is unrepeated). The next three triples
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give the corresponding eigenvectors of M. In order to extract from this

expression one of these eigenvectors. we may use the PART function:

(CS) PART(%.2);

SQRT(4 A + 5) - 1 SQRT(4 A + 5) - 1
(DB) [1. - ----------------- - -----------------]

2A+2 2A+2

Programming in MACSYMA

So far we have used MACSYMA in the interactive mode. rather like a calculator.

However. for computations which involve a repetitive sequence of commands like

the ones we present in this book. it is better to execute a program. Here we

present a short sample program to calculate the critical points of a function f

of two variables x and y. The program cues the user to enter the function f.

then it computes the partial derivatives fx and fy ' and then it uses the

MACSYMA command SOLVE to obtain solutions to f = f =O. The program isx y

written outside of MACSYMA with an editor. and then loaded into MACSYMA with

the BATCH command. Here is the program listing:

CRITPTS() :=(

PRINT("PROGRAM TO FIND CRITICAL POINTS").

F:READ("ENTER F(X. Y)").

PRINT("F =" .F).

EQS:[DIFF(F.X).DIFF(F.Y)].

UNK: [X. Y].

SOLVE(EQS. UNK»$

The program (which is actually a function with no argument) is called

CRITPTS. Each line is a valid MACSYMA command which could be executed from the

keyboard. and which is separated from the next command by a comma. The partial
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derivatives are stored in a variable named EQS. and the unknowns are stored in

UNK.

Here is a sample run:

This is EUNICE MACSYMA Beta Test Release 308.2.
[copyright message ... J

(cl) BATCH(CRITPTS)$
[program is loaded in ... J

(c4) CRITPTS();
PROGRAM TO FIND CRITICAL POINTS
ENTER F(X.Y)
%E~(X~3+Y~2)*(X+Y);

2 3
y + x

F = (y + x) %e

(d4) [[x = 0.4588955685487001 %i + 0.3589790871086935.

y =0.4942017368275118 %i - 0.1225787367783657J.

[x =0.3589790871086935 - 0.4588955685487001 %i.

y =- 0.4942017368275118 %i - 0.1225787367783657J.

[x =0.4187542327234816 %i - 0.6923124204420268.

y = 0.455912070111699 - 0.869726269281412 %iJ.

[x = - 0.4187542327234816 %i - 0.6923124204420268.

Y = 0.869726269281412 %i + 0.455912070111699JJ
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Partial List of MACSYMA functions

See the MACSYMA Reference Manual [26] for more information. Online information

about any function is available through the command DESCRIBE(function name).

ALLROOTS(A) finds all the (generally complex) roots of the polynomial equation

A, and lists them in NUMERical format (i.e. to 9 significant figures).

APPEND(A.B) appends the list B to the list A. resulting in a single list.

BATCH(A) loads and runs a BATCH program with filename A.

OOEFF(A.B.C) gives the coefficient of B raised to the power C in expression A.

C may be omitted if it is unity.

CONCAT(A.B) creates the symbol AB.

OONS(A,B) adds A to the list B as its first element.

DEMOIVRE(A) transforms all complex exponentials in A to their trigonometric

equivalents.

DENOM(A) gives the denominator of A.

DEPENDS(A.B) declares A to be a function of B. This is useful for writing

unevaluated derivatives. as in specifying differential equations.

DESOLVE(A.B) attempts to solve a linear system A of o.d.e. 's for unknowns B

using Laplace transforms. See the Manual for details.

rand@math.cornell.edu



INTRODUCTION TO MACSYMA

DETERMINANT(A) returns the determinant of the square matrix A.

229

DIFF(A.BI.CI.B2.C2 ..... Bn.Cn) gives the mixed partial derivative of A with

respect to each Bi. Ci times. For brevity. DIFF(A.B.I) may be represented by

DIFF(A.B). ·DIFF( ... ) represents the unevaluated derivative. useful in

specifying a differential equation.

EIGENVALUES(A) returns two lists. the first being the eigenvalues of the square

matrix A. and the second being their respective multiplicities.

EIGENVECTORS(A) does everything that EIGENVALUES does. and adds a list of the

eigenvectors of A.

