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Abstract

Coexistence phenomenon refers to the absence of expected tongues of instability in parametrically excited systems. In this
paper we obtain sufficient conditions for coexistence to occur in the generalized Ince equation

(1+ a1 cost + a2 cos 2t)v̈

+ (b1 sint + b2 sin 2t)v̇

+ (� + c1 cost + c2 cos 2t)v = 0.

The results are applied to the stability of motion of a non-linear normal mode, thex-mode, in a class of conservative two
degree of freedom systems.
� 2005 Elsevier Ltd. All rights reserved.

Keywords:Parametric excitation; Coexistence; Resonance; Stability

1. Introduction

1.1. Introductory example

This paper concerns the stability of non-linear nor-
mal modes in two degree of freedom systems. Insta-
bilities in such cases are due to autoparametric excita-
tion [1], that is, parametric excitation which is caused
by the system itself, rather than by an external peri-
odic driver. The investigation of stability involves the
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solution of a system of linear differential equations
with periodic coefficients (Floquet theory). The typ-
ical behavior of such a system involves tongues
of instability representing parametric resonances
(Mathieu’s equation, for example). Coexistence phe-
nomenon refers to the circumstance in which some
of these tongues of instability have closed up and
disappeared. Their absence cloaks hidden instabili-
ties which may emerge due to small changes in the
system. This effect is important because it occurs in
various mechanical systems.
We begin by illustrating the phenomenon with a

physical example. This example, called “the particle
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Fig. 1. The particle in the plane.

in the plane” by Yang and Rosenberg[2,3] who first
studied it, involves a unit mass which is constrained
to move in thex–y plane, and is restrained by two
linear springs, each with spring constant of1

2. The
anchor points of the two springs are located on thex-
axis atx =1 andx =−1. Each of the two springs has
unstretched lengthL. SeeFig. 1.
This autonomous two degree of freedom system has

the following equations of motion[2]:

ẍ + (x + 1)f1(x, y) + (x − 1)f2(x, y) = 0, (1)

ÿ + yf 1(x, y) + yf 2(x, y) = 0, (2)

where

f1(x, y) = 1

2


1− L√

(1+ x)2 + y2


 . (3)

f2(x, y) = 1

2


1− L√

(1− x)2 + y2


 . (4)

This system exhibits an exact solution correspond-
ing to a mode of vibration in which the particle moves
along thex-axis (thex-mode):

x = A cost, y = 0. (5)

In order to determine the stability of this motion, one
must substitutex = A cost + u, y = 0 + v into the
equations of motion (1), (2) whereu andv are small
deviations from the motion (5), and then linearize inu
andv. The result is two linear differential equations on
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Fig. 2. Stability chart for Eq. (6). S=stable, U=unstable. Curves
obtained by perturbation analysis.

u andv. Theu equation turns out to be the simple har-
monic oscillator, and cannot produce instability. The
v equation is

d2v

dt2
+

(
� − A2 cos2 t

1− A2 cos2 t

)
v = 0, (6)

where� = 1− L. For a particular pair of parameters
(A, �), Eq. (6) is said to be stable if all solutions to (6)
are bounded, and unstable if an unbounded solution
exists. A stability chart for Eq. (6) may be obtained by
using either perturbation theory or numerical integra-
tion together with Floquet theory (see[4] for exam-
ple). SeeFig. 2. Note that although this equation ex-
hibits an infinite number of tongues of instability, only
one of them (emanating from the point�=4,A=0) is
displayed, for convenience. (The tongues of instabil-
ity emanate from� = 4N2, A= 0 forN = 1,2,3, . . .,
and becomes progressively narrower for increasingN.)
Since the unstretched spring lengthL>0, the param-
eter�=1−L<1. Thus, the only tongue of instability
for Eq. (6) which has physical significance is the one
which emanates from� = 0, seeFig. 2.
Nowwewish to compare the behavior of this system

with a slightly perturbed system in which some extra
stiffness is added.We add a spring which gives a force
−�y in they-direction. This adds a term+�y to the
left-hand side of Eq. (2). The new system still exhibits
the periodic solution (5), and its stability turns out to
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Fig. 3. Stability chart for Eq. (7) for� = 0.2. S= stable,
U = unstable. Note the presence of an additional tongue of insta-
bility compared toFig. 2. See text.

