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Abstract This paper deals with a class of conservative
nonlinear oscillators of the form ẍ(t) + f (x(t)) = 0,
where f (x) is analytic. A transformation of time from
t to a new time coordinate τ is defined such that pe-
riodic solutions can be expressed in the form x(τ ) =
A0 + A1 cos 2τ . We refer to this process of trigono-
metric simplification as trigonometrification. Applica-
tion is given to the stability of nonlinear normal modes
(NNMs) in two-degree-of-freedom systems.
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1 Introduction

It is well known that the nonlinear oscillator given by
the ODE

d2x
dt2

+ x + x3 = 0 (1)

has a solution which can be written in terms of the
Jacobian elliptic function cn [1, 2]:

x(t) = A cn(αt, k) (2)
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where the constants α and k are related to the amplitude
A as follows:

α =
√

1 + A2, k = A√
2(1 + A2)

(3)

It is also well known that a transformation of time
from t to τ permits the solution (2) to be written in a
simplified form, namely [3]

x(τ ) = A cos τ (4)

where t and τ are related by the Equation [4]

dt = dτ

α
√

1 − k2 sin2 τ
(5)

For applications which involve manipulations of the
solution to Equation (1), it is naturally more convenient
to use the form (4) than the form (2). As an example,
consider the question of the stability of a nonlinear nor-
mal mode (NNM) in a two-degree-of-freedom system
which is defined by the following expressions for ki-
netic T and potential V energies [3]:

T = 1

2
ẋ2 + 1

2
ẏ2 (6)

V = 1

2
x2 + 1

2
y2 + 1

4
x4 + 1

2
x2 y2 (7)
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Lagrange’s equations for this system are

ẍ + x + x3 + xy2 = 0 (8)

ÿ + y + x2 y = 0 (9)

where dots represent differentiation with respect to t .
This system exhibits the exact solution (the x-mode)

x = A cn(αt, k), y = 0 (10)

where α and k are given by Equation (3). To investigate
the stability of this mode, we set

x = A cn(αt, k) + u(t)

y = v(t)
(11)

Substituting (11) into (8), (9) and linearizing in u(t)
and v(t) results in

ü + u + 3A2 cn2(αt, k) u = 0

v̈ + v + A2cn2(αt, k) v = 0
(12)

The first of Equation (12) determines the stability of
the motion (10) in the invariant manifold y = 0, that
is, in the x–ẋ phase plane. This is well known to be
Liapunov unstable due to phase shear, that is, due to the
change in period associated with a change in amplitude,
but is orbitally stable [5]. This effect is well understood
and is of no interest to us here.

We are rather interested in the boundedness of so-
lutions to the second of Equation (12), the v-equation,
which determines the stability of the invariant manifold
y = 0. The NNM (10) will be said to be stable if all
solutions of the v-equation are bounded, and unstable
if an unbounded solution exists.

The presence of the elliptic function coefficient in
the v-equation makes the analysis of this equation dif-
ficult. However, the v-equation can be simplified by
using the transformation (5), replacing t by τ as inde-
pendent variable. This results in the new v-Equation [3]

(3A2 + 4 + A2 cos 2τ ) v′′ − A2 sin 2τ v′

+ (4 + 2A2 + 2A2 cos 2τ ) v = 0 (13)

where primes denote differentiation with respect to τ .
Note that Equation (13) is exact, i.e., no assumption of
small amplitude A has been made. The boundedness

of solutions in Equation (13) can be investigated by
using the method of harmonic balance [3, 6], i.e., by
expanding v in a Fourier series.

To summarize, the stability analysis of the NNM
(11) has been simplified by using the transformation
(5) of time from t to τ , which replaced the elliptic cn
function in the v-Equation (12), by trig functions in
Equation (13).

In this paper, we generalize this idea, replacing
Equation (1) by a conservative nonlinear oscillator
equation of the form

d2x
dt2

+ f (x) = 0 (14)

where f (x) is an analytic function of x . Of course, an
equation of the form (14) will not in general have an
elliptic integral solution. Nevertheless, we show how
to produce a time transformation from t to new time
τ which allows the periodic solution of (14) to be ex-
pressed in terms of a cosine function. We will refer
to this process of trigonometric simplification by the
neologism trigonometrification.

2 Trigonometrification

In this section, we derive the transformation (5) which
trigonometrifies Equation (1) without using the fact that
the solution to (1) involves the elliptic function cn. The
procedure we use here will be shown later in this paper
to be applicable to a general class of nonlinear oscillator
equations.

