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Frequency locking and other phenomena emerging from nonlinear interactions between mechanical
oscillators are of scientific and technological importance. However, existing schemes to observe such
behavior are not scalable over distance. We demonstrate a scheme to couple two independent mechanical
oscillators, separated in frequency by 80 kHz and situated far from each other (3.2 km), via light. Using
light as the coupling medium enables this scheme to have low loss and be extended over long distances.
This scheme is reversible and can be generalized for arbitrary network configurations.
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Frequency locking between micromechanical oscillators
is critical for RF communication and signal-processing
applications [1–3]; however, its scalability is limited by
the fact that, in general, the oscillators are obliged to be in
physical proximity in order to interact. Micromechanical
oscillators can interact at the micron scale via electronic
coupling [4] or a physical connection [5]. However, these
schemes are fundamentally lossy over long distances, and
therefore, are not scalable. Scaling up coupled mechanical
oscillators to macroscale networks [6–8] could potentially
enable novel concepts in memory and computation [9–11],
as well as provide a platform to put in practicemany theories
of nonlinear dynamics of coupled oscillators [12,13].
Interaction of mechanical oscillators through light could,

in principle, help overcome this limitation, since light can
propagate over long distances with minimal loss. Recent
reports [5,14,15] on frequency locking between mechanical
oscillators demonstrate interaction only over a few microm-
eters. In demonstrations of light-mediated coupling of
two micromechanical oscillators [14,15], both mechanical
oscillators are coupled to the same optical cavity, limiting
the kind of network topologies that can be used and how far
the oscillators can be separated.
In this Letter, we demonstrate a reconfigurable scheme

to couple, via light, two independent micromechanical
oscillators separated from each other by an effective path
of 3.2 km, in the master-slave configuration and show the
ability to lock their oscillation frequencies. This coupling
scheme is based on using light to send the information
of the mechanical oscillations from the master oscillator to
the slave oscillator. It is facilitated by the fact that each
oscillator is an optomechanical oscillator (OMO), consist-
ing of colocalized optical resonances and mechanical
resonances that are coupled to each other [see Eqs. (1a)
and (1b)] [16]. The mechanical resonator can be modeled as
a damped simple harmonic oscillator with position x,

effective mass meff , frequency Ωm, and damping rate Γm.
It is driven by its interaction with an optical force
Fopt ¼ gomðjaj2=ωÞ, where jaj2 is the energy in the optical
cavity and ω is the laser frequency. gom indicates the
strength of the interaction between optics and mechanics.
The optical cavity can also be modeled as a damped
oscillator, with a position-dependent frequency ðω0 þ gomxÞ
and damping rate Γopt, and it is driven with a laser of power
jsj2, coupled to the cavity at the rate Γex. The force on the
mechanical resonator Fopt can be controlled by changing
the intracavity energy jaj2, which is, in turn, affected by the
laser power jsj2. Any modulation of the laser power
therefore couples to the mechanical resonator via the
optical force Fopt [17],

da
dt

¼ i½ðω − ω0Þ − gomx�a − Γoptaþ
ffiffiffiffiffiffiffiffiffi

2Γex

p

s; ð1aÞ

d2x
dt2

þ Γm
dx
dt

þ Ω2
mx ¼ Fopt½a�

meff
: ð1bÞ

The OMOs used for this demonstration each consist
of two suspended Si3N4 microdisks stacked vertically
[Figs. 1(a) and 1(b)]. The optical and mechanical reso-
nances under consideration are colocalized along the
periphery of the structure. These structures are fabricated
using e-beam lithography techniques [14]. The top and
bottom Si3N4 disks are nominally 250 nm and 220 nm thick
and have a radius of 20 μm. These disks are separated
from each other by a 170-nm-thick SiO2 sacrificial spacer
layer. This stack rests on a 4-μm-thick SiO2 support layer.
These layers are partially etched away to release the
periphery of these disks. This suspended structure supports
optical whispering-gallery modes that overlap with the
edges of the top and bottom disks [Fig. 1(a)] [14]. The
optical resonance frequency of this structure is strongly
dependent on the separation between the two disks.
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Relative motion [represented by Eq. (1b)] between the
two disks changes the resonance frequency at the rate
of gom ¼ −2π × 49 GHz=nm, as calculated from finite
element simulations [14].
The two devices, when not coupled, oscillate at two

