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a b s t r a c t

We investigate a problem in evolutionary game theory based on replicator equations with
periodic coefficients. This approach to evolution combines classical game theory with differ-
ential equations. The RPS (Rock-Paper-Scissors) system studied has application to the popu-
lation biology of lizards and to bacterial dynamics. The presence of periodic coefficients
models variations in the environment due to seasonal effects and results in parametric exci-
tation which is studied through the use of perturbation series and numerical integration.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Evolution is the fundamental unifying principle of biology. In its essence, natural selection dictates that traits which cause
an organism to produce more offspring become more common in the population. The field of evolutionary game theory uses
mathematics to formalize the dynamics of evolution [3,7]. These evolutionary models provide a powerful set of tools for pre-
dicting what traits will be favored by natural selection in particular settings.

Evolutionary game theory is not limited to genetic evolution, in which organisms pass their genes onto offspring [6].
These models can also describe ‘cultural evolution’ or social learning, where people copy strategies of others with higher
payoffs. Recent work has demonstrated the ability of evolutionary models to quantitatively reproduce human behavior in
economic experiments, out-performing the predictions of classical economic models [2,8].

In game theoretic models, a set of players each chooses a ‘strategy’. Each player then earns a payoff based on her strategy
as well as the strategy chosen by one or more others. For example, consider the game ‘Rock–Paper–Scissors’ (RPS). Players
interact in pairs, and each player chooses one of three strategies: rock (R), paper (P) or scissors (S). Rock beats scissors; thus if
you pick R while your opponent picks S, you earn a positive payoff (say + 1). If you choose S while your opponent chooses R,
however, you ‘lose’ and receive a negative payoff (say � 1). The full set of payoffs is often described using a payoff matrix,
where the payoff of the row player is indicated. The payoff matrix for the simplest RPS game is thus given by
ð1Þ
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In the context of evolutionary game theory, these payoffs represent reproductive success (i.e. number of offspring). Strategies
which earn higher payoffs thus become more common over time.

One particularly popular approach to formalizing this evolutionary dynamic is the ‘replicator equation’ [10]. The replica-
tor equation uses differential equations to describe changes in the abundance of a finite set of N strategies in an infinitely
large population of players. We define xi as the abundance of strategy i, i.e. the fraction of players in the population using
strategy i. (Note that abundance is often called frequency in the literature of evolutionary dynamics. In this paper we reserve
the latter term for frequency of oscillation.) Therefore
XN

i¼1

xi ¼ 1 ð2Þ
In its standard form, the replicator equation assumes that every player is equally likely to interact with every other player.
Thus for a game where players interact in pairs, the expected payoff of an individual playing strategy i is given by
fi ¼
XN

j¼1

Aijxj ð3Þ
where Aij is the payoff of strategy i playing against strategy j. Note that the expected payoff of a given strategy depends on the
abundances of each strategy in the population. A strategy which earns a high payoff in one setting may score poorly in oth-
ers. For example, in RPS, an R player would earn a high payoff in a population where S is common, but would earn a low
payoff in a population where P is common.

The replicator equation stipulates that strategies with higher than average payoff increase in abundance, while strategies
with lower than average payoff decrease in abundance. The rate of change of the abundance of strategy i is given by
_xi ¼ xiðfi �UÞ ð4Þ
where U is the average payoff, given by
U ¼
XN

j¼1

xjfj ð5Þ
Eq. (4) can then be used to study the evolutionary dynamics of a particular game. In this paper, we focus on the RPS game.
Although Rock–Paper–Scissors may seem like a trivial child’s game, it in fact serves as a model of many interesting systems
in biology and social science. For example, mating behavior of the male side-blotched lizard Uta stansburiana displays a rock-
paper-scissors dynamic [11]. There are three different genetic variates (genotypes) of males in this lizard species: those that
have large territories; those that have small territories; and ‘sneakers’ which have no territory and instead pose as females
and invade the territories of other males. Males with large territories cannot closely guard their females and so are out-
competed by sneaker males. Sneaker males have no females of their own and so are outcompeted by males with small
territories, who can effectively guard their females. And males with small territories are out-competed by males with large
territories because the latter control more females. Thus these three strategies display a RPS dynamic.

