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ABSTRACT 
We investigate slow passage through the 2:1 resonance

tongue in Mathieu's equation. Using numerical integration, we
find that amplification or de-amplification can occur. The amount
of amplitication (or de-amplification) depends on the speed trav-
elling through the tongue and the initial conditions. We use the
method of multiple scales to obtain a slow flow approximatiou.
The WKB method is then applied to the slow flow equations to
get an analytic approximation. 

INTRODUCTION 
Mathicu's equation is the following second order linear non-

autonomous ordinary differential equation (ODE): 

d2x 
dt 2 b ( 8 + e c o s t ) x = O  (1)

Eq.(l) has be widely studied [1]. For given values of the param-
eters 8 and e, either all the solutions are bounded (stable) or an
unbounded solution exists (unstable). Fig, 1 shows the transition
curves separating regions of instability from those of stability for
Eq.(1) in the ~5-e parameter plane, These regions of instability
are commonly referred to as resonance tongues. 

In this work we investigate what happens if {5 cbanges slowly
in time. In particular, we assume 8 varies linearly with time and
replace ~5 in Eq.(1) with: 

8 = ~ + e2t;t (2)
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Figure 1. Regions of stability and instability in Mathieu's Equation 
(S=stable, U=unstable) 

For fixed values of ~, we can think of a point (8, e) moving in 
time across the 8-.c plane in and out of' the tongues of instability. 
The constant term {5 is the initial value of ;5 at time ¢ = 0 and e2H 
is the speed at which the point (8, c) rnoves across the 8-e plane. 
Putting Eq.(2) in Eq.(1) results in the following ODE: 

d2x 
-dt ~ + (c; + a2ttt + ~cost)x = 0 (3) 

which we will study using numerical integration and perturbation 
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methods for small values ofa. 

Previous work by Nayfch and Asfar [2] and Neal and Nayfeh 
[3] have investigated slow passage through resonance in Math- 
ieu's equation with additional cubic and damping terms. After 
using the method of  multiple scales to derive a slow flow, they 
perform a numerical investigation of the slow flow and report the 
different phenomena observed. 

Raman, Bajaj and Davies 114] present a general methodology 
for analyzing slow passage across instabilities in non-linear dis- 
sipative systems. In [4] they present some analytic results for the 
system studied by Nayfeh et al. In a second paper by Raman and 
Bajaj [5], they present some general results for Hamiltonian os- 
cillators. As an example, they investigate slow passage through 
resonance in Mathieu's equation with an additional cubic nonlin- 
earity. 

The studies mentioned above all look at variations of  the 
Mathieu equation with a nonlinear term. The effect of the non- 
linearity is to include stable nontrivial solutions in the resonance 
tongue ag opposed to just having an unbounded solution in the 
case of  the linear Mathieu equation. Their analysis focuses on 
the transition from the trivial solution to the bifurcating solution 
while going throngh the resonance tongue. 

In eontrast to these works, in this paper we focus on pas- 
sage through resonance in the linear Mathieu equation and the 
question of a m p l ! f i c a t i o n  to bc described in the next section. 

NUMERICAL INTEGRATION 
We begin our study by numerically integrating Eq.(3) to get 

an idea of what occurs when crossing a resonance tongue of  
Mathieu's equation. The 2:1 resonance in Mathicu's equation 
is the most prominent so we choose parameter values and initial 
conditions that would correspond to transvcrsing the 2:1 reso- 
nance tongue from left to right in the 5-~ plane for a fixed value 
ofa. 

For small values of e, the first term approximation of the 
transition curves of  the 2 : 1 resonance tongue in Mathieu's equa- 
tion is: 

8 = 1__t_ e 4 ~ + O ( e 2 ) ,  a < < l  (4)  

The minus sign corresponds to the left transition curve and the 
plus sign corresponds to the right transition curve. Replacing 5 
in Eq.(4) with Eq.(2) we have: 

l e ~+d~t~ ~ ~ (5) 
2

 

From Eq.(5), we can solve for the times that would correspond to 
being on the left transistion curve t_ and on the right transition 
curve t F: 

1 - -  4c~  1 1 - 4 ~  1 
t__ ~ t +  ~ : - v -  -~ ( 6 )  

4EZ,u 2~ff' 2e/, L I , ~ " / /  

For our numerical integrations, we choose initial condition such 
that: 

dx 
x ( to )  - cosy, ~-(t0) = siny (7) 

where 0 _< y < 2ft. 