distinct mechanical frequencies separated by 80 kHz. In
order to characterize the devices, light is coupled into each
resonator with a tapered optical fiber. The transmission
spectrum of the master OM resonator shows an optical
resonance centered at ∼1565.22 nm [Fig. 1(c)]. Similarly,
the slave OM resonator has an optical resonance centered
at ∼1565.95 nm [Fig. 1(c)]. The splitting in the resonance
is due to backscattering-induced lifting of degeneracy
between the clockwise and counterclockwise propagating
modes [18]. Thermal motion of the mechanical resonators
modulates this transmission spectrum [Fig. 1(d)], which
can be analyzed with a spectrum analyzer. The master is
observed to have a mechanical resonance at 33.93 MHz
[Fig. 1(e)], with a linewidth of 16.39 kHz, while the slave
has a mechanical resonance centered at 32.82 MHz
[Fig. 1(e)], with a linewidth of 13.56 kHz. When the optical
resonances are excited with blue-detuned lasers (ω > ω0),
dynamical backaction [16] amplifies mechanical motion.
As input power is increased, this mechanical gain increases,
until it overcomes intrinsic mechanical damping. At this
point, each resonator becomes a self-sustaining oscillator
[16]. The master oscillates at 32.99MHz [Fig. 1(f)], and the
slave oscillates independently at 32.91 MHz [Fig. 1(f)], i.e.,
separated from the master by more than 6 times its natural
mechanical linewidth. Note that, due to the optical-spring

effect [16], the oscillation frequencies for the oscillators are
centered at a frequency slightly higher than that for the
thermal motion of the respective resonator.
To demonstrate long-distance locking, we couple the two

OMOs in a master-slave configuration, via a 3.2-km-long
optical fiber, with an electro-optic modulator that is driven
by the master OMO and that modulates the laser driving the
slave OMO [see Fig. 2 and Eq. (2)]. Each OMO is pumped
by an independent laser. The signal transmitted from the
master OMO carries information about its position xmaster.
It travels through a 3.2-km-long delay line before it is
detected with a high-speed detector. The output of this
detector carries the RF oscillations, which are a function of
the mechanical displacement xmaster of the master. The slave
laser drive sslave is modulated by this signal from the master
[Eq. (2)]. The output of the slave OMO is detected with
another high-speed detector and analyzed with a spectrum
analyzer and an oscilloscope,

jsslavej2 ¼ js0;slavej2ð1þ γ½fðxmasterÞ�Þ: ð2Þ

The strength of coupling between the slave OMO and
the output of the master OMO can be controlled by the
modulation depth γ of the electro-optic modulator driven
by the master oscillator. A voltage-controlled variable-gain
amplifier provides a gain between −26 dB and þ35 dB to
the RF oscillations coming from the detector of the master
OMO, and thereby controls the modulation depth. This is
reflected in the PSD of the oscillation peak of the master

FIG. 1 (color online). (a) Schematic depiction of cross section of the device, indicating the colocalization of optical and mechanical
resonances. The dotted line indicates the relative mechanical displacement between the two disks that influences the optical mode.
(b) SEM image of the optomechanical (OM) resonator. Inset: higher-magnification SEM image of the region highlighted, showing the
double-microdisk structure. (c) Normalized transmission spectra of master and slave optical resonances. (d) Vibration of the mechanical
resonator causes the optical resonance to vibrate about a mean value, resulting in modulation of transmitted optical power. (e) Power
spectral density (PSD) of the modulation of the transmitted optical power due to thermally induced mechanical vibration shows the
natural frequency of the mechanical resonator. (f) PSD of master and slave oscillations. The oscillation peaks are offset by 80 kHz.
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OMO (Hinj) as seen in the light transmitted from the slave
OMO [Fig. 3(a)].
As we increase the coupling strength, we show that