Another example comes from the bacteria Escherichia coli [4]. The normal ‘wild-type’ strain of bacteria forms a RPS dy-
namic with two other strains: a toxic strain which produces both a toxin and an antidote to the toxin, and a resistant strain
which produces only the antidote. The toxin kills the wild-type bacteria, and so the toxic strain can invade the wild-type. But
once the population consists entirely of toxic bacteria, there is no advantage to producing the toxin (which requires energy).
Therefore the resistant strain can invade the toxic strain. Yet once the population consists only of resistant bacteria, there is
no reason to produce the antidote (which also requires energy). Thus the wild-type strain can invade the resistant strain.

In this paper, we extend the standard RPS model to consider periodic variation in payoffs. Such effects could be due to
annual changes in fitness due to seasonal weather changes. Periodic coefficients in replicator dynamics have been previously
treated in [1]. There it is shown that for sufficiently fast oscillations, periodic coefficients in a two-player game can be re-
duced to constant coefficients in a multi-player game, and that this can create stable equilibria with non-zero abundances
of multiple strategies (co-existence).

2. Model

We generalize the RPS payoff matrix (1) by allowing two of the coefficients to depend explicitly on time:
ð6Þ
where �, the magnitude of the forcing function, is a small parameter, �� 1, and where x is the frequency of the forcing
function.
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The expected payoffs (3) become:
Fig. 1
f1 ¼ ð1þ � cos xtÞð�x2 þ x3Þ ð7Þ

f2 ¼ x1 � x3 ð8Þ

f3 ¼ �x1 þ x2 ð9Þ
The average payoff U given by Eq. (5) becomes:
U ¼
XN

j¼1

xjfj ¼ x1ðx3 � x2Þ� cos xt ð10Þ
and the replicator Eq. (4) become:
_x1 ¼ x1ðf1 �UÞ ¼ x1ðx3 � x2Þ½1þ ð1� x1Þ� cos xt� ð11Þ

_x2 ¼ x2ðf2 �UÞ ¼ x2½ðx1 � x3Þ þ x1ðx2 � x3Þ� cos xt� ð12Þ

_x3 ¼ x3ðf3 �UÞ ¼ x3½ðx2 � x1Þ þ x1ðx2 � x3Þ� cos xt� ð13Þ
Eqs. (11)–(13) exhibit the invariant manifold (2) which may be pictured as a simplex in the first octant in x1–x2–x3 space, see
Fig. 1. Note that the vertices of this simplex, (1,0,0), (0,1,0) and (0,0,1), are equilibria of Eqs. (11)–(13).

3. Properties of the model

Eqs. (11) and (12) may be simplified by eliminating x3 through the use of Eq. (2), giving:
_x1 ¼ x1ð1� 2x2 � x1Þ½1þ ð1� x1Þ� cos xt� ð14Þ

_x2 ¼ x2ðx2 þ 2x1 � 1þ ½x1ð2x2 þ x1 � 1Þ�� cos xtÞ ð15Þ
Eqs. (14) and (15) may be viewed as a flow on the x1–x2 plane, see Fig. 2. As in Fig. 1, the vertices of the simplex in Fig. 2,
namely (1,0), (0,1) and (0,0), are equilibria for Eqs. (14) and (15). In addition, there is another equilibrium at (1/3,1/3).
The lines which bound the simplex are invariant manifolds for the flow (14) and (15). These are x1 = 0, x2 = 0 and
x1 + x2 = 1, the last being equivalent to x3 = 0 in view of Eq. (2). Thus any motion which starts inside the simplex must remain
inside for all time.

In the case that � = 0, the system (14) and (15) admits a first integral:
x1x2ð1� x1 � x2Þ ¼ constant ð16Þ
See Fig. 3 where the integral curves (16) are displayed for various values of the constant. Each of these curves represents a
motion which is periodic in time. For � > 0, the presence of the time-varying periodic term �cosxt destroys the first integral
. Eqs. (11)–(13) exhibit the invariant manifold (2). That is, motions which start on the simplex (the triangular region) remain on it for all time.



Fig. 2. Eqs. (14) and (15) may be viewed as a flow on the x1–x2 plane.

Fig. 3. Integral curves from Eq. (16) for � = 0. Each of these curves represents a motion which is periodic in time.
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(16). Numerical integration shows that for small values of � the periodic motions of Eq. (16) are typically replaced by qua-
siperiodic motions, see Fig. 4. In particular, motions starting near the equilibrium point (1/3,1/3) typically remain near it as
in Fig. 4. An exception occurs for certain values of the system parameters � and x. See Fig. 5 which displays a numerically
integrated motion starting near (1/3,1/3) for parameters � = 0.1, x = 1.154. Note that here a motion which starts near the
equilibrium (1/3,1/3) travels far away from it. In what follows we seek to explain this phenomenon through a study of
the stability of the equilibrium (1/3,1/3).