Fig.2 shows a numerical integration for e = 0.1, i l = 0.1, 
c~ = 0 and to = 0 and y = 0. Also shown in dashed lines are 
the times that would correspond to being on the transition curves 
(t_ = 200 and t.L .... 300). 
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Figure 2. Numerk;al Integration of Eq.(3) for 7 = 0. that is for x(0) = 
dx = 0. Note that the vertical axis is scaled to a maximum of 60. 1 , ~  

Parameters are e =: 0.1,/~ := 0. l and (5 = 0. Dashed vertical lines show 

approximate times at which the motion crosses the transition curves in the 

Mathieu equation (1), t_ = 200 and t+ = 300. 

Fig.3 shows a numerical integration with the same parame- 
ter values as Fig.2 but with different initial conditions (~, --- re/2). 
Comparing Fig.2 and Fig.3 we see that they both exhibit amplifi- 
cation as a result of  going through the resonance tongue although 
the maximum amplitude in Fi~g.3 is considerably larger than that 
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in Fig.2. Also note that in both Figs.2 and 3, the maximum am- 
plitude occurs at the time which is larger than t+, that is, after the 
motion has exited the resonance tongue. 

Numerical  integration, e = 0.1, g = 0.1, a = 0, t o = 0, " /= ~ 2  

- L " " O  100 200 300 400 500 600 
t 

Figure 3. Numerical Integration of Eq.(3) for "l' = n that is for x ( 0 )  = 

0, ~ = 1. Note that the vertical axis is scaled to a maximum of 300. 

Paramete)s are ~ = 0 . 1 , f l  = 0. l and (~ = 0. Dashed vertical lines show 

approximate times at which the motion crosses the transition curves in the 

Mathieu equation (1), t__ = 200  and t+  = 300.  

To investigate the effects of  initial conditions on amplifi- 
cation we numerically integrate Eq.(3) for the same parameter 
values using a range of initial conditions (0 _< T < 2~). Fig.4 
shows a plot of  the maximum value o fx  as a fnnction of the ini- 
tial condition parameter 3'. We see that the amplification can vary 
significantly depending on the initial conditions. Fig.5 shows a 
numerical integration for the initial condition y = 2.9558 which 
is approximately the value of 3' which has the least amplifica- 
tion in Fig.4. For Y = 2.9558 we see that the maximum ampli- 
tude is smaller after going through the tongue than it was prior to 
entering the tongue. We find that a small range of  initial condi- 
tions results in deamplification after going through the resonance 
tongue. 

SLOW-FLOW EQUATIONS 
We use the method of  multiple scales ([6],[7]) to obtain 

an analytic approximation for Eq.(3) around the 2:1 resonance 
tongue (a = 1/4) for 8 < <  1. Here we set cy = 1/4 so that at 
t = 0 we are located exactly at the 2:1 resonance 8 = 1~, that is, 
in the middle of the associated tongue of instability. We start by 
introducing slow and fast time variables TI = et and ~ = t. Eq.(3) 
becomes: 
3    
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Figure 4. Maximum value o f x  as a function of initial condition parameter 

where ~' is defined in Eq.(7). Parameters are 8 = 0 .1 , / . l  = 0.1 and 

G=0.  
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Figure 5. Numerical Integration of Eq.(3) for ~ / =  2 .9558 .  Note that 

the vertical axis is scaled to a maximum of 2. Parameters are ~: = 0.1,  

I~ = 0 . ]  and G = 0. Dashed vertical lines show approximate times at 

which the motion crosses the transition curves in the Mathieu equation 

(1), t_  = 200  and t+  = 300.  

02x ~32x .2 32x 1 
0~- ~ + Zenith- ~ -I- ~ ~-~ + (~ + eCLrl + ~ cos~)x = 0 (8) 

Taking x(~,q) a,; a power series x(~Qq) :-~ xo(~,q) + ex! (~,q) + 
.., and collecting O(1) and O(e) terms gives: 
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~2x0 + ~ x 0 = 0  O(1) : 7~ T (9) 

32xl 1 = --2 3?xO 
o(8)  : ~ + gx~ aCan -x0eos~-t,nx0 (lO) 

The general solution of Eq.(9) is: 

x o ( ~ , T D = A ( ' q ) c o s ~ + B ( i 3 ) s i n  ~ (11) 