the slave OMO transitions from oscillating independently
to being frequency locked to the master OMO. The
coupling strength is determined by comparing the amount
of modulation imparted on jsslavej2 by the injected signal
and by the slave oscillator. This is measured in terms of
the ratio of the power of injected oscillation signal (Hinj)
to the power of the free-running slave oscillation (Hslave).
When Hinj=Hslave is small, the slave OMO oscillates at its
own frequency, independently. The optical signal trans-
mitted from the slave carries the slave oscillation peak,
along with the modulation imparted on the laser [Fig. 3(a)].
As the injection strength is increased, the slave oscillation
frequency is pulled toward the master oscillation frequency.
After a transition point (Hinj=Hslave ∼ −2 dB), the slave
OMO spontaneously begins oscillating at the same
frequency as the master OMO.
We show that frequency locking can also occur when the

roles of the slave and the master are reversed [Fig. 3(c)]. As
we increase the coupling strength, the new slave sponta-
neously begins oscillating at the same frequency as the new
master after a transition point around Hinj=Hslave ∼ 8 dB.
The difference in the locking strength for each of the
oscillators can be attributed to the strongly nonlinear nature
of these oscillators [19] (see the Supplemental Material
[20]). We observe phase locking between the master and
the slave oscillators when their frequencies lock. The
locking transition is associated with the establishment of

a fixed phase relationship between the master and the
slave oscillations. We can observe the change in the phase
relationship upon locking between the master and slave
oscillators by plotting the oscillation signal of the slave
versus that of the master, over a duration long enough to
accommodate phase drift. When the slave OMO is free-
running, its phase is uncorrelated to the phase of the master
OMO. As a result, for each point in the phase space of the
master OMO, the phase of the slave OMO can take any
value in its range (i.e., 0° to 360°). This is reflected in the
phase portrait of the oscillations of the master OMO and
slave OMO forming a filled rectangle [Fig. 4(a)], over an
extended period of time (4 μs, i.e., more than 130 oscil-
lation cycles) [32]. When the slave OMO is locked to the
master OMO, the phase difference between the two
oscillations is fixed, and the phase perturbations (phase
noise) are correlated (see the Supplemental Material [20]).
This correlation between the phases of the two oscillators
results in the x-y trace of the oscillations [Fig. 4(b)] of
the master and slave OMOs forming an open Lissajous
figure [32].
Full numerical simulations of Eqs. (1) and (2) for the

master and slave OMOs confirm the observation of locking
[Figs. 3(b) and 3(d)]. The dynamics of the slave OMO and
the master OMO are simulated with experimentally derived
parameters. The set of coupled optical and mechanical
equations [Eqs. (1a) and (1b)] are numerically integrated
using commercially available software [14,20]. The power
in the optical drive for the slave jsslavej2 [Eq. (2)] in the
simulation contains a signal γ½fðxmasterÞ�, which is

FIG. 2 (color online). Schematic of experimental setup to demonstrate master-slave locking. The two optomechanical (OM) resonators
are driven by independent lasers. The optical signal from the master travels through 3.2 km of single mode fiber (SMF). The RF signal
generated at the detector by the oscillations of the master modulates, via an electro-optic modulator (EOM), the laser driving the slave.
The RF oscillations of the slave are analyzed with a spectrum analyzer and an oscilloscope.
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proportional to the transmitted signal from the master
OMO. As the gain is increased, the slave is locked to
the oscillations of the master OMO. The simulations also
reproduce, qualitatively, major features of the dynamics,
including injection pulling [33].
Our demonstration of master-slave locking of two

OMOs separated by kilometers of fiber utilizes a

reconfigurable coupling scheme that can be easily
extended to include mutual coupling between the two
oscillators as well as to implementing a large network of
oscillators with arbitrary network topologies. The ability
to tune the coupling strength arbitrarily enables access to
various regimes of nonlinear dynamics of such oscillator
networks.

FIG. 3 (color online). (a) Spectrum of the power transmitted from the slave OMO for different injection ratios (Hinj=Hslave).
(b) Numerical simulation of the power spectrum. (c),(d) Same as (a) and (b), respectively, only now measured by reversing the roles
of master and slave.

