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Abstract. In this paper we examine the dynamics of two time-delay coupled
relaxation oscillators of the van der Pol type. By integrating the governing
differential-delay equations numerically, we find the various phase-locked mo-
tions including the in-phase and out-of-phase modes. Our computations reveal
that depending on the strength of coupling (α) and the amount of time-delay
(τ), the in-phase (out-of-phase) mode may be stable or unstable. There are
also values of α and τ for which the in-phase and out-of-phase modes are
both stable leading to birhythmicity. The results are illustrated in the α-τ
parameter plane. Near the boundaries between stability and instability of the
in-phase (out-of-phase) mode, many other types of phase-locked motions can
occur. Several examples of these phase-locked states are presented.

1. Introduction. A relaxation oscillator is characterized by a periodic motion
which consists of a fast regime and a slow regime within each period. Coupled
relaxation oscillators are often used to model the dynamics of a variety of physical,
chemical and biological systems. There is a vast literature on this subject (see, for
example, [6], [2], [7], [11]). In many applications the coupling process necessarily
involves a time-delay. Delays occur due to finite rates of transport such as diffu-
sion and signal transmission. Despite this fact, effects of time-delay have not been
considered in these earlier works on coupled relaxation oscillators. Currently there
is a great deal of interest in the study of relaxation oscillators with time-delay cou-
pling. These studies deal with systems of neuronal oscillators that are coupled by a
time-delay through their synapses ([4], [1], [14]). Effects of discrete and distributed
time-delays in many other systems have also been investigated recently (see, for
example, [5], [8]).

In this paper we investigate the dynamics of a pair of relaxation oscillators of the
van der Pol type with time-delay coupling. The motion of this system is governed
by the following differential-delay equations:

εẍ1 − (1 − x2
1) + x1 = α[x2(t − τ) − x1(t − τ)]

εẍ2 − (1 − x2
2) + x2 = α[x1(t − τ) − x2(t − τ)]

(1.1)
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Here x1 and x2 are the dependent variables (e.g., voltages), t is time, and a dot
over a variable denotes a time-derivative. The coupling strength and time-delay are
designated by the symbols α and τ , respectively, and the parameter ε is assumed
to be much less than unity.

If time-delays are introduced into the electronic circuit considered by Saito [7], the
behavior of the system of time-delay coupled relaxation oscillators can be modeled
by equations such as (1.1) above. Using discrete time-delay elements in Saito’s cir-
cuit, we have performed laboratory experiments to study the effects of the strength
and amount of delay on the dynamic behavior of the coupled relaxation oscillators.
These experimental results will be reported in a future publication. In this paper
we present the results of a numerical investigation of the system of equations (1.1)
which exhibits the nonlinear dynamics of such circuits.

In an earlier work, Storti and Rand [9] examined the system of equations (1.1)
in the absence of time-delay (i.e., τ = 0). Using the method of matched asymptotic
expansions and Floquet theory, they determined the conditions for stability of the
in-phase and out-of-phase modes. They showed that in the limit ε → 0, the in-
phase mode is stable for −1/2 < α < 0 and α > 1, and is unstable for α < −1/2
and 0 < α < 1. The out-of-phase mode, on the other hand, is found to be stable
when −1/2 < α < −1/3 and α > 0; it is unstable for −1/3 < α < 0, whereas for
α < −1/2 , the out-of-phase mode does not exist. This work was extended recently
by Storti and Reinhall [10] to include the effect of velocity coupling.

Grasman [2] considered the time-delayed system (1.1) and reformulated the equa-
tions in terms of the Lienard variables as follows:

εẋ1 = y1 + x1 −
x3

1

3
, ẏ1 = −x1 + α[x2(t − τ) − x1(t − τ)]

εẋ2 = y2 + x2 −
x3

2

3
, ẏ2 = −x2 + α[x1(t − τ) − x2(t − τ)]

(1.2)

He analyzed these equations for weak coupling by assuming that 0 < ε � α < 1.
Under this condition the coupling does not perturb the limit cycle of the individual
oscillators; it only alters their phases. Grasman [2] derived solutions for the phase
functions in order to describe the dynamics of the coupled system.

In this study we examine equations (1.1) for a range of values of the coupling
strength and time-delay. The objective is to determine the possible phase-locked
motions that this system can exhibit and find the values of α and τ for which
such motions can occur. Our approach is based on a numerical solution of these
equations. The computational procedure we have used is discussed in detail in [3].

Equations (1.1) constitute a system of nonlinear differential equations with time-
delay. An analytical treatment of these equations for all values of ε is impossible.
In the relaxation limit ε → 0 considered here, these equations present a singular
perturbation problem. We have tried to solve these equations analytically using a
singular perturbation technique before attempting a purely numerical simulation.
Unfortunately, however, the equations that result from the application of a singular
perturbation technique are not amenable to analytical solutions. This is why a fully
numerical approach was adopted for the solution of these equations.