Using the form of Equation (5) as a model, we as-
sume a time transformation of the form

dt = dτ√
g(τ )

(15)

where g(τ ) is to be found. Using Equation (15) to trans-
form Equation (1) results in

x ′′g + 1

2
x ′g′ + x + x3 = 0 (16)

where primes denote derivatives with respect to τ . We
can turn this into an equation on g

g′ + 2x ′′

x ′ g + 2(x + x3)

x ′ = 0 (17)
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We want the time transformation to give us x(τ ) =
A cos τ , so we assume this solution for x . We substitute
x(τ ) = A cos τ into Equation (17) and obtain a first-
order linear ODE on g(τ )

g′ + 2

tan τ
g + −2

A sin τ
(A cos τ + A3 cos3 τ ) = 0 (18)

The homogeneous part of Equation (18)

g′ + 2

tan τ
g = 0 (19)

has the solution

g(τ ) = K

sin2 τ
(20)

where K is an arbitrary constant. Using variation of
parameters, we seek a solution to Equation (18) in the
form

g(τ ) = K (τ )

sin2 τ
(21)

Plugging (21) into Equation (18) and solving for
K ′(τ ) yields

K ′(τ ) = 2 sin τ (cos τ + A2 cos3 τ ) (22)

Integrating, we obtain

K (τ ) =
∫

2 sin τ (cos τ + A2 cos3 τ ) dτ (23)

We solve the integral using the substitution of u =
cos τ and find

K (τ ) = −
(

cos2 τ + 1

2
A2 cos4 τ

)
+ C (24)

where C is an arbitrary constant. This gives g(τ ) in the
form

g(τ ) = −1

sin2 τ

(
cos2 τ + 1

2
A2 cos4 τ − C

)
(25)

We note that g(τ ) has singularities at τ = 0 and
π . These singularities are undesirable, so we choose
C appropriately to remove them. To do this, we let

cos2 τ = 1 − sin2 τ and simplify.

g(τ )= −(1 + (1/2)A2 − C)

sin2 τ
+ (1 + A2) − 1

2
A2 sin2 τ

(26)

Setting C = 1 + (1/2)A2 removes the singularities
at τ = 0 and π and we are left with

g(τ ) = (1 + A2) − 1

2
A2 sin2 τ (27)

Substituting this back into our original ansatz (15),
we find

dt = dτ√
(1 + A2) − 1

2 A2 sin2 τ

(28)

Using the expressions for α and k given in Equation
(3), we obtain

dt = dτ

α
√

(1 − k2 sin2 τ )
(29)

which is the same as Equation (5).

3 Generalization

In this section, we generalize the trigonometrification
process to apply to equations of the form

ẍ + f (x) = 0 (30)

where we assume f is odd, f (−x) = − f (x). We seek
to stretch the time in Equation (30) so that the trans-
formed equation has the solution x(τ ) = A cos(τ ). As
in the previous section, we assume a time transforma-
tion of the form

dt = dτ√
g(τ )

(31)

where g(τ ) is to be found. Equation (31) turns Equation
(30) into

x ′′g + 1

2
x ′g′ + f (x) = 0 (32)
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We want x(τ ) to have a solution in the form x(τ ) =
A cos τ . Thus, plugging x(τ ) = A cos τ into Equation
(32) yields

g′ + 2

tan τ
g + −2

A sin τ
f (A cos τ ) = 0 (33)

As in the previous section, we look for a so-
lution to Equation (33) in the form of Equation
(21)

g(τ ) = K (τ )

sin2 τ
(34)

Plugging this into Equation (33) and solving for
K ′(τ ) we find

K ′(τ ) = 2

A
sin τ f (A cos τ ) (35)

Integrating, we obtain

K (τ ) =
∫

2

A
sin τ f (A cos τ )dτ (36)

We evaluate this integral by using the trig substitu-
tion u = cos τ and find

K (τ ) = − 2

A2
F(A cos τ ) + C (37)

where F is defined by F ′(x) = f (x). Our equation for
g, Equation (34), then becomes

g(τ ) = 1

sin2 τ

(
− 2

A2
F(A cos τ ) + C

)
(38)

We wish to choose C such that g(τ ) has
no singularities at τ = 0 or π . We note
that

F(A cos τ )|
τ =0 = F(A) and

F(A cos τ )|
τ =π = F(−A) (39)

Our assumption that f (x) is odd means F(A) is even,
thus F(A) = F(−A). We thus choose C = 2F(A)/A2

to remove the singularities. The expression for the time
transformation becomes

g(τ ) = −2

A2 sin2 τ
(F(A cos τ ) − F(A)) (40)

4 Example 1

As an example of the application of the pre-
vious formula (40), we consider the follow-
ing system, which has no known closed form
solution:

ẍ + x + x5 = 0 (41)

We begin by computing F(x) as the antiderivative
of f (x)=x + x5

F(x) = x2

2
+ x6

6
(42)

Substituting Equation (42) into Equa-
tion (40) gives the following expression for
g(τ ):

g(τ ) = −2

A2 sin2 τ

(
1

2
A2 cos2 τ + 1

6
A6 cos6 τ

−
(

1

2
A2 + 1

6
A6

))
(43)

which reduces to

g(τ ) = 1 + A4

(
1 − sin2 τ + 1

3
sin4 τ

)
(44)

resulting in the time transformation

dt = dτ√
1 + A4

(
1 − sin2 τ + 1

3 sin4 τ
) (45)

As a check, the transformation (45) applied to
Equation (41) gives

g(τ )x ′′ + 1

2
g′(τ )x ′ + x + x5 = 0 (46)

which becomes, using Equation (44),(
1 + A4

(
1 − sin2 τ + 1

3
sin4 τ

))
x ′′ + 1

2
A4 cos τ

×
(

−2 sin τ + 4

3
sin3 τ

)
x ′ + x + x5 = 0 (47)

which turns out to have the exact solution x(τ ) =
A cos τ as desired.

Springer



Nonlinear Dyn (2007) 49:193–201 197

5 Example 2

In this section, we consider an example for which f (x)
in Equation (14) is not a polynomial. We select the
familiar example of the pendulum

ẍ + sin x = 0 (48)

In this case, f (x) = sin x giving that F(x) =
− cos x . From (40), the associated expression for g(τ )
becomes

g(τ ) = −2

A2 sin2 τ
(cos A − cos (A cos τ )) (49)

which has the limit of sin(A)/A as τ goes to 0 or π .
The resulting time transformation is

dt = dτ√
−2

A2 sin2 τ
(cos A − cos (A cos τ ))

(50)

Thus, the trigonometrified version of the pendulum
Equation (48) has the exact solution x(τ ) = A cos τ

g(τ )x ′′ + 1

2
g′(τ )x ′ + sin x = 0 (51)

6 What if f (x) is not an odd function?

Trigonometrification revisited

So far we have considered only functions f (x) that are
odd. In this section, we generalize the trigonometrifica-
tion process to include a more general class of oscillator
equations. We again start with the form

ẍ + f (x) = 0 (52)

but no longer assume that f is odd. We do however
assume that the system (52) exhibits an oscillating so-
lution.

We seek to stretch the time in Equation (52) so that
x(τ ) = Q(τ ) where Q(τ ) is periodic, the specific form
of Q(τ ) to be determined. We again assume that the
time transformation takes the general form

dt = dτ√
g(τ )

(53)

The transformation (53) turns Equation (52) into

x ′′g + 1

2
x ′g′ + f (x) = 0 (54)

Substituting x(τ ) = Q(τ ) into Equation (54) yields

g′ + 2
Q′′

Q′ g + 2
f (Q)

Q′ = 0 (55)

We assume the solution to Equation (55) is of the
form

g(τ ) = K (τ )

Q′2 (56)

Plugging this into Equation (55) and solving for
K ′(τ ) we find

K ′(τ ) = −2 f (Q)Q′ (57)

Integrating,

K (τ ) = −2F(Q) + C (58)

where F ′(Q) = f (Q), i.e., F(Q) is the antiderivative
of f (Q). Our equation for g, Equation (56), then be-
comes

g(τ ) = −2F(Q) + C
Q′2 (59)

We wish to choose C such that there are no singular-
ities at τ ∗ (where τ ∗ is defined such that Q′(τ ∗) = 0).
Thus, we choose C = 2 F(Q)|τ=τ ∗ .

g(τ ) = 2
F(Q)|τ=τ ∗ − F(Q)

Q′2 (60)

Note that the more complicated Q(τ ) becomes, the
more τ ∗ exist and the harder it will be to remove the
singularities for all τ ∗. However, it can be shown [7]
that the ansatz

Q(τ ) = A0 + A1 cos 2τ (61)

is sufficient to treat systems for which f (x) is an ar-
bitrary polynomial. Assuming the form (61) for Q(τ ),
we find

g(τ ) = 2
F(A0 + A1 cos 2τ ∗) − F(A0 + A1 cos 2τ )