FIG. 4. Phase portraits formed by the oscillation signals of the (a) free-running slave and (b) locked slave with the master oscillator,
as measured with an oscilloscope, over more than 130 oscillation cycles. Insets: simulated phase portraits.
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THE OPTOMECHANICAL OSCILLATOR

An optomechanical oscillator can be described by a set of coupled equations describing the

optical mode (S1(a)) and the mechanical mode (S1(b)). The main text provides a physical

description of these equations.

da

dt
= i(∆0 − gomx)a− Γopta +

√

2Γexs (S1(a))

d2x

dt2
+ Γm

dx

dt
+ Ω2

mx =
Fopt[a]

meff

(S1(b))

In the ‘bad cavity limit’, i.e. in the case where the optical decay rate Γopt is much larger

than the mechanical frequency (Γopt ≫ Ωm), for a given displacement x, the optical cavity

reaches a steady state much faster than the mechanical resonator responds to the change

in Fopt[a]

(

=
gom|a|2

ω

)

. Therefore, in this limit, one may analyse Eq. S1(a) quasistatically,

with a value of x delayed by the response-time τ(=
1

Γopt

) of the optical cavity. This delay

accounts for the fact that although the optical cavity responds much faster than the me-

chanical resonator, it does not do so instantaneously. Therefore, the steady state value for

a is given by Eq. S2, and substituting it in Eq. S1(b) yields an equation for mechanical

motion (Eq. S2(b)) in the quasistatic approximation for the optical cavity.

a(t) =

√
2Γexs

i(∆0 − gomx(t− τ))− Γopt

(S2(a))

d2x(t)

dt2
+ Γm

dx(t)

dt
+ Ω2

mx(t) =
gom

meffω

2|s|2Γex

(∆0 − gomx(t− τ))2 + Γ2
opt

(S2(b))

Eq. S2(b) can be simplified by normalising the displacement (y =
gomx

∆0
) and time

(T = tΩm), and substituting A =
2g2omΓex

meffωΩ2
m∆

3
0

, B = (
Γopt

∆0
)2, and Qm =

Ωm

Γm

, to give

d2y(T )

dT 2
+

1

Qm

dy(T )

dT
+ y =

A|s|2
B + (1 + y(T − τΩm))2

(S3)

OSCILLATION POWER AND INJECTION RATIO

When an optomechanical cavity is excited with a laser of power |s|2 via a waveguide

coupled to the optical cavity with a coupling constant
√
2Γex, the power exiting the cavity

is given by |sout|2 = |s −
√
2Γexa|2 [1]. Using Eq. S2(a), and letting Dg represent the

2



transimpedance gain of the detector and input gain of the spectrum analyzer, the power

detected at the spectrum analyzer can be written as

Ptrans (x) = Dg|s|2|1−
2Γex

i(∆0 − gomx)− Γopt

|2 (S4)

If x oscillates at the frequency Ωosc i.e. x = x0 cos(Ωosct), Ptrans can be approximated in

terms of its spectral components, i.e. as a Fourier series Eq. S5, where Dg|s|2(P0, P1, P2, ...)

are the power-spectral-density (PSD) values of Ptrans at the frequencies (0,Ωosc, 2Ωosc, ...).

This approximation holds because the linewidth reduces dramatically when oscillations begin

[2], and most of the power in the spectral component is concentrated at the centre-frequency

itself. Harmonics are introduced because of the non-linear transduction between x and Ptrans.

It must be noted that (P0, P1, P2, ...) are functions of x0 since they are Fourier coefficients

of |1− 2Γex

i(∆0 − gomx)− Γopt

|2

Ptrans = Dg|s|2 (P0 + P1 cos(Ωosct) + P2 cos(2Ωosct) + ...) (S5)

The parameter Hslave from the main text can, therefore, be written as

Hslave = Dg,slave|sslave|2P1,slave. This value is directly read off the spectrum analyzer.

The output of the master oscillator modulates the laser driving the slave, as per Eq.