4. Stability of motion

To investigate the stability of the equilibrium at (1/3,1/3), we set
x1 ¼ xþ 1
3
; x2 ¼ yþ 1

3
ð17Þ
we substitute these into Eqs. (14) and (15), and we linearize in x, y, giving:
_x ¼ � xþ 2y
3

� �
� 2

9
ð2yþ xÞ� cos xt ð18Þ

_y ¼ 2xþ y
3

� �
þ 1

9
ð2yþ xÞ� cos xt ð19Þ



Fig. 5. Motion of Eqs. (14) and (15) for � = 0.1 and x = 1.154 for initial conditions x1 = x2 = 0.3333 obtained by numerical integration. Note that here a
motion which starts near the equilibrium (1/3,1/3) travels far away from it.

Fig. 4. Motions of Eqs. (14) and (15) for � = 0.02 and x = 1 obtained by numerical integration. Here the periodic motions of Fig. 1 are replaced by
quasiperiodic motions. Note that motions starting near the equilibrium point (1/3,1/3) remain near it.
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Next we define a new time variable s = xt and we transform this first order system of ODEs into a single second order ODE by
differentiating (18) and substituting expressions for _y from (19) and for y from (18), giving:
f1x00 þ f2x0 þ f3x ¼ 0 ð20Þ
where primes represent differentiation with respect to s, and where
f1 ¼ 3þ 2� cos s ð21Þ
f2 ¼ 2� sin s ð22Þ
f3 ¼
3þ 2� cos s

3x

� �2

ð23Þ
Eq. (20) is an example of a linear differential equation with periodic coefficients and is a variant of Ince’s equation [5,9]. It
contains two parameters, x and � and results may therefore be viewed in the x–� parameter plane. For a given pair of
parameters there are two possibilities: either all solutions are bounded, in which case the point (x,�) is said to be stable,
or an unbounded solution exists and the point is called unstable. We are interested in transition curves which separate regions
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of stability from regions of instability in the x–� plane. A straightforward line of reasoning leads us to expect tongues of
instability to emanate from the points x ¼ 2

n
ffiffi
3
p , n = 1,2,3, . . . on the x-axis, as follows.

A result from Floquet theory [12,9] states that equations of the form of Hill’s equation,
d2z
ds2 þ FðsÞz ¼ 0; Fðsþ TÞ ¼ FðsÞ ð24Þ
have periodic solutions of period T or 2T on their transition curves, where T is the period of the coefficient F(s). However, Eq.
(20) is not of the form of Hill’s Eq. (24). Nevertheless, if we set
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2� cos s

p
z ðj�j < 3=2Þ ð25Þ
then it turns out that Eq. (20) becomes a Hill’s Eq. (24) on z(s), with the following coefficient F(s):
FðsÞ ¼ 54þ ð108� 54x2Þ� cos sþ ½36� 45x2 þ ð36þ 9x2Þ cos s��2 þ ð12 cos sþ 4 cos 3sÞ�3

18x2½9þ 12� cos sþ 2�2ð1þ cos 2sÞ� ð26Þ
Here F(s) is periodic with period 2p. Thus Floquet theory tells us that the resulting Hill’s equation on z(s) will have solutions
of period 2p or 4p on its transition curves. Now from Eq. (25), the boundedness of z(s) is equivalent to the boundedness of
x(s), so transition curves for the z equation occur for the same parameters as do those for the x Eq. (20). Also, since the coef-
ficient

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2� coss
p

in Eq. (25) has period 2p, we may conclude that Eq. (20) has solutions of period 2p or 4p on its transition
curves. Now when � = 0, Eq. (20) is of the form x00 þ 1

3x2 x ¼ 0, and has solutions of period 2p
ffiffiffi
3
p

x. These will correspond to
solutions of period 2p or 4p when 2p

ffiffiffi
3
p

x ¼ 4p
n , since a solution with period 4p

n may also be thought of as having period
2p (n even) or 4p (n odd), which gives x ¼ 2

n
ffiffi
3
p , n = 1,2,3, . . .

To reiterate, we have shown that we can expect Eq. (20) to have tongues of instability emanating from the points
x ¼ 2

n
ffiffi
3
p ; n ¼ 1;2;3; . . . on the x-axis in the x–� parameter plane.