Substituting Eq.(11) into Eq.(10) and simplifying trigonometric 
terms gives: 

aef 7/x~ n \dq 

Remowd of secular terms results in the slow-flow equations: 

dA 1 
d",-5 = ("n - ~ (13) 

d B  
ell] (/zrl + )A (14) 

Eqs.(13) and (14) can he combined to form a single second order 
ODE in either A o r b  alone. Taking the derivative of Eq.(l 3) with 
respect lo T I gives: 

d2A 1, dB B 
dn--T = (f,n - ~)~-~ + f ,  (15) 

Substituting Eqs.(13),(14) into Eq.(15) gives the following sec- 
ond order ODE in A alone: 

d2A 1 1 A jL dA 
dTi 2 -- - (/_,r I - -~ ) (t,rl + ~ ) + tzrl - ½ drl 

Setting "~ = l~rl, Eq.(16) can be rew,'itten as: 

(16) 

2 d2A 1 ,U 2 dA 
l, d-~(~+('~-~a ,~-½ d ' : - 0  (17) 
4  

 

Applying the same procedure but eliminating A gives the ODE 
in B: 

2 d2B 1 ll 2 dB 
," ~ 2  + (~2 - :i)B - ~,+---T_~ -dT = 0 (18) 

Note that Eq.(l 7) is singular when ~ = 1 ~ and Eq.(18) is singu- 
lar when 1: = - 1/2. 

To compare the multiple scales approximation with the orig- 
inal equation using numerical integration we need to relate the 
initial conditions of the original equation to the initial conditions 
of the slow flow equations. From Eq.(11), the multiple scales 
approximation to first order is: 

x(t)~el(~)cos~+B(Tl)sin~ =A(et)cos2 +B(et)sin 2 (19)  

Taking the derivative with respect to time of Eq.(19) we get: 

~/t-" 2 -  2 + eB (e)  sin 97 ' -  ~ - ~  cos 97 (20) 

Using Eqs.(13),(14) for A'(TI) and B' (rl), Eq.(20) can be written 
as:  

I 1 t (- 8(j,st+~)-~),'(et)sin,~ (21) a.~-(,)T,_~ (~("~" ~)" 2) ~J{et)c°s~T + 

At a time t = to, given A(rl0), B(rl0) (where/10 = eto) we can 
solve for the initial conditions x(to), dx~ 7i~to) using Eqs.(19) and 
(21). Fig.6 shows a comparison of the multiple scales approx- 
imation with the original equation, both obtained by numerical 
integration, for e = 0.1, IL = 0.1, {5 -- 1¢ with initial conditions 
to = - 1 0 0  and A(vlo) = 1, B(vlo ) = 0. Note that the numerical 
integrations displayed in Figs.2,3,5 used cy = 0 and to = 0, so that 
the initial time in those figures corresponds to to -- -250.  

We can see in Fig.6 that the multiple scales solution is a good 
approximation to the original equation until about the middle of 
the resonance tongue (t ~ 0). As the approximation worsens the 
phase is still well approximated but the amplitude is a bit larger. 
At around t ,-~ 150 the phase starts to deviate as well. We also 
find that if we decrease the value of t0so the initial conditions 
are farther away from the tongue the entire approximation gets 
worse. This is because we are perturbing offthe 2:1 resonance at 
t = 0. As it I increases we get farther away fi'om the 2:1 resonance 
and the approximation is no longer valid. 
                                                      Copyright © 2002 by ASME 



C o m p a r i s o n  o f  m u l t i p l e  s c a l e s  a p p r o ~ m a t i o n  w i t h  o r i g n a l  e q u a t b n  
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Figure 6. Comparison of multiple scales approximation with original 

equation. Solid line is original equation, dashed line is multiple scales 

approximation. Parameters are £. ----- O.1,/z = O.l and ~5 = 1¢ . Initial 

conditions are A(I]o) = l, B(I]o) = 0, rio = let 0, to = -- 100. 

To investigate the effects of varying initial conditions, we 
assume the initial conditions are of  the form: 

A(qo) = cos]~, B(qo) = s in~ (22) 

where 0 < ~ < 2=. We choose to vary initial conditions now us- 
ing ~; instead o fy  (Eq.(7)) because it restricts A(q0) 2 + B(rlo) 2 = 
1. Using Trestricts x(to) 2 + ~( to )  2 = 1. 

