Available online at www.sciencedirect.com e

sorence @ pineer- NON-LINEAR
MECHANICS

www.elsevier.com/locate/nim

:y'l ot 2 \
ELSEVIER International Journal of Non-Linear Mechanics 40 (2005) 1160—1170

Coexistence phenomenon in autoparametric excitation of two
degree of freedom systems

Geoffrey Recktenwald, Richard Rand

Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA

Received 11 August 2004; accepted 2 May 2005

Abstract

Coexistence phenomenon refers to the absence of expected tongues of instability in parametrically excited systems. In this
paper we obtain sufficient conditions for coexistence to occur in the generalized Ince equation

(1+ ag cost + ap cos 2)i
+ (b1 sint + bp Sin 2t)v
+ (0 + cpcost + cpcos2)v =0.

The results are applied to the stability of motion of a non-linear normal modex-thede, in a class of conservative two

degree of freedom systems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction solution of a system of linear differential equations
with periodic coefficients (Floquet theory). The typ-
ical behavior of such a system involves tongues
This paper concerns the stability of non-linear nor- Of instability representing parametric resonances
mal modes in two degree of freedom systems. Insta- (Mathieu’s equation, for example). Coexistence phe-
bilities in such cases are due to autoparametric excita- Nomenon refers to the circumstance in which some
tion [1], that is, parametric excitation which is caused ©f these tongues of instability have closed up and
by the system itself, rather than by an external peri- disappeared. Their absence cloaks hidden instabili-

odic driver. The investigation of stability involves the ties which may emerge due to small changes in the
system. This effect is important because it occurs in

* Corresponding author. Tel.: +1607 255 7145; various m?Cham.Cal SySFemS' .
fax: +1607 255 2011. We begin by illustrating the phenomenon with a

E-mail addressrhr2@cornell.edyR. Rand). physical example. This example, called “the particle

1.1. Introductory example
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Fig. 1. The particle in the plane.

0.0

1 0 1 2 3
in the plane” by Yang and Rosenbdi@)3] who first °
studied 't{ involves a unit mass_ which '§ constrained Fig. 2. Stability chart for Eq. (6). S stable, U=unstable. Curves
to move in thex-y plane, and is restrained by tWo  optained by perturbation analysis.

linear springs, each with spring constant %)f The

anchor points of the two springs are located onxhe _ )
axis atx = 1 andx = —1. Each of the two springs has U@andv. Theu equation turns out to be the simple har-

unstretched length. SeeFig. 1 monic oscillator, and cannot produce instability. The
This autonomous two degree of freedom system has V eéquation is
the following equations of motiof]: d?v (5 _ A2 coszt> )
il T P )y =0,
P+ DAY +E-Dfax, =0, (1) d* \1-A%cogr
V3 106, y) +yfox, y) =0, (2)  Whered=1— L. For a particular pair of parameters
! 2 (A, 9), Eq. (6) is said to be stable if all solutions to (6)
where are bounded, and unstable if an unbounded solution
exists. A stability chart for Eq. (6) may be obtained by
1 L 3 using either perturbation theory or numerical integra-
Jilx,y) = > 1- —\/722 ' (3) tion together with Floquet theory (s¢4] for exam-
A+ +y ple). SeeFig. 2 Note that although this equation ex-
hibits an infinite number of tongues of instability, only
1 L one of them (emanating from the point=4, A=0) is
Sax,y) = > 1-—|. (4) displayed, for convenience. (The tongues of instabil-
JA=—x%+y? ity emanate frond =4N2, A=0forN=1,2,3,...,

_ o ) and becomes progressively narrower for increaking
This system exhibits an exact solution correspond- gjnce the unstretched spring lendth- 0, the param-
ingtoa moden of vibration in which the particle moves giors=1_17 <1. Thus, the only tongue of instability
along thex-axis (thex-mode): for Eq. (6) which has physical significance is the one
(5) which emanates fromi = 0, seeFig. 2
Now we wish to compare the behavior of this system
In order to determine the stability of this motion, one with a slightly perturbed system in which some extra
must substitutec = A cost + u, y =0+ v into the stiffness is added. We add a spring which gives a force
equations of motion (1), (2) whergandv are small —TI'y in they-direction. This adds a term "y to the
deviations from the motion (5), and then linearizaiin  left-hand side of Eq. (2). The new system still exhibits
andv. The resultis two linear differential equations on the periodic solution (5), and its stability turns out to