4A2
1 sin2 2τ

(62)
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Singularities exist at τ ∗ = 0 and at τ ∗ = π/2. If we
choose C = 2 F(Q)|τ=0 = F(A0 + A1), we remove
the singularity at τ ∗ = 0. To remove the singularity at
τ ∗ = π/2, we must also determine an appropriate rela-
tionship between A0 and A1. To do this, we expand the
numerator of g(τ ) in Equation (62) in a Fourier series
and convert all even powers of cos 2τ to even powers
of sin 2τ via the identity cos2 2τ = 1 − sin2 2τ . This
results in the following expression for the numerator of
g(τ ):

numerator(g(τ )) = q0 + p0 cos 2τ + sin2 2τ

× (q1 + p1 cos 2τ ) + · · ·
+ sin2n 2τ (qn + pn cos 2τ )(63)

where qn = qn(A0, A1) and pn = pn(A0, A1). The
sin2n 2τ in front of qn + pn cos 2τ (n ≥ 1) eliminates
any possible singularities coming from these terms.
Moreover, our choice of C = F(A0 + A1) removed the
singularity at τ ∗ = 0, which requires that q0 + p0 = 0,
i.e., q0 = −p0. It remains to remove the singularity at
τ ∗ = π/2, which requires that q0 − p0 = −2p0 = 0.
Finally, p0 is made to vanish by choosing an appropri-
ate relationship between A0 and A1. It turns out that
the resulting equation p0(A0, A1) = 0 is an (n + 1)th
degree polynomial equation where n is the polynomial
degree of f (x). The procedure is illustrated by the fol-
lowing example.

7 Example 3

We take as an example the strongly nonlinear system
[8]

ẍ + x3 + x4 = 0 (64)

Here f (x) = x3 + x4 which gives the antiderivative
F(x) = 1

4 x4 + 1
5 x5. Assuming a trigonometrified so-

lution, Equation (61), and substituting into Equation
(62) results in a time transformation of the form dt =
dτ/

√
g(τ ) where

g(τ ) =
1
4 (A0 + A1)4 + 1

5 (A0 + A1)5 − 1
4 (A0 + A1 cos 2τ )4 − 1

5 (A0 + A1 cos 2τ )5

2A2
1 sin2 2τ

(65)

which simplifies to the form

g(τ )= 1

2A2
1 sin2 2τ

(
q0 + p0 cos 2τ + (q1 + p1 cos 2τ )

× sin2 2τ + (q2 + p2 cos 2τ ) sin4 2τ
)

(66)

where

q0 = A4
0 A1 + A3

0 A1 + 2A2
0 A3

1 + A0 A3
1 + 1

5 A5
1 =−p0

p0 = −A4
0 A1 − A3

0 A1 − 2A2
0 A3

1 − A0 A3
1 − 1

5 A5
1

q1 = 2A3
0 A2

1 + 3
2 A2

0 A2
1 + 2A0 A4

1 + 1
2 A4

1

p1 = A0 A3
1 + 2A2

0 A3
1 + 2

5 A5
1

q2 = −A0 A4
1 − 1

4 A4
1

p2 = − 1
5 A5

1

(67)

As stated in the previous section, the choice of C =
F(A0 + A1) is responsible for q0 = −p0, cf. Equation
(67). Thus, setting p0 = 0 will define a relationship
between A0 and A1 that eliminates the singularities in
g(τ ). With this in mind we set q0 = −p0 = 0 to find

A4
0 A1 + A3

0 A1 + 2A2
0 A3

1 + A0 A3
1 + 1

5
A5

1 = 0 (68)

Note that this is a fifth degree polynomial equation,
which is one degree higher than that of f (x) = x3 + x4,
as stated at the end of the previous section. Here the
relationship between A0 and A1 produces real solutions
for a certain set of A0 and A1 values. Assuming a real
solution, we obtain the following final expression for
g(τ ):

g(τ )= 1

2A2
1

(
q1+ p1 cos 2τ +(q2 + p2 cos 2τ ) sin2 2τ

)
(69)
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which becomes

g(τ ) = A3
0 + 3

4
A2

0 + A0 A2
1 + 1

4
A2

1

+
(

1

2
A0 A1 + A2

0 A1 + 1

5
A3

1

)
cos 2τ

−
(

1

2
A0 A2

1 + 1

8
A2

1

)
sin2 2τ

− 1

10
A3

1 cos 2τ sin2 2τ (70)

In order to visualize the process of trigonometri-
fication, we show in Fig.1 the periodic solution to
Equation (64) for the initial condition x(0) = 0.6058,
ẋ(0) = 0. Then in Fig.2 we show the trigonometrified
solution, which is of the form x(τ ) = A0 + A1 cos 2τ ,
where A0 = −0.1948 and A1 = 0.8006. These values
for A0 and A1 are obtained by simultaneously solv-
ing the initial condition A0 + A1 = x(0) together with