ENTERMATRIX(A.B) cues the user to enter an AxB matrix. element by element.

EV(A.BI.B2 ..... Bn) evaluates A subject to the conditions Bi. In particular the

Bi may be equations. lists of equations (such as that returned by SOLVE). or

assignments. in which cases EV "plugs" the Bi into A. The Bi may also be words

such as NUMER (in which case the result is returned in numerical format).

DETOur (in which case any matrix inverses in A are performed with the

determinant factored out). or DIFF (in which case all differentiations in A are

evaluated. i.e. 'DIFF in A is replaced by DIFF). For brevity in a manual

command (i.e .. not inside a user defined function). the EV may be dropped.

shortening the syntax to A.BI.B2 ..... Bn.

EXPAND(A) algebraically expands A. In particular multiplication is distributed

over addi tion.
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EXPONENTIALIZE(A) transforms all trigonometric functions in A to their complex

exponential equivalents.

FACTOR (A) factors A.

FREEOF(A.B) is true if the variable A is not part of the expression B.

GRIND(A) displays a variable or function A in a compact format. When used with

WRITEFILE and an editor outside of MACSYMA. it offers a scheme for producing

BATCH files which include MACSYMA generated expressions.

IDENT(A) returns an AxA identity matrix.

IMAGPART(A) returns the imaginary part of A.

INTEGRATE(A.B) attempts to find the indefinite integral of A with respect to B.

INTEGRATE(A.B.C.D) attempts to find the definite integral of A with respect to

B taken from B=C to B=D. The limits of integration C and D may be taken as INF

(positive infinity) or MINF (negative infinity).

INVERT(A) computes the inverse of the square matrix A.

KILL(A) removes the variable A together with all its assignments and properties

from the current MACSYMA environment.

LIMIT(A.B,C) gives the limit of expression A as variable B approaches the value

C. The latter may be taken as INF or MINF as in INTEGRATE.

rand@math.cornell.edu



INTRODUCTION TO MACSYMA

LHS(A) gives the left hand side of the equation A.

231

LOADFILE(A) loads a disk file with filename A from the current default

directory. The disk file must be in the proper format (i.e. created by a SAVE

command).

MAKELIST(A,B.C.D) creates a list of A's (each of which presumably depends on

B). concatenated from B=C to B=D.

MAP(A.B) maps the function A onto the subexpressions of B.

MATRIX(AI.A2 .... ,An) creates a matrix consisting of the rows Ai. where each row

Ai is a list of m elements. [Bl.B2 ..... Bm].

NUM(A) gives the numerator of A.

ODE2(A.B.C) attempts to solve the first or second order ordinary differential

equation A for B as a function of C.

PART(A.Bl.B2 ..... Bn) first takes the Blth part of A, then the B2th part of

that. and so on.

PLAYBACK(A) displays the last A (an integer) labels and their associated

expressions. If A is omitted. all lines are played-back. See the Manual for

other options.

RATSIMP(A) simplifies A and returns a quotient of two polynomials.

REALPART(A) returns the real part of A.
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232 INTRODUCTION TO MACSYMA

RHs(A) gives the right hand side of the equation A.

SAVE(A.Bl.B2•.... Bn) creates a disk file with filename A in the current default

directory. of variables. functions, or arrays Bi. The format of the file

permits it to be reloaded into MACSYMA using the LOADFILE command. Everything

(including labels) may be SAVE'd by taking Bl equal to ALL.

SOLVE(A.B) attempts to solve the algebraic equation A for the unknown B. A

iist of solution equations is returned. For brevity. if A is an equation of

the form C =0 it may be abbreviated simply by the expression C.

SOLVE([Al.A2 .....An].[Bl.B2 ....•Bn]) attempts to solve the system of n

poiynomial equations Ai for the n unknowns Bi. A list of solution equations is

returned.

STRINCOUT(A,Bl.B2 .....Bn) creates a disk file with filename A in the current

default directory. of variables (e.g. labels) Bi. The file is in a text format

and is not reloadable into MACSYMA. However the strungout expressions can

incorporated into a FORTRAN or BASIC program with a minimum of editing.