x=Acost, y=0.
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Fig. 3. Stability chart for Eq. (7) forl’ = 0.2. S=stable, Fig. 4. Stability chart for Eq. (6) showing coexistence curve as a
U = unstable. Note the presence of an additional tongue of insta- dashed line (heré =1). Note that although the coexistence curve
bility compared toFig. 2 See text. is itself stable, it may give rise to a tongue of instability if the
system is perturbed.
be governed by the ODE.
d%v S+T —(A+T)A%cost periodic solutions of period72 This condition is sin-
dr2 1— A2co@¢ v=0. ) gular and so we are not surprised to find that nearly

any perturbation of the original system (6), such as the
- reassignment of spring stiffnesses in (7), will produce
the stability chart for Eq. (7). an opening up of the zero-thickness instability region.
Comparison ofigs. 2and3 shows that a new re- It should be mentioned that there are various other
gion of_instability has occurred du_e to the smaII_change physical systems which are known to exhibit coexis-
made in the system. If an engineering design was tgnce. These include a simplified model of a vibrat-
based orFig. 2, and if the actual engineering system ing elastica6], the elastic pendulurfd], rain—wind-
involved slight departures from the model of Eq. (6), induced vibrationg7], Josephson junctiong8] and
the appearance of such an unexpected region of in- coupled non-linear oscillatofs].
stability could cause disastrous consequences. In this  ~qexistence phenomenon has been treated from a
paper we investigate the possibility of the occurrence negretical point of view if10], and more recently in
of such hidden instabilities in a class of two degree of [4,11]. In this paper we use perturbation methods to
freedom systems. rederive and extend the results given[4n10,11] In
particular, we address the question of finding condi-
tions under which a class of linear ODEs with periodic

) . . coefficients will exhibit coexistence phenomenon.
The appearance of an unexpected instability region

in the foregoing example may be explained by stat-

ing that Eqg. (6) had buried in it an instability region

of zero thicknes$5]. This is shown inFig. 4, which 2. Motivating application

is a replot ofFig. 2with the zero-thickness instability

region displayed as a dashed line. This curve, which We wish to study autoparametric excitation in a
happens to have the simple equatiba 1, is charac- class of systems which on the one hand have the fol-
terized by thecoexistencef two linearly independent  lowing very general expressions for kinetic enefigy

Note that Eq. (7) reduces to (6) fbr=0. Fig. 3shows

1.2. Coexistence phenomenon
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and potential energy:

T = By(x, )i + Bolx, )EY + Pa(x, )52, (8)
V =3 0ix® + 3 05y® + aaox” + oa1x’y
+ apox2y? 4 o33xy + opay? 9

and on the other hand generalize the particle in the

plane example by exhibiting aamode of the form of
Eq. (5):

x=Acost, y=0. (10)

Writing Lagrange’s equations for the system (8), (9),
we find that in order for (10) to be a solution, we
must havexso = 0, u31 = 0, f, = 0 and; = w?/2.
Choosingwi =1 without loss of generality, we obtain
the following expressions for andV:

T =152+ Ba(x, )32, (11)

V= %xz + % w%yz + ac22x2y2 + oc13xy3 + aco4y4.
(12)

We further assume thgi;(x, y) has the following
form:

Ba(x, ) = Boo + Borx + 1oy + Bozx®

+ Braxy + Baoy. (13)
Now we investigate the linear stability of thhemode
(10). We setv = A cost +u, y=0+v in Lagrange’s
equations and then linearize irandv. This gives the
u equation asi + u = 0 and thev equation as

(2Boo+ A%Pop + 2A g, cOSt + A%y, COS 2) D
+ (—2Afg; Sint — 2A% B, sin 20)v

+ (w3 + A%02p + A20p5c08 2)v = 0. (14)

This leads us to consider the following abbreviated
form of (14):
(1+ aj cost + ap cos 2)v

+ (b1 sint + by Sin 2)v

+ (0 + c1c0ost + cpcos2)v =0, (15)
where

_ 2AB0;
2P0+ A%Bgy’

_ A%Bq,
2Bo0+ A2Bo’

al

az

1163

__ —2APn
2B00 + A%fo2

 —2A%Bg,
200 + A2fop

B w% + Azazz
2Bo0+ A%fgy’

c1=0,

b1 = —ai,

2 = —2ay,

A2a22

~ 260+ A2fgy’ (o)