be governed by the ODE.

d2v

dt2
+

(
� + � − (1+ �)A2 cos2 t

1− A2 cos2 t

)
v = 0. (7)

Note that Eq. (7) reduces to (6) for�=0.Fig. 3shows
the stability chart for Eq. (7).
Comparison ofFigs. 2and3 shows that a new re-

gion of instability has occurred due to the small change
made in the system. If an engineering design was
based onFig. 2, and if the actual engineering system
involved slight departures from the model of Eq. (6),
the appearance of such an unexpected region of in-
stability could cause disastrous consequences. In this
paper we investigate the possibility of the occurrence
of such hidden instabilities in a class of two degree of
freedom systems.

1.2. Coexistence phenomenon

The appearance of an unexpected instability region
in the foregoing example may be explained by stat-
ing that Eq. (6) had buried in it an instability region
of zero thickness[5]. This is shown inFig. 4, which
is a replot ofFig. 2with the zero-thickness instability
region displayed as a dashed line. This curve, which
happens to have the simple equation� = 1, is charac-
terized by thecoexistenceof two linearly independent
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Fig. 4. Stability chart for Eq. (6) showing coexistence curve as a
dashed line (here�=1). Note that although the coexistence curve
is itself stable, it may give rise to a tongue of instability if the
system is perturbed.

periodic solutions of period 2�. This condition is sin-
gular and so we are not surprised to find that nearly
any perturbation of the original system (6), such as the
reassignment of spring stiffnesses in (7), will produce
an opening up of the zero-thickness instability region.
It should be mentioned that there are various other

physical systems which are known to exhibit coexis-
tence. These include a simplified model of a vibrat-
ing elastica[6], the elastic pendulum[4], rain–wind-
induced vibrations[7], Josephson junctions[8] and
coupled non-linear oscillators[9].
Coexistence phenomenon has been treated from a

theoretical point of view in[10], and more recently in
[4,11]. In this paper we use perturbation methods to
rederive and extend the results given in[4,10,11]. In
particular, we address the question of finding condi-
tions under which a class of linear ODEs with periodic
coefficients will exhibit coexistence phenomenon.

2. Motivating application

We wish to study autoparametric excitation in a
class of systems which on the one hand have the fol-
lowing very general expressions for kinetic energyT
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and potential energyV:

T = �1(x, y)ẋ
2 + �2(x, y)ẋẏ + �3(x, y)ẏ

2, (8)

V = 1
2 �2

1x
2 + 1

2 �2
2y

2 + �40x4 + �31x3y

+ �22x2y2 + �13xy3 + �04y4 (9)

and on the other hand generalize the particle in the
plane example by exhibiting anx-mode of the form of
Eq. (5):

x = A cost, y = 0. (10)

Writing Lagrange’s equations for the system (8), (9),
we find that in order for (10) to be a solution, we
must have�40 = 0, �31 = 0, �2 = 0 and�1 = �2

1/2.
Choosing�1=1 without loss of generality, we obtain
the following expressions forT andV:

T = 1
2 ẋ

2 + �3(x, y)ẏ
2, (11)

V = 1
2 x

2 + 1
2 �2

2y
2 + �22x2y2 + �13xy3 + �04y4.

