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Parametric Excitation
and Evolutionary Dynamics
Parametric excitation refers to dynamics problems in which the forcing function enters
into the governing differential equation as a variable coefficient. Evolutionary dynamics
refers to a mathematical model of natural selection (the “replicator” equation) which
involves a combination of game theory and differential equations. In this paper we apply
perturbation theory to investigate parametric resonance in a replicator equation having
periodic coefficients. In particular, we study evolution in the Rock-Paper-Scissors game,
which has biological and social applications. Here periodic coefficients could represent
seasonal variation. We show that 2:1 subharmonic resonance can destabilize the usual
“Rock-Paper-Scissors” equilibrium for parameters located in a resonant tongue in pa-
rameter space. However, we also show that the tongue may be absent or very small if the
forcing parameters are chosen appropriately. [DOI: 10.1115/1.4023473]

1 Introduction

Evolutionary dynamics formalizes the process of evolution by
combining game theory with differential equations [1–3]. Evolu-
tion is driven by natural selection: organisms with greater fitness
(i.e., number of offspring) tend to become more common, while
less fit organisms are driven to extinction. To describe evolution
mathematically, game theory is used to represent the fitness of
each type of organism in a given population. Then, differential
equations describe how the abundances of each type of organism
change based on those fitnesses.

Organism types can be thought of as ‘strategies’ in a game the-
oretic sense, which interact and earn payoffs (representing repro-
ductive success) based on the strategy of each interacting agent.
Here we consider one of the canonical games from evolutionary
game theory, “Rock-Paper-Scissors” (RPS). There are three possi-
ble strategies: rock (R), paper (P) and scissors (S). As in the child-
ren’s game of the same name, rock beats scissors, scissors beats
paper, and paper beats rock. If winning earns a payoff of þ1 while
losing earns a payoff of �1, RPS can be described by the follow-
ing payoff matrix:

R

P

S

R P S
0

þ1

�1

�1

0

þ1

þ1

�1

0

0
@

1
A (1)

where the payoff in a given cell is that of the row strategy when
playing against the column strategy.

Evolution is fundamentally a process of change over time, and
so it is desirable to add a dynamic component to the payoff ma-
trix. Strategies with above average payoff should increase in
abundance while strategies with below average payoff should
decrease. One popular approach, the “replicator equation,” does
so using differential equations [2,4]. The replicator equation
describes deterministic evolutionary dynamics in a well-mixed,
infinitely large population, and is defined as follows. Let Aij be the
payoff of strategy i playing against strategy j, and xi be the frac-
tion of players in the population using strategy i. Assuming there
are N possible strategies, we have the constraint

RN
i¼1xi ¼ 1 (2)

The “fitness” (or expected payoff) of an individual playing strat-
egy i is given by

fi ¼ RN
j¼1Aijxj (3)

and the replicator equation stipulates that

_xi ¼ xiðfi � UÞ (4)

where U is chosen as

U ¼ RN
j¼1xjfj (5)

so that the constraint, Eq. (2), is satisfied.
In this paper, we use the replicator equation to study the RPS

game because of RPS’s wide range of applications in both biology
and social science. The cyclical dynamics of RPS provide a natural
model for many similarly cyclical natural phenomena. Two of the
most widely cited examples involve mating patterns of the side-
blotched lizard Uta stansburiana [5] and toxin and antidote produc-
tion in mutant forms of the bacteria Escherichia coli [6]. In each
case, there are three strategies, each of which out-competes another
and is out-competed by the third. The result is cyclic dominance,
with no strategy as the clear winner. This type of RPS dynamic has
also been used to explain the “paradox of the plankton,” in which
ecosystems support a much greater degree of biodiversity than sug-
gested by the number of ecological niches [7].