)

2

3. Generalized Ince’s equation

We come now to the main content of this paper,
namely a study of the coexistence phenomenon in the
ODE (15):

(14 a1 cost +apxcos2)v
+ (by sint + by sin 2)v

+ (0 + c1cost + coc0s2)v =0. a7)

In the case thatp =0, b =0 andcz =0, Eq. (17)
reduces to a well-known ODE called Ince’s equation.
Coexistence in Ince’s equation has been studied in
[4,10,11] In the rest of this paper, we generalize the
previously obtained results for Ince’s equation to apply
to the generalized Ince’s equation (17).

Eqg. (17) is a linear ODE with periodic coefficients
having period 2. From Floquet theory we know that
the transition curves separating regions of stability
from regions of instability are defined by sets of pa-
rameter values that allow periodic solutions of period
21 or 4n. These curves can be found by using the
method of harmonic balance. Periodicity enables the
solution to be written in the form of a Fourier series:

(o9) oo

nt . nt

v(t) = Ao + 2; Ay cosE + 2; B, sin > (18)
n= n=

Substituting (18) into (17) and trigonometrically re-
ducing and collecting terms gives an infinite set of
coupled equations. These uncouple into four sets of
equations on even and odd cosimg ) and sine B,,)
coefficients. For example, thé-even coefficients
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satisfy the following equations:

A-even
0 —tai—3bit+ica —2a—by+ 3¢ 0 7 Ao

c1 0—1 —%az—%bz—l—%cz —2a1—b1+%cl Ay

c2 —%a1+%b1+%c1 0o—4 —%al—%b1+%c1 Az | — 0.
0 —%a2+%b2~l—%c2 —2a1+b1+%cl 0—9 Ap

To simplify the notation, we introduce the following substitutions:

n\2

T =5-(3)"
M) = % <—(g)201+ %b1+61> )

1 2
Pn) = > (—(%) az + gb2+02> .

The four sets of penta-diagonal matrix equations may then be written as
A-even

- T(0) M(—2) P(—4) 0 0 0 T Ao
2M(©0) T(2)+ P(—2) M(—4) P(—6) 0 0 ] Az
2P(0) M(2) T(4) M(—6) P(—8) 0 || Ag
0 P(2) M4  T®) M-8 P10 ---|| As | o,
0 0 P4 M® T® M(-10) --- || Ag
0 0 0 P6) M® T@A0 - || Ao
B-even
"T(2) — P(-=2) M(—4) P(—6) 0 0 [ B2
M(2) T(4) M(—6) P(—8) 0 || Bs
P2 M@ T@® M(-8 P(=10) ---|| Bs
0 P(4) M®) T® M(-10) ---|| Bg =0,
0 0 P6) M® T@A0 --- || B

(19)
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A-odd
T(1) + M(~1) M(=3)+ P(-3) P(-5) 0 0 A
M@Q) + P(-1) 7(3) M(=5) P(=T7) o I
P(D) M(@3) r®e) M7 P9 - As
0 P(3) MGy T M9 ---|]|a;|=0
0 0 PG M@ TO || Ag
B-odd
T(1) — M(~1) M(=3)— P(-3) P(-5) 0 0 ---7rB:
M@1) — P(-1) 7(3) M(=5) P(=7) 0 || Bs
P(D) M(@3) r®e) M7 P9 - Bs
0 P(3) M5 TT M9 ---||B|=0
0 0 PG M@ TO - || Bg

Each of the four above sets of equations is homoge- - -
neous and of infinite order, so for a non-trivial solution !f @ll three of theX terms vanish, or if all three of the

the determinants must vanish. Note that the resulting Y terms vanish, the determinant will decompose into
determinants foA-odd andB-odd are identical except W0 determinants, one involving only titerms, and

for the first row and the first column. A comparable the other involving only thes terms. Since thé-odd
similarity exists between the determinants foeven and B-odd determinants are identical except for_the
andB-even. Although generally the vanishing of, say, UPPer I(_eft—hand corner, the correspondlng determinant
the A-odd determinant will give a completely different of (20) involving only theSterms will be the same for
result than that of thB-odd determinant, nevertheless P0thA-odd andB-odd, and we will have coexistence.
there may exist a special relationship between the co- The vanishing of the threx terms or of the thre¥
efficients such that the two results will give infinitely ~ {€rms turns out to give the following conditions:

many identical branches, that is, infinitely many of the
transition curves will be identical, in which case the
associated instability regions will disappear (or rather
will have zero width). On such transition curves we
will have both an odd and an even periodic motion, , _ ...—3.-2.-1,0,1.2.3.... .