(12)

We further assume that�3(x, y) has the following
form:

�3(x, y) = �00 + �01x + �10y + �02x
2

+ �11xy + �20y
2. (13)

Now we investigate the linear stability of thex-mode
(10). We setx =A cost +u, y =0+ v in Lagrange’s
equations and then linearize inu andv. This gives the
u equation as̈u + u = 0 and thev equation as

(2�00 + A2�02 + 2A�01cost + A2�02cos 2t)v̈

+ (−2A�01sint − 2A2�02sin 2t)v̇

+ (�2
2 + A2�22 + A2�22cos 2t)v = 0. (14)

This leads us to consider the following abbreviated
form of (14):

(1+ a1 cost + a2 cos 2t)v̈

+ (b1 sint + b2 sin 2t)v̇

+ (� + c1 cost + c2 cos 2t)v = 0, (15)

where

a1 = 2A�01

2�00 + A2�02
,

a2 = A2�02

2�00 + A2�02
,

b1 = −2A�01

2�00 + A2�02
= −a1,

b2 = −2A2�02

2�00 + A2�02
= −2a2,

� = �2
2 + A2�22

2�00 + A2�02
,

c1 = 0,

c2 = A2�22
2�00 + A2�02

. (16)

3. Generalized Ince’s equation

We come now to the main content of this paper,
namely a study of the coexistence phenomenon in the
ODE (15):

(1+ a1 cost + a2 cos 2t)v̈

+ (b1 sint + b2 sin 2t)v̇

+ (� + c1 cost + c2 cos 2t)v = 0. (17)

In the case thata2 = 0, b2 = 0 andc2 = 0, Eq. (17)
reduces to a well-known ODE called Ince’s equation.
Coexistence in Ince’s equation has been studied in
[4,10,11]. In the rest of this paper, we generalize the
previously obtained results for Ince’s equation to apply
to the generalized Ince’s equation (17).
Eq. (17) is a linear ODE with periodic coefficients

having period 2�. From Floquet theory we know that
the transition curves separating regions of stability
from regions of instability are defined by sets of pa-
rameter values that allow periodic solutions of period
2� or 4�. These curves can be found by using the
method of harmonic balance. Periodicity enables the
solution to be written in the form of a Fourier series:

v(t) = A0 +
∞∑
n=1

An cos
nt

2
+

∞∑
n=1

Bn sin
nt

2
. (18)

Substituting (18) into (17) and trigonometrically re-
ducing and collecting terms gives an infinite set of
coupled equations. These uncouple into four sets of
equations on even and odd cosine (An) and sine (Bn)
coefficients. For example, theA-even coefficients
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satisfy the following equations:
A-even




� −1
2 a1 − 1

2 b1 + 1
2 c1 −2a2 − b2 + 1

2 c2 0 · · ·
c1 � − 1 −1

2 a2 − 1
2 b2 + 1

2 c2 −2a1 − b1 + 1
2 c1 · · ·

c2 −1
2 a1 + 1

2 b1 + 1
2 c1 � − 4 −9

2 a1 − 3
2 b1 + 1

2 c1 · · ·
0 −1

2 a2 + 1
2 b2 + 1

2 c2 −2a1 + b1 + 1
2 c1 � − 9 · · ·

...
...

...
...

. . .







A0

A2

A4

A6

...




= 0.

To simplify the notation, we introduce the following substitutions:

T (n) = � −
(n

2

)2
,

M(n) = 1

2

(
−

(n

2

)2
a1 + n

2
b1 + c1

)
,

P(n) = 1

2

(
−

(n

2

)2
a2 + n

2
b2 + c2

)
. (19)

The four sets of penta-diagonal matrix equations may then be written as
A-even




T (0) M(−2) P (−4) 0 0 0 · · ·
2M(0) T (2) + P(−2) M(−4) P (−6) 0 0 · · ·
2P(0) M(2) T (4) M(−6) P (−8) 0 · · ·

0 P(2) M(4) T (6) M(−8) P (−10) · · ·
0 0 P(4) M(6) T (8) M(−10) · · ·
0 0 0 P(6) M(8) T (10) · · ·
...

...
...

...
...

...
. . .







A0

A2

A4

A6

A8

A10

...




= 0,

B-even




T (2) − P(−2) M(−4) P (−6) 0 0 · · ·
M(2) T (4) M(−6) P (−8) 0 · · ·
P(2) M(4) T (6) M(−8) P (−10) · · ·
0 P(4) M(6) T (8) M(−10) · · ·
0 0 P(6) M(8) T (10) · · ·
...

...
...

...
...

. . .







B2

B4

B6

B8

B10

...