Outside of biology, RPS evolutionary dynamics have also been
used to model a range of social interactions. Here, the dynamics
describe a process of social learning via imitation rather than
genetic evolution. Each person has a strategy, and people prefer-
entially imitate the strategies of more successful others, ignoring
the strategies chosen by the less successful. Thus natural selection
operates on strategy abundances, producing a replicator dynamic
identical to genetic evolution. One example of an RPS dynamic in
human social interactions involves optional cooperative relation-
ships [8–10]: selfish players invade a population of cooperative
players, loners who abstain invade a population of selfish players,
and cooperators invade a population of loners. Another example
comes from opinion formation in political elections [11], where
a set of candidates may each have arguments which expose
weakness in another candidate, but are vulnerable to attacks from
a third.
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In the present work, we add periodic variation in payoffs to the
RPS game. These periodic effects could represent, for example,
fitness changes caused by seasonal fluctuations in the weather, or
earning changes caused by seasonal variation in consumer spend-
ing. This paper builds on previous work from our group [12,13].
In Ref. [12], we studied the linear stability of an RPS system with
periodic coefficients. In Ref. [13], we extended the work by con-
sidering the nonlinear stability of a similar system. In the present
work we consider the linear stability of a similar system which
however contains a larger number of parameters. We find that by
thus increasing the number of parameters, we are able to observe
events which would be unlikely to occur in a system with few pa-
rameters. In particular we have discovered that the model supports
the disappearance of tongues of resonant instability.

2 Model

We are interested in an extension of the RPS model where the
payoffs vary periodically with time. More specifically we consider
a RPS payoff matrix of the form:

R

P

S

R P S

0

1þ A3 cos xt

�1þ A5 cos xt

�1þ A1 cos xt

0

1þ A6 cos xt

1þ A2 cos xt

�1þ A4 cos xt

0

0
B@

1
CA (6)

Here, the strength and frequency of the variation can be manipu-
lated by the x and Ai parameters. This payoff matrix gives rise to
three replicator equations given by Eq. (4) which can then be
reduced to two equations on x1 and x2 by eliminating x3 via the
constraint, Eq. (2), x3 ¼ 1� x1 � x2. The result is

_x1 ¼ x1ð1� 2x2 � x1Þ þ x1G1 cos xt (7)

_x2 ¼ x2ðx2 þ 2x1 � 1Þ þ x2G2 cos xt (8)

where

G1 ¼ A2ð1� x1 � x2Þ þ x2½A1 � x1ðA1 þ A3Þ� þ F (9)

G2 ¼ A4ð1� x1 � x2Þ þ x1½A3 � x2ðA1 þ A3Þ� þ F (10)

where

F ¼ ðx1 þ x2 � 1Þ½x1ðA2 þ A5Þ þ x2ðA4 þ A6Þ� (11)

Setting Ai ¼ 0, gives the original RPS model where the dynam-
ics of the replicator equations (Eqs. (7) and (8)) can be described
by the first integral

x1x2ð1� x1 � x2Þ ¼ constant (12)

Equation (12) represents a family of curves, each of which corre-
sponds to a motion which is periodic in time. In Fig. 1 we see the
integral curves for various values of the constant in Eq. (12). We
also find that for Eqs. (7) and (8), the points (1,0), (0,1) and (0,0)
are equilibria and the lines x1 ¼ 0, x2 ¼ 0 and x1 þ x2 ¼ 1 are
exact solutions. Note that x1 þ x2 ¼ 1 is equivalent to x3 ¼ 0 in
view of Eq. (2). There is also an interior equilibrium point at
ð1=3; 1=3Þ.

The presence of the time-varying periodic terms Ai cos xt
destroys the first integral, Eq. (12). In addition, for general values
of the Ai these terms destroy the equilibrium at (1/3),(1/3). We
wish to consider the case in which this equilibrium is preserved
under the periodic forcing. From Eqs. (7) and (8), this will require
that G1 and G2 vanish at x1 ¼ x2 ¼ 1=3. This turns out to require
the following relationship between the Ai coefficients:

A1 þ A2 ¼ A3 þ A4 ¼ A5 þ A6 (13)

To satisfy Eq. (13), we set

A3 ¼ A5 þ A6 � A4 (14)

A1 ¼ A5 þ A6 � A2 (15)

This corresponds to the payoff matrix

R

P

S

R P S
0

1þ ðA5 þ A6 � A4Þ cos xt
�1þ A5 cos xt

�1þ ðA5 þ A6 � A2Þ cos xt
0

1þ A6 cos xt

1þ A2 cos xt
�1þ A4 cos xt

0

0
@

1
A (16)

and to the following governing differential equations:

_x1 ¼ x1ððA6ðx2
2 � x1x2Þ þ A5ðx2ð1� x1Þ þ x2

1 � x1Þ

þ A4ðx2
2 þ x2ð2x1 � 1ÞÞ þ A2ðx2ð2x1 � 2Þ

þ x2
1 � 2x1 þ 1ÞÞ cos xt� 2x2 � x1 þ 1Þ (17)