that is, two linearly independent periodic motions will

coexist In order to derive conditions for coexistence, From our definitions (19) oM and P, we are left
we write any one of the above infinite penta-diagonal with the following conditions for coexistence in the

Pmn—2)=0, Mm)=0, Pm) =0, (22)

wheren can be any integer,

determinants in the form generalized Ince’s equation (17):

R R R 0O 0 O O O O - a2 n
RRRROOOTOO. ca=(3) a-3on

R R R RY O O O O -

O R R RY Y OOO- by = (n — Day,

0O 00X X § S s 00 - 0. (20 )

000X S s s s o0 .. =00 = (%) a2 2 bn 22)
000 0SS S S S S - 2 2

c 00 00Ss S S S - Thus, coexistence will occur in the generalized Ince
0 0 0 0 0 _0 S S S ’ equation (17) if Egs. (22) hold for any integerpos-

itive, negative or zero.
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Note that in the special cage = b = ¢2 =0, Eq. 4. Application to stability of motion
(17) becomes Ince’s equation
. . Earlier in this paper we showed that the stability of
1+ az cosn)i + (bysinn)v + (9 + ca costv = 0. the x-mode, Eq. (10), in system (11), (12), (13) was
(23) governed by the generalized Ince’s equation (17) with
In this case the matrices become tri-diagonal (instead C0€fficients given by Eq. (16). From (16) we substitute

of penta-diagonal) and the condition for coexistence €1 =0 @ndb1 = —ay into the first of the coexistence
reduces to just a single equatifh10] conditions (22) with the result

c1= (%)Zal - 7—21131. (24) 0= (g)zdl - g (—a1), (29)

Note also that in the parallel cage = b1 =1 =0,
Eqg. (17) again becomes a version of Ince’s equation:

which is satisfied by either=—2 orn =0 ora; =0.

Next, from (16) we substituté,; = —2a5 into the
second of the coexistence conditions (22) with the
(14 axcos2)v + (baSin20)0 result

+ (0 + c2c052)v=0. (25) 24y = (n — Day (30)

In this case we set= 2r givin
giving which is satisfied by either = —1 oras = 0.

Thus, we see that if both; anda, are non-zero,
then coexistence cannot occur in the general system
defined by Egs. (11), (12), (13), since there is no inte-
gern which can satisfy the conditions (22). From the
definitions (16) ofa; anday, this assumes that both
Po1 and By, are non-zero (assuming > 0). (Recall
that thef;; coefficients occur in the kinetic energy
see Egs. (11), (13).)

Note that if fp; =0 but y, does not vanish, then
coexistence is possible. However, in this case Eq. (17)
In related work, it has been showWh2] that even reduces to Ince’s equation, which is well-known to
more complicated versions of Ince’'s equation cannot support coexistenci,10].

support coexistence. For example, the equation

.. by . .
(14 azcost)v + (? smr) v
£, 2 _
+ (5 + 1 COS‘E) v=0, (26)

which is of the form of Eq. (23) withy=az, by=b2/2,
c1=c2/4 andd™ =d/4, whereupon the condition (24)
for coexistence becomes:

o= n2a2 — nbs. 27)

(1 + a1 COSt + ap COS 2 + a3 Cos 3)i) 5. Another app“cation
+ (bysint + bosin 2 + b3 sin 3)v
+ (04 c1C0St +c2c082 4+ c3c0s3)v=0 (28) In this Section we extend the foregoing work by

considering systems in which tixemode satisfies the

gives rise to four 7-diagonal determinants and requires 5 linear ODE:

six conditions to be met in order for coexistence to
occur (cf. Egs. (21)). These conditions turn out to be % + x + x3 =0, (31)
self-contradictory, so Eq. (28) cannot support coexis-
tence (unless some of the coefficients are zero, therebyWhich has a solution in terms of the Jacobian elliptic
reducing it to the form of Eq. (17)). function cn