As in Fig.4, we numerically integrate the original equation 
and the multiple scales approximation for a range of  initial con- 
ditions. Fig.7 shows the maximuln value of  x for the multiple 
scales approximation and the original equation as a function of 
the initial condition parameter ~: for to = - 100. We see that the 
multiple scales approximation predicts larger values but the de- 
pendence as a flmction of  ~ is still close. 

Fig.8 shows a similar plot but for to = 0. Again, the multiple 
scales approximation is still larger but the dependcnce on ~ is 
closet'. As expected, initial conditions starting closer to to = 0 
give better approximations. 

WKB APPROXIMATION 
Description of the Method 

The WKB method ([6],[7]) can be applied to linear ODE's 
where the highest derivative is raultiplied by a small perturbation 
parameter. Eqs.(17),(18) are of the form: 
5  
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Figure 7. Comparison of multiple scales approximation with original 

equation. Solid line is original equation, dashed line is multiple scales 

approximation. Maximum Value of x as a function of initial condition pa- 

rameter ]< for to = -- 100. 

M a x i m u m  v a l t l e  o f  x vs .  ~." fo r  v = 0 .1 ,  ~1 = 0 .1 ,  ~ = 1/4, t 0 = 0 

g 

Figure 8. Comparison of multiple scales approximation with original 

equation. Solid line is original equation, dashed line is multiple scales 

approximation. Maximum Value of x as a function of initial condition pa- 

rameter K for to = O. 

,u2y '' -- q ('~)y -I- ¢z2p ('r,)y' = 0 (23) 

where the prime (') denotes differentiation with respect to "t. For 
small values of/z, the WKB method can be applied. Application 
of the WKB method to Eq.(23) involves the ansatz: 
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elO(z) 
/ x 

y ~ ~Y0 ('¢')-t-/ZYl (I:) - } " . . .  ) (24 )  

The asymptotic expansions o f  the first and second derivatives of  
the solution are: 

~ e  (p (pyo+Yo+Cp'yl+...) (25) 

y t t  r~ t_~ - 2  t 2 - 1  n e,' (p (dO) yo-Flt (* yo-F2*yo+((p')2yl)q-...) (26) 

Substituting Eqs.(25-26) into Eq.(23) gives: 

~,~(, "(*'Yyo+, '{*"yo ~-~*'y'o ~-(o')-b,,) v...) 

-q('C)(Yo +PYl +. . .  )-bBZP('Q 0t 'O'Yo+Y~ 4-*'y, +.. .  ) = 0  (27, 

Collecting 0(1) and O(]t) terms results in the following equa- 
tions: 

O(1) : (~ ' )2y0-qYO = 0 (28) 

O(/z) : qb'yo -t- 2¢'y~ -t- (qb')2yl - qYl + P¢'Yo -- 0 (29) 

From Eq.(28) we have: 

f cq,/  ( ¢ , ) 2  _ q = 0 => ¢' = -} : -v~ ~ ¢ = -~ ds ( 3 0 )  

With ~t : :  _Azx/~ and ¢" - =1: ~-~- Eq.(29) becomes: 

1 t t 
± y ~ q  y0 ± 2 ~ y 0  ± ,/-4y0 = 0 (3 ~) 

which can be rewritten as: 

fo _ q' P ( 32 )  
yo 4q 2 

Integrating Eq.(32) gives: 

ql = -  I-l°gq-421 x f,3 = / (_   ,ogy0 s f p(s~l (33) 
a YO 
 

Taking the exponential of both side of Eq.(33) gives: 

yo('t) : q(~)-14 e-~ J'~ p(s)as (34) 

Taking Eqs.(24),(30) and (34), the WKB approximation of 
Eq.(23) is: 

~. ~m,., ..... , ~  ), j, ~ , , , ]  
(35) 

The system has a turning point at "~ = "¢ ifq('t*) = 0. Ifq(x) < 0 
for "t < "~* and q('c) > 0 for "c > "t ~ then Eq.(35) can be written as: 

e ½ I~l'(')'l' /O! /¢\ (¢~/'-~-'~1 t < t *  (36) Y,.('~) ~ ~ ( t  . . . . .  t ~ - t - ~ )+C I . 2cos \ t  ' 4/J '  

o , / , , , I , , , , ,  , ,~ ~] 
yh'(t) ql~ [(,~le j' -t-Cl~2e , "~ > "d (37) 

w h e r e ,  

The approximation near the turning point depends on the form 
of q(q;) and p('c). For q'(x*) 7~ 0 and p('c*) ,~ const, the so- 
lution takes the form of Airy fnnctions. Detailed calculations 
will be shown for specific choices of q('c) and p('~). A rela- 
tion between the constants (71,1 ,CL2 which occur in the "c < ~* 
solution (Eq.(36)) and CmC R2 which occur in the z > z* solu- 
tion (Eq.(37)) are found by matching with another approximation 
which is valkt at the turning point. 