_x2 ¼ x2ððA6ðx2
2 � ðx1 þ 1Þx2 þ x1Þ þ A5ðx2

1 � x1x2Þ
þ A4ðx2

2 þ ð2x1 � 2Þx2 þ 1� 2x1Þ
þ A2ð2x1x2 þ x2

1 � x1ÞÞ cos xtþ x2 þ 2x1 � 1Þ (18)

In our previous work [12,13], we showed that for the case of
A1 ¼ �A2 ¼ A, A3 ¼ A4 ¼ A5 ¼ A6 ¼ 0 the interior equilibrium

Fig. 1 Integral curves from Eq. (12). Each of these curves rep-
resents a motion which is periodic in time.
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point ð1=3; 1=3Þ changed stability for resonant values of the pa-
rameters x and A. Using perturbation theory, we were able to
detect tongues of instability in the parameter space as well as
describe the nonlinear behavior in the different regions of the
tongues.

In this work we seek to investigate the existence of such
tongues for the more general case, Eqs. (14) and (15), in which
A1 ¼ A5 þ A6 � A2 and A3 ¼ A5 þ A6 � A4.

3 Subharmonic Resonance

We begin by investigating the linear stability of the interior
equilibrium point. First we move the interior equilibrium point to
the origin for convenience.

x1 ¼ xþ 1

3
; x2 ¼ yþ 1

3
(19)

Then substitute Eqs. (19) into Eqs. (17) and (18)

_x ¼ 1

9
½cos xtfðð9xþ 3Þy2 þ ð1� 9x2Þy� 3x2 � xÞA6

þ ðð�9x2 þ 3xþ 2Þyþ 9x3 � 3x2 � 2xÞA5

þ ðð9xþ 3Þy2 þ ð18x2 þ 9xþ 1Þyþ 6x2 þ 2xÞA4

þ ðð18x2 � 6x� 4Þyþ 9x3 � 3x2 � 2xÞA2g
þ yð�18x� 6Þ � 9x2 � 3x� (20)

_y ¼ 1

9
½cos xtfð9y3 þ ð�9x� 3Þy2 þ ð3x� 2yÞ þ 2xÞA6

þ ðð�9x� 3Þy2 þ ð9x2�Þyþ 3x2 þ xÞA5

þ ð9y3 þ ð18x� 3Þy2 þ ð�6x� 2yÞ � 4xÞA4

þ ðð18xþ 6Þy2 þ ð9x2 þ 9xþ 2Þyþ 3x2 þ xÞA2g
þ 9y2 þ yð18xþ 3Þ þ 6x� (21)

For a linear stability analysis, we linearize Eqs. (20) and (21)

_x ¼ ððy� xÞA6 þ ð2y� 2xÞA5 þ ðyþ 2xÞA4 þ ð�4y� 2xÞA2xÞ cos xt� 6y� 3x

9
(22)

_y ¼ ðð2x� 2yÞA6 þ ðx� yÞA5 þ ð�2y� 4xÞA4 þ ð2yþ xÞA2Þ cos xtþ 3yþ 6x

9
(23)

Now, we transform this system of first-order ODEs into a second-
order ODE for convenience in eliminating secular terms in the
upcoming perturbation method. We find

f1€xþ f2 _xþ f3x ¼ 0 (24)

where

f1 ¼ �9ððA6 þ 2A5 þ A4 � 4A2Þ cos xt� 6Þ (25)

f2 ¼18ðA6 þ A5Þ cos xt� 9xðA6 þ 2A5 þ A4 � 4A2Þ sin xt

� 3ðA6 þ A5ÞðA6 þ 2A5 þ A4 � 4A2Þ cos2 xt (26)

f3 ¼ 18þ 3ðA6 � 4A5 � 5A4 þ 8A2Þ cos xt

� 9xðA6 þ 2A5 � A4Þ sin xtþ ð�A2
6 þ ð�A5 þ A4 þ 8A2ÞA6

þ 2A2
5 þ ð11A4 � 8A2ÞA5 þ 2A2

4 � 16A2A4 þ 8A2
2Þ cos2 xt

� ðA6 þ 2A5 þ A4 � 4A2ÞðA2A6 þ A4A5 � A2A4Þ cos3 xt

(27)