SUBsT(A.B.C) substitutes A for B in C.

SUM(A.B.C,D) sums expression A as B varies from C to D.

tAYLOR(A.B.C.D) expands A in a Taylor series in B about B=C. up to and

including the term (B-C)AD. MACSYMA also supports Taylor expansions in more

than one independent variable; see the Manual for details.

TRANSPOSE(A) gives the transpose of the matrix A.
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TRIGEXPAND(A) is a trig simplification function which uses the sum-of-angles

formulas to simplify the arguments of individual SIN or COS·s. E.g.

TRIGEXPAND(SIN(X+Y)) gives COS(X) SIN(Y) + SIN(X) COS(Y).

TRIGREDUCE(A) is a trig simplification function which uses trig identities to

convert products and powers of SIN and COS into a sum of terms. each of wh\ch

contains only a single SIN or COS. E.g .. TRIGREDUCE(SIN(X)A2) gives

(1 - COS(2X))/2.

TRIGSIMP(A) is a trig simplification function which replaces TAN. SEC. etc .. by

their SIN and COS equivalents. It also uses the identity

rand@math.cornell.edu



234

Exercises

INTRODUCTION TO MACSYMA

1. 20Integrate (log(x» . then check your result by differentiating it.

2. Define z to be x + i Y (where i is the square root of -1. i.e. %1). and

then F to be sin(z2+ 1og(z». Then find the REALPART of F. call it R. and

B~ B~compute -:2 + -:2' which should be zero. Be sure to RATSIMP your answer.
ax By

3. Find the equation of the circle passing through the points: (-2.7). (-4.1).

(4.-5).

Hint: Look for the solution in the form

Use the given points to obtain 3 equations of the above form. and then SOLVE

for the 3 unknowns a.b.r.

4. -1 -1 -1Check the matrix identity (A B) =B A by computing both sides when

[12 3]
A = 4 5 6

7 8 K [-2 10]
B = 1 -2 1

o 1-2

Use ENTERMATRIX to define A and B. then INVERT both. Remember that matrix

multiplication is represented by a period. Be sure to RATSIMP your answer.

5. Find a particular solution to the following fourth order differential

equation:

y' • .• _ y' .• - y" - y' - 2y = x5

Hint: Look for a solution in the form of a 5th degree polynomial in x with

unknown coefficients. Check your answer by substituting it back into the
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action-angle variables 135

adjoint linear operator 161

amplitude equation 196,204

and Liapunov-Schmidt reduction 196

autonomous differential equation 2,24

AVERAGE 114-115,117-119,120-121,125-126,127-130

averaging 107

general form with respect to 107

mth order 127

theorem 109

Benard problem 196,206

bifurcation equation 158

stability of solutions 179

symmetry of 167,184,207

bifurcations

fold 123

in algebraic equations 176

ni lpotent 71,72

nondegenerate 156,161,176

of subharmonics 106,125,152,153

pitchfork 47,48,198

stationary 156

steady state, in systems 0f p.d.e.'s 181

boundary conditions

Dirichlet 167,175,213,214

Neumann 167,175

zero-flux 167

Boussinesq approximation 197
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canonical transformations 133,153

center manifold 27.68.155.204

for systems with damping 35

vs. Liapunov-Schmidt reduction 176.177,179

and Lindstedt's method 39

CM 31.32-34.36.45

convection 196

damping 12.17.24.35,70.106

DECOMPOSE 65

determinacy 80-83

Taken's condition for 80

Duffing equation 24-25,99.120-123.131.154

averaging for 120

eigenfunction

adjoint critical 161

cri tical 161

eigenvalue

double zero 71

zero real part 27

J::IGENVALUES 42

pGENVECTORS 42

elastica 156.162

elliptic integrals 156,159

equations of motion 132

Euler buckling 156.162.168

feedback-control system 29

forcing

T-periodic 107

Frechet derivative 160

Fredholm alternative 185

frequency-amplitude relation 4

generalized coordinates and momenta 133

generating function 133.134

Hamiltonian system 71,89,132

harmonic oscillator 133

two degree of freedom 149

Hartmann's theorem 53,72
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