Similarly, if q(x) > 0 for "t < "~* and q(-c) < 0 for "~ > "~*, 
Eq.(35) can be written as: 

&½P;'{ '~ '  r , % , %]  v~.(.~) ~ q--;}q~-[c,~v,,' +C~.~e ,' j, "~<'c 08) 

where, 
6                                                     Copyright © 2002 by ASME 



Application to the Slow Flow 
We apply the WKB method to the equation on A (Eq.(17)) 

obtained ti'om the slow flow equations. In Eq.(17), q = 1¢ t - z 2 
so we have turning points at x = ±1~. Because we have two 
turning points, the approximation can be divided into 5 different 
regions: 

Table 1. 

Label 

/11 

A2 

A3 

A4 

A5 

Labels for Different Regions of Approximations for A 

Region of'~ 

~ - 1 ~  

- t g  < • < 17 

~ 1/2 

> 1/2 

before turning points 

near turning point at "t = - 1;Z 

between the two turning points 

near turning point at "~ = I;Z 

after turning points 

- 1  
Also in Eq.(17) we have p = - - -  

- c -  1;Z 
ponential in thcy0 term in Eq.(34) gives: 

so solving for the ex- 

e-½5¢P(~')dS=e ½f¢'~-@/~'ls =e½1°gtz-I7l= ~[ (40) 

We begin by finding A I, an expression for A valid for z < - 1/2, 
and A3, an expression for A valid for - 1 / 2  < "c < 1/2. For 
z < - l ~ ,  q('c) > 0 a n d f o r - l ~  < ' c <  l~, q('t) < 0 s o t h e  
approximation is of the form of Eqs.(36),(37). Tlms, the WKB 
approximations for A~ and/13 arc: 

w h e r o ,  

.: \ 2 ]  (¢. e~h+C32e- I '  %), . - ~ < z < ~  (42) A3 (3 _.~2)" k~3` " , I 1 

03 = ~7 8 -t- 
 

To obtain an approximation near the turning point at "c = - 1 ~, 
z + l ; Z  

we make the change of variables z - /~f~ . Near the turning 

point, Eq.(l 7) behaves like: 

I t2-2~A" - zltA - It2-~A t = 0 (43) 

Choosing ~ = 2~ balances the A" and A terms which gives the 
equation: 

A " - z A  = 0 (44) 

which is just AiEc's equation. The solution can be written in 
terms of Airy functions: 

A2 = C2~Ai(z) +C22Bi(~) = C2~Ai~ ~--~ ) + C22Ri(, ) ~  ) (45) 

Eqs.(41),(42),(45) now form the WKB approximation. The six 
constants (C's) can be reduced to two by matching the the 
solutions. To match the solutions we use asymptotic expan- 
sions of the approximations. See Appendix A fbr details of the 
matching procedure. We find the following equations relating 
C21, C22,(;'31 ,C32 to C~l ,G2: 

C12 
C31 = C I I ,  C32 = ~ - ,  C21 =: V~] / -1¢  C12, C22 := ~/~fl-1/6C1146) 

Our WKB approximation of A using Eq.(l 7) is: 

- ( ,2  

/12 = ,ul¢'[CI2Ai~-p2~-" ) +CIIBi( p~_~- )l, ~,~' -'~ (48) 

, , ,  c , ,  , 0 ,  

where, 

(~1 

¢3 = 

8 

arcsin (2a:) + 2 ~ v ~ -  4"~ 2 n 
-ik - -  

8 16 
7                                                            Copyright © 2002 by ASME 



So far we have used the WKB method on the A equation 
(Eq.(17)). Since Eq.(17) is singular at "~ = 1~, we now switch 
to the B equation (Eq.(18)) to study the behavior in the neigh- 
borhood of'~ = 1~. In a similar fashion to the preceeding, we 
obtain: 

(z+~) l l  , !** I I 
93 (/  .C2) i/4 (L}3 . . . .  +])32 J~ {~ ), ~ <'[ ' (  ~ {50) 