5. Perturbation method

In order to obtain approximate expressions for the transition curves of Eq. (20) in the x–� plane, we use a perturbation
method valid for small values of � [12,9]. We begin by looking for a transition curve through the point x ¼ 2

n
ffiffi
3
p , � = 0 in the

form of a power series in �:
x ¼ 2
n
ffiffiffi
3
p þ k1�þ k2�2 þ � � � ð27Þ
where n is a positive integer. We also expand x in a series,
xðsÞ ¼ x0ðsÞ þ x1ðsÞ�þ x2ðsÞ�2 þ � � � ð28Þ
and substitute (27) and (28) into (20), collect terms and equate to zero the coefficient of each power of �. For example, in the
case of n = 1 we obtain for the first three equations:
x000 þ
1
4

x0 ¼ 0 ð29Þ

x001 þ
1
4

x1 ¼ �
2
3

x000 cos s� 2
3

x00 sinsþ
ffiffiffi
3
p

4
k1x0 �

1
3

x0 cos s ð30Þ

x002 þ
1
4

x2 ¼ �
2
3

x001 cos s� 2
3

x01 sinsþ
ffiffiffi
3
p

4
k1x1 �

1
3

x1 cos sþ 1ffiffiffi
3
p k1 cos sþ

ffiffiffi
3
p

4
k2 �

9
16

k2
1 �

1
9

cos2 s
 !

x0 ð31Þ
To solve these equations recursively we begin by taking the solution of Eq. (29) as
x0 ¼ sin
s
2

ð32Þ
Substituting this into Eq. (30) and simplifying, we obtain:
x001 þ
1
4

x1 ¼ � 1
12
þ

ffiffiffi
3
p

4
k1

 !
sin

s
2
� 1

4
sin

3s
2

ð33Þ
For a solution x(s) which is uniformly valid on the infinite interval we require no secular terms in x1, i.e. we equate to zero
the coefficient of sin s

2 on the RHS of Eq. (33), giving:
k1 ¼
1

3
ffiffiffi
3
p ð34Þ
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For this value of k1, a particular solution to Eq. (33) is
Fig. 6.
the firs
x1 ¼
1
8

sin
3s
2

ð35Þ
Next Eqs. (34) and (35) are substituted into Eq. (31), and after trigonometric simplification, secular terms are removed,
giving:
k2 ¼ �
1

72
ffiffiffi
3
p ð36Þ
Substituting Eqs. (34) and (36) into (27), we have obtained the following expression for a transition curve:
n ¼ 1 : x ¼ 2ffiffiffi
3
p þ 1

3
ffiffiffi
3
p �� 1

72
ffiffiffi
3
p �2 þ Oð�3Þ ð37Þ
If instead of Eq. (32), we choose
x0 ¼ cos
s
2

ð38Þ
and repeat the foregoing process, we obtain the following expression for another transition curve through the same point on
the �-axis:
n ¼ 1 : x ¼ 2ffiffiffi
3
p � 1

3
ffiffiffi
3
p �� 1

72
ffiffiffi
3
p �2 þ Oð�3Þ ð39Þ
Taken together, Eqs. (37) and (39) represent a tongue of instability, see Fig. 6.
In a similar way,we may derive approximate equations for the boundaries of tongues of instability which emanate from

each of the points x ¼ 2
n
ffiffi
3
p , n = 1,2,3, . . . on the �-axis. Here are the results for the first few such tongues:
n ¼ 1 : x ¼ 1ffiffiffi
3
p 2þ �

3
� �

2

72
� 5�3

1728
þ 271�4

124416
� 7885�5

8957952
þ Oð�6Þ

� �
ð40Þ

n ¼ 1 : x ¼ 1ffiffiffi
3
p 2� �

3
� �

2

72
þ 5�3

1728
þ 271�4

124416
þ 7885�5

8957952
þ Oð�6Þ

� �
ð41Þ

n ¼ 2 : x ¼ 1ffiffiffi
3
p 1� 5�2

54
þ 13�4

34992
þ Oð�6Þ

� �
ð42Þ

n ¼ 2 : x ¼ 1ffiffiffi
3
p 1þ �

2

54
� 35�4

34992
þ Oð�6Þ

� �
ð43Þ
Tongues of instability in the x-� plane. U = unstable, S = stable. Shown are those given by Eqs. (40)–(47). The region between the vertical � axis and
t n = 4 transition curve (46) contains an infinite number of such tongues.