We may now use a perturbation method to determine the stabil-
ity of the interior equilibrium which has now been moved to the
origin, under the assumption of small forcing amplitudes. To use
the perturbation method we make a change of variables s ¼ xt
and denote 0 as a derivative with respect to s. We also write
Ai ! �Ai. This gives, neglecting terms of Oð�2Þ

g1x00 þ g2x0 þ g3x ¼ Oð�2Þ (28)

where

g1 ¼ 54x2 � 9x2�ðA6 þ 2A5 þ A4 � 4A2Þ cos s (29)

g2 ¼ 18x�ðA6 þ A5Þ cos s� 9x2�ðA6 þ 2A5 þ A4 � 4A2Þ sin s

(30)

g3 ¼ 18þ 3�ðA6 � 4A5 � 5A4 þ 8A2Þ cos s

� 9�xðA6 þ 2A5 � A4Þ sin s (31)

To begin with, we determine the resonant value of x at Oð�Þ by
setting

x ¼ x0 þ �x1 þ Oðe2Þ (32)

Substituting Eq. (32) into Eq. (28) and collecting terms gives

x000 þ
x0

3x2
¼ 0 (33)

x001 þ
x1

3x2
¼ H1x000 þ H2x00 þ H3x0 (34)

where

H1 ¼
A6 þ 2A5 þ A4 � 4A2ð Þ cos s

6
(35)

H2 ¼
x A6 þ 2A5 þ A4 � 4A2ð Þ sin sþ �2A6 � 2A5ð Þ cos s

6x
(36)

H3 ¼
x 3A6þ 6A5� 3A4ð Þ sin sþ �A6 þ 4A5þ 5A4� 8A2ð Þcos s

18x2

(37)

From Eq. (33), we see that x0 will have a solution with frequency
1=

ffiffiffi
3
p

x whereupon the right hand side of Eq. (34) will have terms
with frequencies

16
1ffiffiffi
3
p

x
(38)

Resonant values of x will correspond to forcing frequencies Eq.
(38) which are equal to natural frequencies of the homogeneous
x1 equation, i.e., to 1=

ffiffiffi
3
p

x. This gives that

x ¼ 2ffiffiffi
3
p ðresonanceÞ (39)
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This value of x corresponds to the largest resonance tongue.
There are an infinitude of smaller tongues which would emerge
from the perturbation method if we were to continue it to Oð�2Þ
and higher. These have been shown [12] to be of the form
x0 ¼ 2=ðn

ffiffiffi
3
p
Þ for n ¼ 2; 3; ::: but will not concern us in this

paper.
In order to investigate the nature of the dynamical behavior in

the neighborhood of the resonance, Eq. (39), we define two time
scales n and g

n ¼ s; g ¼ �s (40)

and we consider x to be a function of n and g, whereupon the
chain rule gives

x0 ¼ xn þ �xg (41)

x00 ¼ xnn þ 2�xng þ �2xgg (42)

We detune x off of the resonance Eq. (39)

x ¼ 2ffiffiffi
3
p þ k1�þ � � � (43)

and expand x ¼ x0 þ �x1 þ � � �. Substituting Eqs. (41) and (42)
and these expansions into Eq. (28) and collecting terms, we
obtain

x0nn þ
1

4
x0 ¼ 0 (44)

x1nn þ
1

4
x1 ¼ �2x0ng þ h1x0nn þ h2x0n þ h3x0 þ

ffiffiffi
3
p

4
k1x0 (45)

where the functions hi in Eq. (45) are the same as the functions Hi

in Eq. (28) with s replaced by n and x replaced by 2=
ffiffiffi
3
p

.
We take the solution of Eq. (44) in the form

x0 ¼ aðgÞ cos
n
2
þ bðgÞ sin

n
2

(46)

We substitute the expression for x0 Eq. (46) into the x1 Eq. (45),
and remove secular terms, giving the slow flow

@a

@g
¼ a

A4 � A5

8
ffiffiffi
3
p

� �
þ b �

ffiffiffi
3
p

4
k1 þ

A2 � A6

12
þ A4 � A5

24

� �
(47)

@b

@g
¼ �b

A4 � A5

8
ffiffiffi
3
p

� �
þ a

ffiffiffi
3
p

4
k1 þ

A2 � A6

12
þ A4 � A5

24

� �
(48)