The results of this study may be summarized as follows. The time-delayed sys-
tem given by equations (1.1) or (1.2) undergoes a variety of phase-locked motions
including an in-phase mode and an out-of-phase mode. Depending on the coupling
strength and the amount of time-delay, the in-phase (out-of-phase) mode may be
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stable or unstable. We also find that for certain values of these parameters the in-
phase and out-of-phase modes are both stable leading to birhythmicity. The results
are illustrated in the α-τ parameter plane. Near the boundaries of stability and
instability of the in-phase (out-of-phase) mode, many other types of phase-locked
states may exist. Several examples of these phase-locked states are presented.

2. The In-Phase and Out-of-Phase Modes: Existence and Stability. It
is easy to see that for all values of α and τ , equations (1.1) and (1.2) admit the
solution: x1 = x2 = u(t), representing the in-phase mode. Here u(t) describes the
relaxation limit cycle of the uncoupled van der Pol oscillator which is governed by
the equation

εü− (1 − u2)u̇ + u = 0 (2.1)

Equation (2.1) has been studied in great detail by many researchers. Here we simply
note that for ε = 0.05, which is the value used in all our computations, the period
of the limit cycle in (2.1) is approximately equal to 2.43 (see, for example, [2]).

Equations (1.1) and (1.2) also admit the out-of-phase solution: x1 = −x2 = v(t),
where v(t) satisfies the following equation:

εv̈ − (1 − v2)v̇ + v = −2αv(t − τ) (2.2)

For given values of α and τ , this equation determines the existence of the out-of-
phase mode. In order to investigate the stability of the in-phase and out-of-phase
modes we integrate equation (1.2) numerically. Consider first the in-phase mode.
To find the values of α and τ for which the in-phase mode is stable, we proceed as
follows. Choose a value of ε � 1; as mentioned above we have used ε = 0.05. Now
choose the parameters α and τ , and select an initial condition which is close to the
in-phase mode: x1 = x2. We have used x1 = 1.3, x2 = 1.35, with y1 = y2 = 0.
Next we integrate the uncoupled equations in (1.2), i.e., with α = 0, backward
from t = 0 to t = −τ . The solution thus obtained is subsequently used as the
set of initial conditions over the interval [−τ, 0] to integrate the coupled time-delay
equations in (1.2). During each step of this integration we must take into account
the values of (x1, x2, y1, y2) at a time τ units earlier. We have adopted a fourth
order Runge-Kutta method for our integration. The details of this technique are
given in [3]. The stability of the in-phase mode is established by observing if the
computed trajectories in the four dimensional space approach the in-phase mode
with time.

To investigate the stability of the out-of-phase mode, we choose the parameters
α and τ , and use an initial condition close to this mode. In our simulation we
have used x1 = 1.3, x2 = −1.35, and y1 = y2 = 0. Next we integrate the uncoupled
equations in (1.2) from t = 0 to t = −τ , analogous to the situation with the in-phase
mode. Using this solution as the set of initial conditions over the interval [−τ, 0],
a numerical solution of the differential-delay equations (1.2) is found. The above
calculations are repeated for several values of α and τ . The results are depicted in
Figures 1 and 8 for the in-phase and out-of-phase modes, respectively.

3. Results and Discussion. Figure 1 reveals that for a given value of α with
α > 0.68, the in-phase mode remains stable for small delays, but it loses stability
when the delay exceeds a critical value given by the transition curve. For α lying in
the interval −0.5 < α < 0, the in-phase mode remains stable for much longer delays
beyond which it becomes unstable. There are also several thin regions around the
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Figure 1. Stability results for the in-phase mode in the α-τ pa-
rameter plane for ε = 0.05. S = Stable, U = Unstable.

τ -axis (i.e., for small α) within which the in-phase mode is stable. These regions
alternate on the positive and negative sides of the τ -axis with each region spanning
approximately half the period of the uncoupled oscillators. The in-phase mode
is unstable in the remainder of the α-τ plane. The inset in Figure 1 shows the
transition curve over the interval α > 0.68 in more detail. Near the boundaries
of stability and instability of the in-phase mode, many other types of phase-locked
states may exist. Consider, for instance, the values of α and τ in the vicinity of the
point A on the transition curve (see the inset in Figure 1). In particular, consider
τ = 0.16 and several values of α, namely, α = 1.15, 1.2,1.205 and 1.208. Figure
2 depicts the phase-locked modes that exist at these parameter values. Note that
since equations (1.1) are invariant under the transformation which interchanges
x1 and x2, each of the periodic motions which is displayed in Figures 2-7 and
Figures 9-11, is accompanied by a periodic motion which is its reflection in the
line x1 = x2. Next consider α = 1.208 and τ = 0.16, 0.162, 0.165 and 0.17. The
various phase-locked states for these parameters are illustrated in Figure 3. We
now fix τ = 0.16 and see if there are other values of α at which phase-locked modes
different from the in-phase and out-of-phase modes can exist. We find that for α
lying between 2.5 and 3.3, many such phase-locked motions can occur. This is the
interval with τ = 0.16 over which the transition curve has an upward concavity.
Figure 4 portrays the phase-locked mode corresponding to α = 3.0 and τ = 0.16.
Consider another interval in the α-τ plane in which the transition curve is concave
upward. In particular, consider the horizontal line given by τ = 0.115 with values of
α between 4.8 and 5.7. For every point on this line there exists a phase-locked state
which is different from the in-phase and the out-of-phase modes. The phase-locked
state corresponding to α = 5.0 and τ = 0.115 is displayed in Figure 5. Another
interval with upward concavity lies over τ = 0.085 and 7.1 < α < 7.9. Figure 6
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shows the phase-locked motion at the point given by α = 7.7 and τ = 0.085 lying in
this interval. As a final example, consider the point with parameter values α = −0.5
and τ = 0.75, which lies near the boundary between stability and instability on the
negative side of the α-axis. The phase-locked mode for this case is shown in Figure
7. A variety of other phase-locked motions can occur near the boundaries of stability
and instability of the in-phase mode. For the sake of brevity we will not discuss
them further.