( '+ ' )"  [,, . . . . .  . . . . .  ,,, = _ _  = (E _ ~_)1,, > ½ (52) 

where, 

arcsin (2 z) + 2-c v/i- - 4-c 2 ~; 
~ - 16 8 = -~3 + 

8 

The approximation forB can then be used to give an approxima- 
tion forA around'~ = 1~ by taking the derivative of Eqs.(50-52) 
and using Eq.(14) which relates A to dB/dr  I (or dB/d'O. This 
avoids analyzing Eq.(17) around "c = 1~ where it is singular. 
Doing this we get: 

.4; = D3I{21,-{I-4x2) 3~ )e]*¢;+D32(2]t+(t-4"C2) 3l )e t IJ¢; 
v~T-TT( r 4,~')s~ 

A5 = [(2D,,t, - 2D32(4,2 ~)3;~ ) COs(7.1 a ) 0 5  71: 

, 

(53} 

(54) 

(55) 

where, 

r~ a r c s i n  2 *  + 2"~x,q - 4z 2 
*3 - 16 8 

2"c 4 ~ -  1 - log(v/4T 2- - 1 + 2~) 

% =  8 

We have two approximations for A in the region between the two 
turning points: A3 (from applying the WKB method on Eq.(17)) 
and A~ (fi'om applying the WKB method on Eq.(18) and then 
8

 

using Eq.(14)). To combine the two approximations we take A3 
for': < 0 and A~ for "c > 0 and anatch A 3 to A ~ and their derivatives 
a t ,  = 0 requMng: 

A3(0)=A~(0) and ? 3 ( 0 ) = d A ~  TT(0) (56) 

Doing this we obtain the following relations between D3j, D32 
and CIj, C12: 

C12 ~- 
D31 -- 2(2/L- 1) e 8~, (57) 

Cl 1 
D32 -- 2/~+ 1 e~ '  (58) 

Finally we must be able to solve for C11,C~2 in terms of the initial 
conditions A (%), B('~0). Let us assume that our initial conditions 
are prescribed for z0 < - l / 2  (i.e. before the motion enters the 
resonance tongue) so A ('%) --A1 (z0). We can obtain B(zo) from 
A i(%) using Eq.(13). The equations relatingA(z0), B(%) to C11, 
C12 arc: 

A(%) = AI ('c0) = Kll('co)Cll-~ KI2(%)C12(59) 

B(%) - tl dA I 
1 dz  ('~0) = K21 (%0)C11 + K22('~0)C12(60) 

See Appendix B for the expressions for" Kij(zo). Eqs.(59),(60) 
carl be expressed in matrix form: 

A(z0) B(,o} ] =I K,l(,O) K,2(~o) 1 {6,) 
X2, (,0) K22(,0) } [ C'' Ci2 

We earl find C11, CI2 ira terms of A(%), B(%) using the inverse 
of the Kij (zo) matrix: 

[cl} 
G2 = X2~ (~0) K22(~0) B(~o) 

Finally, our WKB approximation of A is given by Eqs.(47- 
49),(53-55) and (57-58). Tile constants C~1, (712 are related to 
the initial conditions A(zo),B(zo) by Eq.(62)° An expression for 
B can be obtained using the A approximation and Eq.(13). 
                                                        Copyright © 2002 by ASME 



Fig.9 shows a comparison of the WKB approximation with 
numerical integration of the slow flow equations for / ,  = 0.1, 
"% = -2 .5  and the initial conditions A(%) = 1, B('~0) = 0. Fig. 10 
shows a close up of Fig.9 for the region around the first turning 
point. The approximation is nearly indistinguishable from the 
numerical integration prior to the second turning point. Around 
the second turning point, the error becomes more significant and 
the amplitude is smaller in the approximation. However, the 
phase is well approximated throughout the solution. 

Recall that the multiple scales approximation gets worse as 
we get farther away from the 2:1 resonance (It[ gets larger), see 
Fig.6. Because the WKB approxinmtion is based on the slow 
flow equations, it too is only good for values of It I (or [I"11 and N) 
that are not too large. 

Combined WN3 approximation compared with numeri~l integration 
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q 

Figure 9. Comparison of WKB approximation with numerical integration 
of slow flow. Solid line is numerical integration, dashed lines are WKB ap- 
proximations away from turning points (AIM 3,Aj,A5) and dashed-dotted 
lines are WKB approximations at turning points (A2,A4). Parameters are 
/z = 0. l, "% = 2.5, rl0 = - 2 5  amd initial conditions are A (%0) = l , 

B(%) =: 0. 