= 0,
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A-odd



T (1) + M(−1) M(−3) + P(−3) P (−5) 0 0 · · ·
M(1) + P(−1) T (3) M(−5) P (−7) 0 · · ·

P(1) M(3) T (5) M(−7) P (−9) · · ·
0 P(3) M(5) T (7) M(−9) · · ·
0 0 P(5) M(7) T (9) · · ·
...

...
...

...
...

. . .







A1
A3
A5
A7
A9
...




= 0,

B-odd



T (1) − M(−1) M(−3) − P(−3) P (−5) 0 0 · · ·
M(1) − P(−1) T (3) M(−5) P (−7) 0 · · ·

P(1) M(3) T (5) M(−7) P (−9) · · ·
0 P(3) M(5) T (7) M(−9) · · ·
0 0 P(5) M(7) T (9) · · ·
...

...
...

...
...

. . .







B1
B3
B5
B7
B9
...




= 0.

Each of the four above sets of equations is homoge-
neous and of infinite order, so for a non-trivial solution
the determinants must vanish. Note that the resulting
determinants forA-odd andB-odd are identical except
for the first row and the first column. A comparable
similarity exists between the determinants forA-even
andB-even. Although generally the vanishing of, say,
theA-odd determinant will give a completely different
result than that of theB-odd determinant, nevertheless
there may exist a special relationship between the co-
efficients such that the two results will give infinitely
many identical branches, that is, infinitely many of the
transition curves will be identical, in which case the
associated instability regions will disappear (or rather
will have zero width). On such transition curves we
will have both an odd and an even periodic motion,
that is, two linearly independent periodic motions will
coexist. In order to derive conditions for coexistence,
we write any one of the above infinite penta-diagonal
determinants in the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R R R 0 0 0 0 0 0 · · ·
R R R R 0 0 0 0 0 · · ·
R R R R Y 0 0 0 0 · · ·
0 R R R Y Y 0 0 0 · · ·
0 0 X X S S S 0 0 · · ·
0 0 0 X S S S S 0 · · ·
0 0 0 0 S S S S S · · ·
0 0 0 0 0 S S S S · · ·
0 0 0 0 0 0 S S S · · ·
...

...
...

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (20)

If all three of theX terms vanish, or if all three of the
Y terms vanish, the determinant will decompose into
two determinants, one involving only theR terms, and
the other involving only theS terms. Since theA-odd
andB-odd determinants are identical except for the
upper left-hand corner, the corresponding determinant
of (20) involving only theSterms will be the same for
bothA-odd andB-odd, and we will have coexistence.
The vanishing of the threeX terms or of the threeY
terms turns out to give the following conditions:

P(n − 2) = 0, M(n) = 0, P (n) = 0, (21)

wheren can be any integer,

n = . . . ,−3,−2,−1,0,1,2,3, . . . .

From our definitions (19) ofM and P, we are left
with the following conditions for coexistence in the
generalized Ince’s equation (17):

c1 =
(n

2

)2
a1 − n

2
b1,

b2 = (n − 1)a2,

c2 =
(n

2

)2
a2 − n

2
b2. (22)

Thus, coexistence will occur in the generalized Ince
equation (17) if Eqs. (22) hold for any integern, pos-
itive, negative or zero.
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Note that in the special casea2 = b2 = c2 = 0, Eq.
(17) becomes Ince’s equation

(1+ a1 cost)v̈ + (b1 sint)v̇ + (� + c1 cost)v = 0.

(23)

In this case the matrices become tri-diagonal (instead
of penta-diagonal) and the condition for coexistence
reduces to just a single equation[4,10]

c1 =
(n

2

)2
a1 − n

2
b1. (24)

Note also that in the parallel casea1 = b1 = c1 = 0,
Eq. (17) again becomes a version of Ince’s equation:

(1+ a2 cos 2t)v̈ + (b2 sin 2t)v̇

+ (� + c2 cos 2t)v = 0. (25)