2 in the main text (Also see section ’Electro-optic coupling’). The modulation function

f(xmaster) is proportional to Eq. S5, where all the PSD values correspond to the master

oscillator. Assuming that the harmonics are negligible compared to the fundamental fre-

quency component i.e. coefficient of cos(Ωinjt), Eq. 2 from the main text can be rewritten

as Eq. S6, where the detector transimpedance gain Dg,master, propagation loss, modulation

gain from the electro-optic modulator and the variable RF amplifier gain, are absorbed into

the variable parameter γ.

|sslave|2 = |s0,slave|2(1 + γ cos(Ωinjt)) (S6)

Ptrans,slave = Dg,slave|s0,slave|2(1+γ cos(Ωinjt))(P0,slave+P1,slave cos(Ωosct)+P2,slave cos(2Ωosct)+...)

(S7)

Substituting Eq. S6 in Eq. S5 gives Eq. S7, from which we can find the PSD of Ptrans,slave

at the frequency Ωinj. The parameter Hinj from the main text can, therefore, be written as

Hinj = Dg,slave|sslave|2P0,slaveγ. This value, too, is directly read off the spectrum analyzer.

3



Therefore, the injection ratio
Hinj

Hslave

equals the ratio of the relative amplitudes of mod-

ulations of the optical power in the waveguide (i.e. ratio of modulation depths), caused by

injected signal and the free-running slave oscillator, i.e.

Hinj

Hslave

=
γ

P1/P0

(S8)

Electro-optic coupling

We use an electro-optic modulator to couple master oscillator to the slave oscillator. The

RF power transmitted from the master oscillator (Ptrans,master) modulates the optical power

transmitted through the modulator as per Eq. S9(a) [3], where Γ accounts for the gain of

the amplifier (see main text) and the modulator.

|s|2 = |s0|2(1 +
1

2
sin(ΓPtrans,master)) (S9(a))

|s|2 = |s0|2(1 +
Γ

2
Ptrans,master) (S9(b))

For sufficiently small values of ΓPtrans,master, Eq. S9(a) can be written as Eq. S9(b).

For a sinusoidal variation of Ptrans,master (Eq. S6), the modulation term on the RHS of Eq.

S9(a) can be expanded in terms odd harmonics of Ωinj [4]. Therefore, the smallest harmonic

corresponds to 3Ωinj , and the component corresponding to 2Ωinj is absent.

FREQUENCY-LOCKING OF OPTOMECHANICAL OSCILLATORS

Optomechanical back-action [2], which amplifies or dampens mechanical oscillations, oc-

curs because the optical-force has a component in phase with the velocity of the mechanical

resonator. This is because the optical cavity does not respond instantaneously (i.e. τ 6= 0).

However, this also makes analysing Eq. S3 and frequency-locking difficult, because it is a

delay-differential equation.

The oscillation amplitude and phase (frequency) of optomechanical oscillators are not

mutually independent, as demonstrated by the optomechanical spring effect [2]. As a re-

sult, the well-known Adler equation [5, 6] which models injection-locking of oscillators via
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phase-only coupling, does not adequately reflect the dynamics of locking of optomechanical

oscillators represented by Eq. S3.

In this section, we will reduce Eq. S3, under appropriate approximations, to a variant of

the well-known Mathieu equation [7], which will serve as a template to understand locking

behaviour in optomechanical oscillators.

Simplfied Model Based on Mathieu Equation

The optomechanical oscillator begins undergoing self-sustained oscillations (limit-cycle

oscillations) as the laser power crosses a threshold value which is determined by 1
Qm

, A, B

and τ [2]. Below this threshold laser power, oscillation-amplitude decays due to mechanical

damping. If we neglect damping, i.e. 1
Qm

= 0, we can assume τ = 0 and still have oscillatory

solutions to the equation, with a sustained oscillation-amplitude. This gives us

d2y

dT 2
+ y =

A|s|2
B + (1 + y)2

(S10)

When damping is neglected, even small values of y (i.e. the change in optical resonance

frequency caused by mechanical motion is much smaller than the linewidth of the optical

resonance) correspond to oscillatory motion. Therefore, Eq. S10 can be further simplified

by assuming y ≪ 1, and considering only the first three terms from the Taylor expansion

of the RHS around y = 0, giving Eq. S11. We include the lowest-order nonlinear term (i.e.

the quadratic term) to analyse the effect of nonlinearity in locking, and include amplitude-

frequency coupling in the analysis.

d2y

dT 2
+ y =

A|s|2
(1 +B)3

((1 +B)2 − 2(1 +B)y − (B − 3)y2) (S11)