Figure 2. Phase-locked states near the point A on the inset of
Figure 1. These states correspond to τ = 0.16 and (a) α = 1.15,
(b) α = 1.2, (c) α = 1.205 and (d) α = 1.208, respectively.

The numerical results for the stability of the out-of-phase mode are displayed
in Figure 8. This figure reveals that for positive coupling strength (α > 0), the
out-of-phase mode is stable for all values of τ except in thin regions adjacent to the
τ -axis where it is unstable. When the coupling strength is negative (α < 0), there
are also thin regions adjacent to the τ -axis where the out-of-phase mode is unstable.
Lying to the left of these thin regions and to the right of the line α = −0.5, there
is a stable region for the out-of-phase mode. At α = −0.5, the out-of-phase mode
undergoes an infinite period bifurcation in which x1(t) = −x2(t) remains constant
with time. This constant solution can also be readily observed from equation (2.2)
with α = −0.5. For α less than this value, the out-of-phase mode ceases to exist.
Analogous to the situation in Figure 1, other phase-locked modes are found near the
boundaries of stability and instability of the out-of-phase mode. Figure 9 shows the
phase-locked mode corresponding to α = 0.05 and τ = 1.25. Another phase-locked
mode which occurs for α = −0.025 and τ = 2.7 is shown in Figure 10.

By superimposing Figures 1 and 8, we see that there are several overlapping
regions in the α-τ parameter plane where the in-phase and out-of-phase modes are
both stable. These regions of birhythmicity are illustrated in Figure 11. Around
the τ -axis, Yeung and Strogatz [13] found similar overlapping regions between the
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Figure 3. Phase-locked states near the point A on the inset of
Figure 1. These states correspond to α = 1.208 and (a) τ = 0.16,
(b) τ = 0.162, (c ) τ = 0.165 and (d) τ = 0.17, respectively.

Figure 4. Phase-locked state for α = 3 and τ = 0.16 in Figure 1.

synchronized and incoherent states in their study of the Kuramoto model of oscil-
lators with time-delay coupling. Wirkus and Rand [12] found parameter regions in
which both the in-phase and out-of-phase modes are stable in a study of two van
der Pol oscillators with time-delay (in the limit of non-relaxation behavior).
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Figure 5. Phase-locked state for α = 5 and τ = 0.115 in Figure 1.

Figure 6. Phase-locked state for α = 7.7 and τ = 0.085 in Figure 1.

4. Concluding Remarks. We have examined the dynamics of two identical relax-
ation oscillators of the van der Pol type which are coupled by terms with time-delay.
By integrating the governing differential-delay equations numerically, we have found
various phase-locked motions. The results are presented in the α-τ parameter plane.
Our computations reveal that depending on the strength of coupling (α) and the
amount of time-delay (τ), a stable in-phase mode or a stable out-of-phase mode
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Figure 7. Phase-locked state for α = −0.5 and τ = 0.75 in Figure 1.

Figure 8. Stability results for the out-of-phase mode in the α-τ
parameter plane for ε = 0.05. S = Stable, U = Unstable, N = Does
not exist.

may exist. For other values of these parameters the in-phase or the out-of-phase
mode may become unstable. We also found that near the boundaries of regions
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Figure 9. Phase-locked state for α = 0.05 and τ = 1.25 in Figure 8.

Figure 10. Phase-locked state for α = −0.35 and τ = 0.22 in
Figure 8.

of stability and instability of these modes in the α-τ parameter plane, many other
phase-locked motions can occur. Several examples of these phase-locked states have
been presented.

In the above development we have used a value of ε = 0.05. We have performed
numerical simulations for other small values of ε as well, and found that the results



576 ASOK K. SEN AND RICHARD H. RAND

Figure 11. Regions of birhythmicity in the α-τ parameter plane
for ε = 0.05. These regions are shown shaded in the figure.

do not change appreciably and no new phenomena appear. In particular, the bifur-
cation curves etc. remain qualitatively the same; they only move slightly depending
on the specific value of ε used.
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