AMPLIFICATION IN RESONANCE REGION 
The WKB analysis performed can help us understand tile 

phenomena of amplification (or deamplification) in the reso- 
nance region. The turning points in our WKB analysis corre- 
spond to the transition curves of the resonance region. At the 
tnrning points, the nature of the solution changes fi'om oscilla- 
tory to exponential. Outside the resonance region, the WKB ap- 
proximation has oscillatory solutions so amplification does not 
occur. Inside the resonance region, the WKB approximation has 
9

 

Combined WN3 approximation compared with numoriel integration 

- z  

-g 

-20 -15 -lO -5 
q 

Figure 10. Comparison of WKB approximation with numerical integra- 
tion of slow flow. This figure is an enlargement of Fig.9. Solid line is 
numerical integration, dashed lines are WKB approximation away from 
turning points (AI,A3) and dashed-dotted line is WKB approximation at 
turning point (A2). Parameters are/.t = 0.1, I;0 = --2.5, i30 = --25 amd 
initial conditions are A ("Co) = l ,  B(%0) = 0. 

exponentially growing and decaying solutions which can result 
in amplitication (or deamplification). 

The WKB approximation can be used to determine which 
initial conditions result in the smallest oscillation amplitude af- 
ter passing through the resonance tongue. The initial conditions 
should be chosen so that tbe WKB approximation between the 
turning points (A3), that is, inside the resonant tongue, does not 
have an exponentially growing component. "['his requires the 
constant Cll = 0 (see Eq.(49)). The initial conditions leading 
to maximum deamplification can be found using Eq.(61): 

[ AI::I ] _c_. [ KII(%0) K12(l:0) 0 
K21(1:0' K22(%0)] [ CI2 I (63, 

which gives: 

A(¢o) = KI2(T.o)CI2,  B(~0) = K22('q0C12 (64) 

If we again assume initial conditions of the form of Eqs.(22), we 
can solve tbr the value of K which gives the maximum dealnpli- 
fication: 

taa Kmi n - 19('t'0) _ K22(T0) 
d ("CO) KI2 (%'0) 

, . / ~ :22  ( ' ~ O )  => K,,,i,,=arctan(~) (65) 
                                                             Copyright © 2002 by ASME 



Using the expressions for K12('~0) and K22(%) in Appendix B, 
we obtain: 

[t4x2_ ~3l cos('h(*o) + . ]  2, cos(  .1(*~0 '~ 
= a r c t a n [ '  o , \ , ,  a _ ] -  , \ ~ - ~ )  ) (66) 

where ~1 (%) is given by Eq,(78) in Appendix B. 
We can also obtain an expression for Kmox where the maximum 
amplification occurs by taking C12 = 0 instead ofCll and repeat- 
ing the calculation above. 

For p = 0.1, % = - 1, using Eq.(66) we get tc,,,i,, = 1.0328. 
Numerical integration of the slow flow equations shows maxi- 
mum demnplification occurs when K ,~ 1.1123 which is close to 
the value predicted by the WKB method. For e = 0.1, numer- 
ical integration of the original equation, for this case in which 
# = 0. l, "c0 = - 1 ,  to = -100,  shows maximum deamplification 
occurs when ~ ~ 0.9304 which is again close to the value pre- 
dicted by the WKB method (see Fig.7). 

CONCLUSIONS 
We have found that amplification/deamplificatioll can occur 

for slow passage through resonance in Mathieu's equation. The 
degree of amplification depends on the initial conditions. A very 
small range of initial conditious can lead to deamplification. 

Using the method of multiple scales we have obtained a sys- 
tem of slow flow equations which approximates Eq.(3) arouud 
the 2:1 resonance. The WKB method was applied to the slow 
flow equations. Turning points in the WKB approximation cor- 
respond to the transition curves of the linear Mathieu equation. 
Outside of the resonance tongue, the WKB approximation has 
oscillatory solutions and inside the tongue the WKB approxi- 
mation has exponentially growing and decaying solutions. By 
choosing the constants of the WKB approximation such that 
there is only a decaying solution in tim resonance region we can 
obtain an approximation for the initial conditions in the slow flow 
which result in the smallest amplitude after passing through the 
tongue. 
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Appendix A 
Matching different parts of the WKB approximation re- 

quires using their asymptotic expansions. The asymptotic ex- 
pansions of Eq.(48) are: 

z bt r ._2~;t 2.3~ 
A2 ~ ~ - ~ L C 2 l e  7- -t-2C2zes- ] . . . .  (67) 