The laser power |s|2 is modulated by an external signal from the master oscillator, as

per Eq. S6. Substituting this in Eq. S11, and rearranging terms gives Eq. S12, where

E1 = 2 A|s0|2

(1+B)2
, E2 =

(B−3)E1

2(1+B)
, E0 = (1 +B)E1

2
,Ω =

Ωinj

Ωm
.

d2y

dT 2
+ (1 + E1 + γE1 cos(ΩT ))y + γ cos(ΩT )E2y

2 = E0(1 + γ cos(ΩT )) (S12)

Eq. S12 represents a forced oscillator, with parametric as well as non-parametric forcing.

Note that we neglect the unforced quadratic term E2y
2 on the LHS while deriving Eq. S12
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because, in practice, E2 ≪ 1, and the unforced motion is essentially simple harmonic. Non-

parametric forcing of a linear oscillator gives a response at the forcing frequency, along with

the natural frequency. The solution is altered only when the detuning i.e. difference between

natural frequency and forcing frequency is zero. However, this case is not of interest, since

we are looking for the response of the oscillator when the detuning is not zero.

Parametric forcing can lead to instability due to the parametric-resonance phenomenon

[7]. These unstable oscillations are at the same frequency as the forcing frequency [7] i.e.

the instability corresponds to locked oscillations. As the oscillation amplitude increases,

higher-order terms, which were neglected in Eq. S11 become significant, and limit the

oscillation amplitude. However, in order to study locking, it is sufficient to study Eq. S12

without the non-parametric forcing. Eq. S13 is similar to Mathieu’s equation [7], and can

be analysed using perturbation theory, with γ as the perturbation parameter, U = ΩT, δ =

δ0 + γδ1 + γ2δ2, δ0 =
1+E1

Ω2 , D1 =
E1

Ω2 , D2 =
E2

Ω2 , y = y0 + γy1 + γ2y2

d2y

dU2
+ (δ + γD1 cos(U))y + γ cos(ΩT )D2y

2 = 0 (S13)

We use the method of multiple time scales [7] to analyse Eq. S13, with ξ = U, η = γU, ν =

γ2U , around the parametric resonance occuring at δ0 = 1 (i.e. when forcing frequency is

close to the frequency of the oscillator). Note that this case is different from the stardard

analysis of parametric excitation when the excitation frequency is close to twice the oscillator

frequency. Also see the section ’Electro-optic coupling’.

For a given value of normalised detuning ∆(= 1 −
√
δ) between the oscillator frequency

and the forcing frequency, the perturbation parameter γ is obtained from Eq. S14.

γ2δ2 + γδ1 + 1− (1−∆)2 = 0 (S14)

Upon performing the perturbation analysis and finding conditions for the solution to be

stable in each order of perturbation, we get expressions for δ1 and δ2 (Eqs. S15), which

represent the curves along the boundary of regions of locked and unlocked oscillations i.e.

the Arnold tongue (R is the unperturbed oscillation amplitude of Eq. S13).

δ1 = −3

4
D2R, δ2 =

5

6
D1(

D1

2
+D2R) (S15(a))

δ1 =
3

4
D2R, δ2 =

5

6
D1(

D1

2
−D2R) (S15(b))

6



Substituting Eqs. S15 in Eq. S14 and solving Eq. S14 for γ, we get the minimum value

of γ necessary to lock the slave oscillator with a detuning of ∆.

Arnold tongue for frequency locking

The injection ratio
Hinj

Hslave

is given by Eq. S8, where P0 and P1 are the Fourier components

of |1 − 2Γex

i(∆0 − gomx)− Γopt

|2 at the frequencies 0 and Ωinj . Taking x = x0 cos(Ωosct), we

find from the Taylor expansion of |1− 2Γex

i(∆0 − gomx)− Γopt

|2 around x = 0,

P1

P0
≈ 8∆0gomΓex(Γopt + Γex)x0

(Γ2
opt +∆2

0)((Γopt + 2Γex)2 +∆2
0)

(S16)

Substituting experimental and simulated [8] values in Eqs. S14, S15 and S16, and x0 =

10−11m [9], we get Fig. S1, representing the Arnold tongue (as a function of modulation

depth γ and normalised detuning ∆) for the locking of slave oscillator to the master oscillator.