Fig. 7.
lose acc

3894 R.H. Rand et al. / Commun Nonlinear Sci Numer Simulat 16 (2011) 3887–3895
n ¼ 3 : x ¼ 1ffiffiffi
3
p 2

3
� �

2

48
þ �

3

64
� 217�4

61440
þ 11�5

16384
þ Oð�6Þ

� �
ð44Þ

n ¼ 3 : x ¼ 1ffiffiffi
3
p 2

3
� �

2

48
� �

3

64
� 217�4

61440
� 11�5

16384
þ Oð�6Þ

� �
ð45Þ

n ¼ 4 : x ¼ 1ffiffiffi
3
p 1

2
� 2�2

135
� 2032�4

273375
þ Oð�6Þ

� �
ð46Þ

n ¼ 4 : x ¼ 1ffiffiffi
3
p 1

2
� 2�2

135
þ 968�4

273375
þ Oð�6Þ

� �
ð47Þ
6. Numerical simulation

In this section we check the foregoing perturbation results by using numerical integration. We begin by constructing a

fundamental solution matrix for Eqs. (18) and (19) out of two solution vectors, x1ðtÞ
y1ðtÞ

� �
and x2ðtÞ

y2ðtÞ

� �
, which satisfy the initial

conditions:
x1ð0Þ
y1ð0Þ

� �
¼

1
0

� �
;

x2ð0Þ
y2ð0Þ

� �
¼

0
1

� �
ð48Þ
From Floquet theory [9,12] we know that stability is determined by the eigenvalues of the fundamental solution matrix eval-
uated at time T:
C ¼
x1ðTÞ x2ðTÞ
y1ðTÞ y2ðTÞ

� �
ð49Þ
The eigenvalues of C satisfy the equation:
k2 � ðtrCÞkþ det C ¼ 0 ð50Þ
where trC and detC are the trace and determinant of C. Now Eqs. (18) and (19) have the special property that detC = 1. This
may be shown by defining W (the Wronskian) as:
WðtÞ ¼ det C ¼ x1ðtÞy2ðtÞ � x2ðtÞy1ðtÞ ð51Þ
Taking the time derivative of W and using Eqs. (18) and (19) gives that dW
dt ¼ 0, which implies that W(t) = constant = W(0) = 1.

Thus Eq. (50) can be written:
Comparison of stability results obtained by numerical integration (dots) and by perturbation series (solid lines). The perturbation results are seen to
uracy for values of � larger than about 1.5. Cf. Fig. 6.
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k2 � ðtrCÞkþ 1 ¼ 0 ð52Þ
which has the solution:
k ¼ trC �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trC2 � 4

p
2

ð53Þ
Floquet theory tells us that instability results if either eigenvalue has modulus larger than unity [9,12]. Thus if jtrCj > 2, then
(53) gives real roots. But the product of the roots is unity, so if one root has modulus less than unity, the other has modulus
greater than unity, with the result that this case is UNSTABLE and corresponds to exponential growth in time. On the other
hand, if jtrCj < 2, then (53) gives a pair of complex conjugate roots. But since their product must be unity, they must both lie
on the unit circle, with the result that this case is STABLE.

Thus the transition from stable to unstable corresponds to those parameter values which give jtrCj = 2. Note that this ap-
proach allows us to draw conclusions about the large time behavior after numerically integrating for only one forcing period.

The results of our numerical integrations are shown in Fig. 7. The perturbation results are verified for values of � up to
about 1.5.

7. Conclusions

In the traditional RPS scenario given by the payoff matrix (1), or by (6) with � = 0, it is possible to achieve a stable steady
state in which all three populations are constant in time. If a small deviation from this equilibrium in initial conditions is
presented, the resulting behavior of the system remains close to the equilibrium, with each population being nearly constant
but with a small periodic variation in time. By contrast, if two of the payoff coefficients are permitted to depend periodically
on time as in payoff matrix (6), there will exist certain combinations of parameters x and � for which a small deviation from
equilibrium will cause the populations to differ considerably from the equilibrium state, and to vary quasiperiodically in
time, see Fig. 5.

Quasiperiodic variation in population abundances is a common aspect of many biological systems. The model presented
here shows how periodic variation in payoff coefficients (representing phenomena such as seasonal changes in fitness) can
lead to such quasiperiodic population dynamics. For example, consider the side-blotched lizard Uta stansburiana [11]. The
empirically observed lizard populations show quasiperiodic variation in abundance of the three types. Previously, these
oscillations were explained by stochastic effects consistently perturbing the system away from stable coexistence. Our re-
sults suggest that instead, the observed lizard population dynamics could be explained by periodic variation in payoffs.
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