Note that the coexistence conditions (22) do not in- x = Acn(at, k) (32)
volve the paramete¥in Eq. (17). Once the parameters T
of the system have been chosen to satisfy the coexis-where[13, p. 80]
tence conditions (22), the vanishing of the associated
determinant (20) will relaté to the other parameters , _ \/Az—Jrl’ k= A (33)

of the system. V2(A2+ 1)
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This requires that we relax the condition thab = 0
(cf. Egs. (9) and (12)), and we take:

T =3 %%+ Ba(x, y)¥, (34)
V= %xz + %x‘l + % w%yz + 0622x2y2
+ ag3xy® + ogay?, (35)
Ba(x, ¥) = Boo + Borx + Broy + Box?
+ Praxy + Baoy?. (36)

We setx = Acn(at, k) +u, y =0+ v in Lagrange’s
equations and then linearizeirandv. This gives the
v equation as

2(BopA? cré(ar, k) 4 oy A cn(at, k) + Pog)
—odn(az, k)sn(oz, k) (291 A + 4[302A20n(<xt, k)v
+ (2022A% crP(at, k) + w3)v = 0. (37)

Although Eg. (37) has coefficients involving Jacobian
elliptic functions, we may transform it to a generalized
Ince equation by utilizing a transformation given in

[10]. We begin by replacingwith a new time variable
T = at, so that cifz, k) = cn(T, k). Then we replace
T by 7, where

ar——_ 9 (38)

V1= k2siit

This turns out to convert the Jacobian elliptic functions

to trig functions[14] as follows:
sn(T, k) = sinr,
cn(T, k) = cosrt,

dn(T, k) = v1— k2sir? . (39)

The result of these transformations is to replace Eg.

(87) by the following generalized Ince equation:
(1+ a1 €oSt 4 a» cosS % + a3 coS X + a4 cos &)v”
+ (b1 SinT + by Sin 2t + b3 Sin 3t + ba sin 4o)v’
+ (0 +¢1COST+ ¢2COSZ + ¢3C0S X
+ c4cos4)v =0, (40)

where the coefficients;, b; and¢; are given as fol-
lows:

2ABo1(1 — 3k?)
al ot

ao

(41)

_ Book? + BppA2
ap=——""—,

(42)
ag
1 2
H Ak
a3 = 2Pt 43)
ao
1 42,2
= A%k
ay= 14K Doz (44)
ap
—Bo1A(2 — k2
by = M' (45)
ag
—2BpA%(1 — §k?) — Pook?
by — Bo2A(L — 7k%) — Boo ' (46)
ag
— B AK2
b3 = M, (47)
ag
3 42,2
—2 Ak
py= —22 N2 (48)
ag
2 A2
5= w2+—a§2 (49)
apo
c1=0, (50)
A2
=222 (51)
apo.
c3=0, (52)
c4 =0, (53)
where
a0 = Pog(2 — k) + PopA®(1 — 1k). (54)

As mentioned in connection with Eq. (28) above, Eqg.
(40) cannot in general support coexistence. However,
if fo1 =0, the trigonometric terms in Eq. (40) with
arguments ofr and X will vanish, leaving an equa-
tion which can easily be transformed into the gener-
alized Ince equation (17) by replacingby z = 21.
Once this transformation is completed, conditions for
coexistence in the resulting equation will be given by
Egs. (22). Carrying out this plan yields three equa-
tions corresponding to Egs. (22). The equation which
corresponds to the second of Eqgs. (22) turns out to be

(n + 1/2)0 ppA%k? =0, (55)

which requires that = —1/2 and thus cannot be sat-
isfied by any integer value of. However, Eqg. (55) as
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well as the other two equations coming from Eqgs. (22)
can be satisfied by takingy, = 0.

So we conclude that in order for coexistence to oc-
cur in Eq. (37), bothBy; and iy, must be taken equal
to zero. This simplifies Eqg. (40) to the following:

(14 az cos Z)v” + (bp sin 20)

+ (04 cpcos2)v=0. (56)

This is of the form of Eq. (25) and as was discussed
above, involves a single condition (27) for coexistence

cy = nzaz — nba. (57)
Using Egs. (41)—(53), Eq. (57) becomes
(—?Book?)n? + (=P Book®In + w2pA? =0,  (58)

which becomes simplified by using Egs. (33):
2000
Boo

The condition for coexistence therefore becomes sim-
ply

022 n(n+1)
fo 2
wheren is an integer, positive, negative or zero.