The red and blue lines on the figure indicate the detuning of the oscillators used in the

experiment.

Comparison with experiment

It is remarkable that despite the extreme simplicity of the model used, it shows the

expected trend for the minimum injection ratio required to lock as detuning increases. The

values of injection ratios for locking obtained from the model, for the frequency detuning of

oscillators in the experiment, are withing 5dB of experimental values. The role played by the

nonlinear term is obvious from the inset of Fig. S1, which shows the Arnold tongue obtained

by performing perturbation analysis on Eq. S13 with D2 = 0. Without the nonlinear term

coupling the amplitude and frequency, the minimum injection ratios obtained from the

analysis are 10dB and 14dB larger than experimental values.

It must be emphasised that Eq. S13 is suitable only to understand the essential features

of the locking process i.e. the Arnold tongue and the role played by nonlinearities. A better

match between analytical and experimental results may be obtained by considering more

terms in the expansion in Eq. S11. Specifically, the difference in the locking strength required
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∆ (normalised)

Figure S1. Plot of the Arnold tongue i.e. the minimum value of
Hinj

Hslave

required for locking, as

a function of normalised detuning ∆ (= 1 − Ωslave

Ωinj
), obtained from Eqs. S8, S14, S15 and S16.

The red and blue points on the curve indicate locking thresholds obtained from the analysis for

the detuning of the oscillators in the main text. The arrows show that that the errors between

experimental and analytical values for locking thresholds are less than 5dB. The analysis does not

hold at ∆ = 0, and that point is not included in the plot. Inset shows the tongue obtained by

neglecting all quadratic terms.

upon switching the roles of the master and slave oscillators, as seen in the experiment, may

be obtained in this model by considering higher nonlinear terms, which are known to induce

an asymmetrical response [10, 11]. One may go a step further and even attempt to analyse

Eq. S3 as a delay-differntial equation. However, the analysis is significantly more challenging

and beyond the scope of this work.
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NUMERICAL SIMULATIONS FOR LOCKING

Figs. 3(b) and 3(d), which show simulated results for master-slave locking of the two

OMOs, are obtained by numerical integration of Eqs. S1 for each OMO. We perform the

calculation using the solver NDSolve available in the commercial software Mathematica R©.

Eqs. 1 are first solved for the master oscillator. Starting with initial values of amaster(0) =

0, xmaster(0) = 5 · 10−12m, dxmaster

dt
= 0, the equations are integrated from t0 = 0 to tmax =

0.5ms. We observe from the time trace of the solution that it takes about 0.1ms to reach

steady-state oscillations. The time-dependent optical power transmitted from the master

oscillator is stored in memory for later use.

Ptrans,master(t) ∝ |s0,master −
√

2Γexamaster(t)|2 (S17)

In the same way as for the master oscillator, Eqs. 1 are solved for the slave oscillator, at

first without any coupling between the master and the slave. We observe that just like the

master oscillator, the slave also takes about 100µs to reach steady-state oscillations. During

the experiment, both the oscillators attain steady state oscillations before they are coupled

together. To reflect this, the s0,slave is kept constant for 100µs, before being modulated by

Ptrans,master(t) (calculated earlier), as per Eq. S18. This is accomplished by using a Heaviside

Step Function, with the argument tc = 100µs, to couple the AC part of Ptrans,master(t) (Eq.

S17) to sslave. The DC part is filtered out so that only the RF oscillations, not the DC value

of Ptrans,master(t), couple to sslave, as in the experiment.

|sslave(t)|2 = |s0,slave|2[1 +H(tc = 10−4s) · Γ
2
· (Ptrans,master(t)− < Ptrans,master(t) >)] (S18)

Finally, Figs. 3(b) and 3(d) are obtained by calculating and plotting the PSD of

Ptrans,slave(t) for increasing values of modulation strength Γ.