Equations (47) and (48) are a constant coefficient linear system
with the following eigenvalues:

6
1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�27k2

1 þ ðA2 � A6Þ2 þ ðA4 � A5Þ2 þ ðA2 � A6ÞðA4 � A5Þ
q

(49)

For given parameters A2;A4;A5;A6, the equilibrium point
a ¼ b ¼ 0 will be either unstable (exponential growth) or stable
(quasi-periodic motion) depending respectively on whether the
eigenvalues, Eq. (49), are real or imaginary. The transition
between stable and unstable will correspond to zero eigenvalues,
given by the condition

27k2
1 ¼ ðA2 � A6Þ2 þ ðA4 � A5Þ2 þ ðA2 � A6ÞðA4 � A5Þ (50)

Equation (50) will yield two values of k1, let’s call them
k1 ¼ 6Q, which from Eq. (43) plot as two straight lines in the
x� � plane, representing the boundaries of the 2:1 subharmonic

resonance tongue, see Fig. 2. Inside this tongue the equilibrium is
unstable due to parametric resonance

x ¼ 2ffiffiffi
3
p 6Q�;

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 � A6Þ2 þ ðA4 � A5Þ2 þ ðA2 � A6ÞðA4 � A5Þ

q
ffiffiffiffiffi
27
p

(51)

4 Disappearing Tongue

In the special case that A2 ¼ A6 and A4 ¼ A5, we see from Eq.
(51) that Q ¼ 0 and the tongue has closed up, at least to Oð�Þ. For
these parameter values we have from Eqs. (14) and (15)

A1 ¼ A4 ¼ A5 � a�; A2 ¼ A3 ¼ A6 � b� (52)

so that the payoff matrix, Eq. (6), becomes

R

P

S

R P S

0 �1þ a� cos xt 1þ b� cos xt

1þ b� cos xt 0 �1þ a� cos xt

�1þ a� cos xt 1þ b� cos xt 0

0
B@

1
CA (53)

where x ¼ 2=
ffiffiffi
3
p

, and the linearized differential Eqs. (22) and
(23) become

_x ¼ ðya�� ðxþ yÞb�Þ cos xt� 2y� x

3
(54)

_y ¼ ð�ðxþ yÞa�þ xb�Þ cos xtþ yþ 2x

3
(55)

From Floquet theory [14,15] we know that on the transition
curves which define the two sides of the tongue, i.e., which sepa-
rate regions of stability from regions of instability, there exists a
periodic solution having frequency x=2 (a “subharmonic”). To
prove that the tongue has truly disappeared (rather than approxi-
mately so as in perturbation theory), we must show that there
COEXISTS two linearly independent solutions having frequency
x=2. To make this easier to consider, define a new subharmonic
time scale T ¼ ðx=2Þt ¼ t=

ffiffiffi
3
p

. Then Eqs. (54) and (55) become

1ffiffiffi
3
p dx

dT
¼ ðya�� ðxþ yÞb�Þ cos 2T � 2y� x

3
(56)

Fig. 2 2:1 subharmonic resonance tongue, Eq. (51). The RPS
equilibrium point at x1 5 x2 5 1=3 is linearly unstable for param-
eters inside the tongue. The presence of nonlinearities detunes
the resonance and prevents unbounded motions which are pre-
dicted by the linear stability analysis.
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1ffiffiffi
3
p dy

dT
¼ ð�ðxþ yÞa�þ xb�Þ cos 2T þ yþ 2x

3
(57)

Here, we must show that there exists two linearly independent
solutions with frequency 1 in time variable T. For example, when
a¼ b¼ 0, there are two linearly independent solutions with fre-
quency 1

x ¼
ffiffiffi
3
p

cos T � sin T; y ¼ 2 sin T (58)

and

x ¼ �2 sin T; y ¼
ffiffiffi
3
p

cos T þ sin T (59)

That is, we are forcing the system at twice its natural frequency.
The idea here is that there normally exists a solution of frequency
1 on each transition curve. In order to show that there is no tongue,
we have to show that the two transition curves are coincident. In
fact we claim that the two transition curves correspond to
k1 ¼ Q ¼ 0, that is, to a single vertical line in the x� � plane,
going through the point x ¼ 2=

ffiffiffi
3
p

; � ¼ 0. Equations (56) and (57)
correspond to such a vertical line, and so we want to show that
there are two linearly independent solutions to these equations.