. . . . .  _ 

where z - x + ½ p21" 
The asymptotic expansions of Eqs.(47),(49) are: 

[z I i~ n . 2 3a n 1 
A, , 7 ¢  ..... @ ,  -I- ~ )  +C,Z cos(51z 1 (69) 

z t~ z .  .%3;t 2.3/2~ 1 
A3 ~ -ir-kc,,,.> +c~,~. 3- ),~--,-~ (70) 

Equating the coefficients in Eq.(67) to Eq.(70) and Eq.(68) to 
Eq.(69) gives the following equations relating C21, C22, C3j, C32 
to Cli, CI2: 

C21 =V~I t  -I¢ CI2, C~ = ~/~,u -I¢ Cu,  C31 = C n ,  (-'32 = C't~ - -  (71) 
2 
                                                           Copyright © 2002 by ASME 



The asymptotic expansions of Eq.(51) are:

B4 � z�1�4

�
π

�
D41cos

� 2
3

z3�2� π
4

�
�D42cos

� 2
3

z3�2�
π
4

��
� z � ∞ (72)

B4 � �z��1�4

2
�

π

�
D41e�

2
3 �z�3�2

�2D42e
2
3 �z�3�2�

� z ��∞ (73)

wherez �
τ� 1

2

µ2�3
.

The asymptotic expansions of Eqs.(50),(52) are:

B3 � �z��1�4

µ1�6

�
D31e

2
3 �z�3�2

�D32e�
2
3 �z�3�2�

� τ � 1
2

(74)

B5 � z�1�4

µ1�6

�
D51cos

� 2
3

z3�2�
π
4

�
�D52cos

� 2
3

z3�2� π
4

��
� τ � 1

2
(75)

Equating the coefficients in Eq.(72) to Eq.(75) and Eq.(73) to
Eq.(74) gives the following equations relatingD41, D42, D51, D52

to D31, D32:

D41 � 2
�

πµ�1�6D32� D42 �
�

πµ�1�6D31� D51 � D31� D52 � 2D32 (76)

Appendix B
Expressions are given forKi j�τ0� which relate initial condi-

tions of the slow flow equations (A�τ0�, B�τ0�) to the constants
in the WKB aproximation (C11, C12). From Eq.(59) we have:

A�τ0� � A1�τ0� � K11�τ0�C11�K12�τ0�C12

�

�
1
2 � τ0

�1�2

�
τ2

0� 1
4

�1�4

�
C11cos

�φ1�τ0�

µ
�

π
4

�
�C12cos

�φ1�τ0�

µ
� π

4

��
(77)

where,

φ1�τ0� � �
2τ0

�
4τ2

0�1� log
�
�
�

4τ2
0�1�2τ0

�
8

(78)

Collecting terms in Eq.(77), we get:

K11�τ0� �

�
1
2� τ0

�1�2

�
τ2

0� 1
4

�1�4
cos
�φ1�τ0�

µ
�

π
4

�
(79)

K12�τ0� �

�
1
2� τ0

�1�2

�
τ2

0� 1
4

�1�4
cos
�φ1�τ0�

µ
� π

4

�
(80)

From Eq.(60) we have:

B�τ0� �
µ

τ0� 1
2

dA1

dτ
�τ0� � K21�τ0�C11�K22�τ0�C12

� �
��

2C11µ�C12�4τ2
0�1�3�2

�
cos
�φ1�τ0�

µ
�

π
4

�

�
�

2C12µ�C11�4τ2
0�1�3�2

�
cos
�φ1�τ0�

µ
� π

4

��
�

��
1�2τ0�4τ2

0�1�5�4
�

(81)

Collecting terms in Eq.(81), we get:

K21�τ0� � �
�

2µcos
�φ1�τ0�

µ
�

π
4

�
��4τ2

0�1�3�2 cos
�φ1�τ0�

µ
� π

4

� �
�

��
1�2τ0�4τ2

0�1�5�4
�

(82)

K22�τ0� �
�
�4τ2

0�1�3�2 cos
�φ1�τ0�

µ
�

π
4

�
�2µcos

�φ1�τ0�

µ
� π

4

��
�

��
1�2τ0�4τ2

0�1�5�4
�

(83)
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