In this case we set� = 2t giving

(1+ a2 cos�)v̈ +
(
b2

2
sin�

)
v̇

+
(
�∗ + c2

4
cos�

)
v = 0, (26)

which is of the form of Eq. (23) witha1=a2, b1=b2/2,
c1= c2/4 and�∗ =�/4, whereupon the condition (24)
for coexistence becomes:

c2 = n2a2 − nb2. (27)

In related work, it has been shown[12] that even
more complicated versions of Ince’s equation cannot
support coexistence. For example, the equation

(1+ a1 cost + a2 cos 2t + a3 cos 3t)v̈

+ (b1 sint + b2 sin 2t + b3 sin 3t)v̇

+ (� + c1 cost + c2 cos 2t + c3 cos 3t)v = 0 (28)

gives rise to four 7-diagonal determinants and requires
six conditions to be met in order for coexistence to
occur (cf. Eqs. (21)). These conditions turn out to be
self-contradictory, so Eq. (28) cannot support coexis-
tence (unless some of the coefficients are zero, thereby
reducing it to the form of Eq. (17)).
Note that the coexistence conditions (22) do not in-

volve the parameter� in Eq. (17). Once the parameters
of the system have been chosen to satisfy the coexis-
tence conditions (22), the vanishing of the associated
determinant (20) will relate� to the other parameters
of the system.

4. Application to stability of motion

Earlier in this paper we showed that the stability of
the x-mode, Eq. (10), in system (11), (12), (13) was
governed by the generalized Ince’s equation (17) with
coefficients given by Eq. (16). From (16) we substitute
c1 = 0 andb1 = −a1 into the first of the coexistence
conditions (22) with the result

0=
(n

2

)2
a1 − n

2
(−a1), (29)

which is satisfied by eithern=−2 orn=0 or a1=0.
Next, from (16) we substituteb2 = −2a2 into the

second of the coexistence conditions (22) with the
result

−2a2 = (n − 1)a2, (30)

which is satisfied by eithern = −1 or a2 = 0.
Thus, we see that if botha1 anda2 are non-zero,

then coexistence cannot occur in the general system
defined by Eqs. (11), (12), (13), since there is no inte-
gern which can satisfy the conditions (22). From the
definitions (16) ofa1 anda2, this assumes that both
�01 and�02 are non-zero (assumingA>0). (Recall
that the�ij coefficients occur in the kinetic energyT,
see Eqs. (11), (13).)
Note that if�01= 0 but �02 does not vanish, then

coexistence is possible. However, in this case Eq. (17)
reduces to Ince’s equation, which is well-known to
support coexistence[4,10].

5. Another application

In this Section we extend the foregoing work by
considering systems in which thex-mode satisfies the
non-linear ODE:

ẍ + x + x3 = 0, (31)

which has a solution in terms of the Jacobian elliptic
function cn

x = A cn(�t, k), (32)

where[13, p. 80]

� =
√
A2 + 1, k = A√

2(A2 + 1)
. (33)



G. Recktenwald, R. Rand / International Journal of Non-Linear Mechanics 40 (2005) 1160–1170 1167

This requires that we relax the condition that�40 = 0
(cf. Eqs. (9) and (12)), and we take:

T = 1
2 ẋ

2 + �3(x, y)ẏ
2, (34)

V = 1
2 x

2 + 1
4 x

4 + 1
2 �2

2y
2 + �22x2y2

+ �13xy3 + �04y4, (35)

�3(x, y) = �00 + �01x + �10y + �02x
2

+ �11xy + �20y
2. (36)

We setx = A cn(�t, k) + u, y = 0+ v in Lagrange’s
equations and then linearize inu andv. This gives the
v equation as

2(�02A
2 cn2(�t, k) + �01A cn(�t, k) + �00)v̈

−�dn(�t, k)sn(�t, k)(2�01A+4�02A
2cn(�t, k))v̇

+ (2�22A2 cn2(�t, k) + �2
2)v = 0. (37)

Although Eq. (37) has coefficients involving Jacobian
elliptic functions, we may transform it to a generalized
Ince equation by utilizing a transformation given in
[10]. We begin by replacingt with a new time variable
T = �t , so that cn(�t, k)= cn(T , k). Then we replace
T by �, where

dT = d�√
1− k2 sin2 �

. (38)