Note : Although it is not essential to let the oscillators reach steady state oscillations

in simulations before coupling them, doing so gives results that match better with exper-

iments. This is because optomechanical oscillators are highly nonlinear systems, and the

limit-cycle in which they oscillate is dependent on initial conditions [12]. By ensuring that

the oscillations reach steady state before coupling is switched on, the numerical calculations

emulate experimental initial conditions better.
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Time-dynamics of locking

When the modulation depth γ crosses the minimum value required to lock the slave

oscillator to the master oscillator, the slave oscillator undergoes a change in its dynamics.

This change, however, is not instantaneous. There is a period of transient behaviour before

the frequency and amplitude of the slave oscillator settle at their new steady state values.

We can obtain a rough estimate of the duration of this transient behaviour from numerical

simulation of Eqs. 1(a) and 1(b). First, we simulate oscillations of the master oscillator, and

store the time-trace of Ptrans,master (Eq. S17). Then, we simulate for the slave oscillator, with

|sslave|2 given by Eq. S18. In order to observe the locking-transients, the coupling between

the master and the slave oscillators is ’switched-on’ at t = tc, using a Heaviside step-function

H(tc = 200µs). Note that although the individual oscillators reach steady-state oscillations

after 100µs, we simulate for an additional 100µs before coupling the slave oscillator to the

master. This enables us to analyse the steady-state oscillations of the slave oscillator both

before and after coupling to the master oscillator (see next paragraph).

Fig. S2(a) shows the time trace of Ptrans,slave. It can be seen that the dynamics change

almost instantly when coupling is switched on at t = tc = 200µs. However, there are

transients that persist, apparently until t = 230µs. This is better revealed in the Short-

Time-Fourier-Transform (STFT) of the time trace in Fig. S2(b). The STFT gives the

frequency spectrum of the signal within a specified window of time. In order to obtain Fig.

S2(b) from Fig. S2(a), we calculate the frequency spectrum (Fig. S2(b), y-axis) using the

FFT algorithm in discrete time-windows (Fig. S2(b), x-axis) that are 10µs long, with a 5µs

overlap between adjacent windows. We see that the dominant frequency in the spectrum is

32.91MHz for t ≤ 200µs, and it is 32.99MHz for t ≥ 230µs. However, for 200µs ≤ t ≤ 230µs,

it can be seen that there is a transition between the two dominant frequencies.

PHASE NOISE OF THE LOCKED OSCILLATOR

Previous studies [13–15] have shown that the close-to-carrier phase noise of the locked

slave oscillator is identical to that of the master oscillator. For a freely running oscillator,

the phase noise is determined by the thermal noise affecting the oscillator [16]. The spring
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Figure S2. (a) Simulated time-trace of Ptrans,slave. Inset shows a sample of the time-trace, showing

the oscillating signal, over a few cycles. (b) The STFT of the signal from part (a), using 10µs long

windows, and a time-step of 5µs. The frequency resolution of the STFT is limited by the length

of the window chosen for the STFT. A longer window would give better frequency resolution, at

the expense of worse time-resolution.

constant of the resonator corresponds to a restoring force against perturbations to the am-

plitude, but there is no analogous restoring force for the phase i.e. phase perturbations add

up [17]. When an external periodic force is introduced, it acts as a restoring force against

phase perturbations, and serves to lock the phase of the slave to that of the master. This

also results in the phase noise of the slave being identical to that of the master.

Fig. S3 shows the measured phase noise of master oscillator, and that of the slave

oscillator before and after locking. It can be seen that the phase noise of the master oscillator

is lower than that of the freely running slave oscillator. Upon locking, the phase noise of the

slave reduces to a value close to, but slightly more than, that of the master. This difference

can be attributed to the noise added by the photodetector, variable gain RF amplifier, and

other electric circuitry in the path. It must be noted that this extra noise is small (e.g.

1.3dB at 50kHz offset). This implies that the use of a detector, RF amplifier and modulator

in our scheme does not add a lot of noise and does not significantly raise the locking threshold

(since noise influences the minimum injection ratio required for locking [17]).
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Frequency offset (kHz)
100

Figure S3. Phase noise of the master oscillator, and the slave oscillator (both freely running and

locked). The spurious narrow peaks seen at 70kHz and 84kHz can be attributed to resonances of

the tapered optical fibers used to excite the master and slave oscillators.
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