Numerical simulations of Eqs. (56) and (57) have shown that
this result is valid to all orders of �, i.e., Eqs. (56) and (57) exhibit
a frequency 1 solution for all nontrivial initial conditions, regard-
less of the values of a, b or �. That is, the tongue really does close
up and the instability disappears. Moreover, numerical evidence
shows that all the other tongues in the �� x plane (which ema-
nate from points on the x-axis at x ¼ 2=ðn

ffiffiffi
3
p
Þ, see Ref. [12])

also close up and disappear.
We supplement these numerical results with the following:
Theorem. All nontrivial solutions to Eqs. (56) and (57) are peri-

odic with frequency 1.
Proof: We assume a solution to Eqs. (54) and (55) in the form

(“variation of parameters”)

x ¼ uð
ffiffiffi
3
p

cos T � sin TÞ þ vð�2 sin TÞ (60)

y ¼ uð2 sin TÞ þ vð
ffiffiffi
3
p

cos T þ sin TÞ (61)

where u and v are functions of T to be found. Note that
ðu ¼ 1; v ¼ 0Þ gives Eq. (58), while ðu ¼ 0; v ¼ 1Þ gives Eq. (59).
Substituting Eqs. (60) and (61) into Eqs. (56) and (57) gives the
following Eqs. on u and v:

ffiffiffi
3
p du

dT
¼ � cos 2Tð�buþ ða� bÞvÞ (62)

ffiffiffi
3
p dv

dT
¼ � cos 2Tððb� aÞu� avÞ (63)

Next we define new time variable

dz ¼ � cos 2Tffiffiffi
3
p dT ) z ¼ � sin 2T

2
ffiffiffi
3
p (64)

which gives the following constant coefficient linear system on u, v:

d

dz

u
v

� �
¼ �b a� b

b� a �a

� �
u
v

� �
(65)

The matrix in Eq. (65) has eigenvalues

k ¼ � aþ b
2

� �
6 i

ffiffiffi
3
p

2
ðb� aÞ (66)

Thus, the general solution to Eq. (65) involves a linear combina-
tion of terms of the form

exp
aþ b

2
z

� �
sin

cos

� � ffiffiffi
3
p

2
ðb� aÞz (67)

Therefore, since z is a p-periodic function of T, we see that u and v
also have period p in time T. Then from Eqs. (60) and (61), it
follows that x and y have period 2p in T, since the product of a
p-periodic function and a 2p-periodic function has period 2p. Q.E.D.

This phenomenon has been observed in various other paramet-
ric excitation problems and has been referred to as “coexistence”
[15–17].

5 Conclusions

From a dynamical systems point of view, we may summarize
our findings as follows: The original RPS system, with payoff ma-
trix, Eq. (1), and no forcing, exhibits an equilibrium at (1/3,1/3)
which is stable (Fig. 1). With the addition of forcing, there will
generally be a 2:1 subharmonic resonance region in parameter
space in which the equilibrium becomes unstable (Fig. 2). In the
present work, we have shown that this tongue may be absent or
very small if the forcing parameters are chosen appropriately.

In the case that the equilibrium is linearly unstable, the pres-
ence of nonlinearities detunes the resonance (because the fre-
quency of the motion changes as the amplitude increases) and
prevents the unbounded motions which are predicted by the linear
stability analysis. The resulting unstable motion is either quasi-
periodic or chaotic [13].

From a biological and social point of view, the presence of peri-
odic forcing in RPS can lead to quasi-periodic or chaotic oscilla-
tions, such as those observed in the range of biological and social
applications described above in the introduction: seemingly sto-
chastic fluctuations in strategy abundances need not necessarily
arise from a stochastic process, as we have shown in earlier work
[12,13]. The findings of the current paper have further implica-
tions. Depending on the choice of forcing parameters, it is possi-
ble to reduce or even eliminate quasi-periodic motion. Thus, if
one was designing an organization, community or political system
where stability was desired, this effect could be achieved by prop-
erly tuning the degree of periodic forcing. A similar logic applies
to biological systems. If the forcing coefficients were themselves
subject to natural selection, evolution might favor coefficients that
eliminate the tongue and result in stable population abundances.
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