Equation (68). These two figures also show the relative
time compression involved in the trigonometrification
process.Figure 3 shows the corresponding relationship
between the original time t and transformed time τ de-
fined by dt = dτ/

√
g(τ ) where g(τ ) is given by Equa-

tion (70).
Figure 4 compares a variety of solutions to Equation

(64) for different initial conditions with their trignomet-
rified counterparts. Note that the level curves of the
original system are particularly distorted as they ap-
proach a separatrix with a saddle point at x = −1,
v = ẋ = 0. Since our method is limited to periodic
solutions of the differential equation, we are limited
to looking inside the separatrix. This turns out to
yield a maximum permissible value for A1, namely
A1 = 0.8029, which corresponds to A0 = −0.1971.
Thus, for this problem A0 ranges from −0.1971 to 0.

As an application of this result, suppose we are in-
terested in the stability of the NNM which lies in the

Fig. 1 Periodic solution
x(t) to Equation (64) for
initial condition
x(0) = 0.6058, ẋ(0) = 0.
Result obtained by
numerical integration. Note
that there is no relative time
compression (RTC),
corresponding to the
original time

Fig. 2 Trigonometrified
solution x(τ ) =
−0.1948 + 0.8006 cos 2τ

corresponding to original
periodic solution of Fig.1.
Comparison with Fig. 1
shows that the relative time
compression (RTC) is
greatest where the original
periodic motion is stalled,
that is, where the plot in
Fig. 1 has nearly flat
horizontal segments
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Fig. 3 Transformed time τ shown as a function of original time t . Result obtained by numerical integration of dt = dτ/
√

g(τ ) where
g(τ ) is given by Equation (70), and where A0 = −0.1948 and A1 = 0.8006

Fig. 4 Phase plane plots of solutions to Equation (64) (right) compared to their trigonometrified counterparts (left)

y = 0 invariant manifold of the following system [8]:

ẍ + x3 + x4 + xy2 = 0, ÿ + ω2 y + x2 y = 0(71)

Note that the absence of a linear term in the equation
for the x-mode, Equation (64), makes it difficult to ob-
tain an expression for the NNM, and therefore makes
the stability problem difficult without trigonometrifi-
cation. Using Equation (70) for g(τ ) to define the time
transformation results in stability of the x-mode in
Equation (71) being governed by

h1(τ )v′′ + h2(τ )v′ + (ω2 + h3(τ ))v = 0 (72)

where

h1 = − 1
8A2

1

(
p2 cos 6τ + 2q2 cos 4τ − p2 cos 2τ

−4p1 cos 2τ − 2q2 − 4q1
)

h2 = 1
8A2

1
(3p2 sin 6τ + 4q2 sin 4τ − p2 sin 2τ

−4p1 sin 2τ )
h3 = 1

2 A2
1 cos 4τ + A0 A1 cos 2τ + 1

2 A2
1 + A0

(73)

Equation (72) is a generalized Ince’s Equation [3]
and can be investigated by using harmonic balance.
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8 Conclusions

We have presented a scheme for reparametrizing time
such that the periodic motion of a general class of con-
servative nonlinear oscillators is able to be represented
by a simple cosine function. Specifically, if the oscil-
lator is of the form

d2x
dt2

+ f (x) = 0 (74)

then, when expressed in the new time τ , the periodic
motion may be written in the form

x(τ ) = A0 + A1 cos 2τ for general f (x), and(75)

x(τ ) = A cos τ for f (x) odd, i.e., f (−x) = − f (x)

(76)

We have shown that this procedure has application
to the stability of NNMs in two-degree-of-freedom sys-
tems. Specifically, the stability problem is reduced to
the study of a linear ODE with trigonometric coeffi-
cients. See, e.g., Equations (13) and (72). Note that
the reason this works is because the question of stabil-
ity is invariant under reparametrization in time. Other
applications, not covered in this paper, would include
bifurcation of periodic orbits resulting from changes
in stability. In the case of conservative two-degree-of-
freedom systems like that of Equations (6)–(9), or of
Equation (71), this would involve trigonometrification
of both nonlinear equations.

We note that although the process of trigonometrifi-
cation has the obvious advantage of replacing the origi-
nal time dependence of the periodic motion in question
with a trigonometrically simplified representation, it

does so at the cost of (a) including a first-derivative term
in an ODE that originally had none and (b) including
time-dependent terms in an ODE which was originally
autonomous. As an example of this, see Example 1
where the original ODE, Equation (41), is replaced by
the trigonometrified ODE, Equation (54).

Finally, we note that although trigonometrification
totally simplifies a particular periodic solution of the
original ODE (74), expressing it in one of the forms
(75) or (76), it does not simplify the general solution
of the original ODE.
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