This turns out to convert the Jacobian elliptic functions
to trig functions[14] as follows:

sn(T , k) = sin�,

cn(T , k) = cos�,

dn(T , k) =
√
1− k2 sin2 �. (39)

The result of these transformations is to replace Eq.
(37) by the following generalized Ince equation:

(1+ a1 cos� + a2 cos 2� + a3 cos 3� + a4 cos 4�)v′′

+ (b1 sin� + b2 sin 2� + b3 sin 3� + b4 sin 4�)v′

+ (� + c1 cos� + c2 cos 2� + c3 cos 3�
+ c4 cos 4�)v = 0, (40)

where the coefficientsai , bi andci are given as fol-
lows:

a1 = 2A�01(1− 1
4k

2)

a0
, (41)

a2 = �00k
2 + �02A

2

a0
, (42)

a3 =
1
2 �01Ak2

a0
, (43)

a4 =
1
4 A

2k2�02

a0
, (44)

b1 = −�01A(2− k2)

a0
, (45)

b2 = −2�02A
2(1− 1

4k
2) − �00k

2

a0
, (46)

b3 = −�01Ak2

a0
, (47)

b4 = −3
4 A

2k2�02

a0
, (48)

� = �2
2 + �22A2

a0�2
, (49)

c1 = 0, (50)

c2 = �22A2

a0�2
, (51)

c3 = 0, (52)

c4 = 0, (53)

where

a0 = �00(2− k2) + �02A
2(1− 1

4k
2). (54)

As mentioned in connection with Eq. (28) above, Eq.
(40) cannot in general support coexistence. However,
if �01 = 0, the trigonometric terms in Eq. (40) with
arguments of� and 3� will vanish, leaving an equa-
tion which can easily be transformed into the gener-
alized Ince equation (17) by replacing� by z = 2�.
Once this transformation is completed, conditions for
coexistence in the resulting equation will be given by
Eqs. (22). Carrying out this plan yields three equa-
tions corresponding to Eqs. (22). The equation which
corresponds to the second of Eqs. (22) turns out to be

(n + 1/2)�2�02A
2k2 = 0, (55)

which requires thatn= −1/2 and thus cannot be sat-
isfied by any integer value ofn. However, Eq. (55) as
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well as the other two equations coming from Eqs. (22)
can be satisfied by taking�02 = 0.

So we conclude that in order for coexistence to oc-
cur in Eq. (37), both�01 and�02 must be taken equal
to zero. This simplifies Eq. (40) to the following:

(1+ a2 cos 2�)v′′ + (b2 sin 2�)v′

+ (� + c2 cos 2�)v = 0. (56)

This is of the form of Eq. (25) and as was discussed
above, involves a single condition (27) for coexistence

c2 = n2a2 − nb2. (57)

Using Eqs. (41)–(53), Eq. (57) becomes

(−�2�00k
2)n2 + (−�2�00k

2)n + �22A2 = 0, (58)

which becomes simplified by using Eqs. (33):

n2 + n − 2�22
�00

= 0. (59)

The condition for coexistence therefore becomes sim-
ply

�22
�00

= n(n + 1)

2
, (60)

wheren is an integer, positive, negative or zero.

6. Example

As an example, wemay take�00=1/2 and�22=1/2,
which from Eq. (60) corresponds ton=1 andn=−2.
Eqs. (34), (35) become

T = 1
2 ẋ

2 + (12 + �10x + �20x
2 + �11xy)ẏ

2, (61)

V = 1
2 x

2 + 1
4 x

4 + 1
2 �2

2y
2 + 1

2 x
2y2

+ �13xy3 + �04y4. (62)

In order to consider the simplest possible such exam-
ple, we take�10=�20=�11=�13=�04=0, for which
case Lagrange’s equations become

ẍ + x + x3 + xy2 = 0, (63)

ÿ + �2
2y + x2y = 0. (64)

This system exhibits the exact solution (thex-mode):

x = A cn(�t, k), y = 0, (65)