n?+n— 0. (59)

(60)

6. Example

As an example, we may talfg,=1/2 andupo=1/2,
which from Eq. (60) corresponds ic=1 andn =—2.
Egs. (34), (35) become

T =332+ (3 + Prox + Poox® + Praxy)y%,  (61)
B
+ a1y + aoay”. (62)

In order to consider the simplest possible such exam-
ple, we takefi;o= 0= fi11=tu3=004=0, for which

case Lagrange’s equations become
F+x+x3+xy2=0, (63)
¥+ w3y +x%y =0. (64)
This system exhibits the exact solution (thenode):
x = Acn(at, k),

y =0, (65)

G. Recktenwald, R. Rand / International Journal of Non-Linear Mechanics 40 (2005) 1160-1170
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Fig. 5. Stability chart for Eqg. (66). Sstable, U=unstable. Curves
obtained by perturbation analysis. The dashed line is a coexistence
curve, which is stable.

whereco andk are given by Eq. (33). The stability of
the x-mode depends upon the two parametessand
A, and is governed by the ODE (37), which becomes

¥+ (w3 + A% crP(at, k))v = 0. (66)

The stability chart corresponding to Eq. (66) consists
of transition curves which may be displayed in the
w3-A2 plane. Since the period of the variable coeffi-
cient crf(at, k) approaches: as A approaches zero,
we may expect instability tongues to emanate from
the w3 axis at each of the point®3 = n?, where
n=123,.... However, because,, and fip; have
been chosen to satisfy the coexistence condition (60)
for n =1 and—2, there are no even tongues and only
one odd tongue, which emanates from the pai1,
A? = 0[4]. SeeFig. 5 which shows this single insta-
bility tongue as well as a coexistence curve emanating
from w3 =4, A%> = 0. Fig. 5was obtained as follows:
Eq. (66) is a version of Lame’s equati¢tb]. Fol-
lowing the procedure given in Egs. (38), (39), it can
be transformed to

(3A% + 4+ A%cos Z)v” — A®sin 2t

+ (403 4+ 2A% + 2A%cos Z)v = 0. (67)

Note that Eqg. (67) has the exact solution= cost
corresponding to the paramete%: 1. Therefore, the
straight Iinew% =1 is a transition curve as shown
in Fig. 5 Similarly, Eq. (67) has the exact solution
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coexistence will not occur if the system is sufficiently
complicated, i.e., if both of the coefficienfy; and
Poo Occurring in Eq. (13) are non-zero. The reason for
this is that the equation governing stability is the gen-

v=sint corresponding to the paramete§=1+A2/2,
which also plots as a straight line Fig. 5.

In order to obtain an expression for the coexistence
curves, we may use aregular perturbation meft6{l

We expand eralized Ince’s equation (17), and the conditions for
2 2 2 4 coexistence to occur in this equation are more difficult
wy=n"+ kA" + kAT + -, (68) to meet than for Ince’s equation (71).
sinnt ) 4 We have also shown that the same general procedure
V= { cosnt } +v1IAT + AT+ (69) can be used on problems in which thenode satisfies

a non-linear ODE, Eq. (31).

We substitute Egs. (68), (69) into Eqg. (67), collect
terms, and choose the values of the coefficignt®
eliminate secular terms at each orderA#, as usual

in regular perturbationfl6]. Doing this forn = 2 we
obtain the same result for both sin and cos choices in
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by using macsyma to do the computer algebra):

W2edi 542 5A% N 5A°  266654°
2= 2 96 ' 128 884736
0385410 1972023312

* 303216 1019215872 (70)

7. Conclusions

We have obtained conditions (22) for coexistence
to occur in the generalized Ince equation (17). These
conditions are more numerous and thus more difficult
to meet than the comparable condition for Ince’s equa-
tion:

(14agcost)v+bysintv+ (0+cpcost)v=0. (71)

The necessary and sufficient condition for coexistence
to occur in (71) has been obtained[0] and can be
written in the form

1 n\2 n
M(n)zi (—(§> a1+§b1+cl> =0,

wheren can be any integer,

(72)

n=--.,-3,-2,-1,0123- .

That is, coexistence will occur in (71) iff condition
(72) is satisfied for any integer value of

In applications to the stability of themode in the
class of two degree of freedom systems (8), (9) con-
sidered in this paper, we have shown that in general

[10] W. Magnus,
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