1
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Fig. 5. Stability chart for Eq. (66). S=stable, U=unstable. Curves
obtained by perturbation analysis. The dashed line is a coexistence
curve, which is stable.

where� andk are given by Eq. (33). The stability of
thex-mode depends upon the two parameters�2 and
A, and is governed by the ODE (37), which becomes

v̈ + (�2
2 + A2 cn2(�t, k))v = 0. (66)

The stability chart corresponding to Eq. (66) consists
of transition curves which may be displayed in the
�2
2.A

2 plane. Since the period of the variable coeffi-
cient cn2(�t, k) approaches� asA approaches zero,
we may expect instability tongues to emanate from
the �2

2 axis at each of the points�2
2 = n2, where

n = 1,2,3, . . .. However, because�22 and�00 have
been chosen to satisfy the coexistence condition (60)
for n= 1 and−2, there are no even tongues and only
one odd tongue, which emanates from the point�2

2=1,
A2 = 0 [4]. SeeFig. 5, which shows this single insta-
bility tongue as well as a coexistence curve emanating
from �2

2 = 4,A2 = 0. Fig. 5was obtained as follows:
Eq. (66) is a version of Lame’s equation[15]. Fol-

lowing the procedure given in Eqs. (38), (39), it can
be transformed to

(3A2 + 4+ A2 cos 2�)v′′ − A2 sin 2�v′

+ (4�2
2 + 2A2 + 2A2 cos 2�)v = 0. (67)

Note that Eq. (67) has the exact solutionv = cos�
corresponding to the parameter�2

2=1. Therefore, the
straight line�2

2 = 1 is a transition curve as shown
in Fig. 5. Similarly, Eq. (67) has the exact solution
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v=sin� corresponding to the parameter�2
2=1+A2/2,

which also plots as a straight line inFig. 5.
In order to obtain an expression for the coexistence

curves, wemay use a regular perturbationmethod[16].
We expand

�2
2 = n2 + k1A

2 + k2A
4 + · · · , (68)

v =
{
sinn�
cosn�

}
+ v1A

2 + v2A
4 + · · · . (69)

We substitute Eqs. (68), (69) into Eq. (67), collect
terms, and choose the values of the coefficientski to
eliminate secular terms at each order ofA2, as usual
in regular perturbations[16]. Doing this forn = 2 we
obtain the same result for both sin and cos choices in
Eq. (69), signifying coexistence. The resulting curve
is displayed inFig. 5 and has the equation (obtained
by using macsyma to do the computer algebra):

�2
2 = 4+ 5A2

2
− 5A4

96
+ 5A6

128
− 26665A8

884736

+ 9385A10

393216
− 19720235A12

1019215872
+ · · · . (70)

7. Conclusions

We have obtained conditions (22) for coexistence
to occur in the generalized Ince equation (17). These
conditions are more numerous and thus more difficult
to meet than the comparable condition for Ince’s equa-
tion:

(1+a1 cost)v̈+b1 sint v̇+ (�+c1 cost)v=0. (71)

The necessary and sufficient condition for coexistence
to occur in (71) has been obtained in[10] and can be
written in the form

M(n) = 1

2

(
−

(n

2

)2
a1 + n

2
b1 + c1

)
= 0, (72)

wheren can be any integer,

n = · · · ,−3,−2,−1,0,1,2,3, · · · .

That is, coexistence will occur in (71) iff condition
(72) is satisfied for any integer value ofn.
In applications to the stability of thex-mode in the

class of two degree of freedom systems (8), (9) con-
sidered in this paper, we have shown that in general

coexistence will not occur if the system is sufficiently
complicated, i.e., if both of the coefficients�01 and
�02 occurring in Eq. (13) are non-zero. The reason for
this is that the equation governing stability is the gen-
eralized Ince’s equation (17), and the conditions for
coexistence to occur in this equation are more difficult
to meet than for Ince’s equation (71).
We have also shown that the same general procedure

can be used on problems in which thex-mode satisfies
a non-linear ODE, Eq. (31).
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