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Abstract: This work concerns linear parametrically excited systems that involve multiple resonances. The
property of such systems is that if the parameters are fixed and lie inside a resonance tongue, the motion
becomes unbounded as time goes to infinity. In this work we consider what happens when the parameters
are not fixed, but rather are constrained to vary slowly in time, passing into and out of the resonance tongues.
One might expect that during the time in which the motion lies inside a tongue the solution grows, and that
the slower the passage through the tongue the more time is spent inside the tongue, and the larger the resulting
growth. We show that this is not always the case. In particular we investigate the effect of initial conditions
and relative forcing amplitudes on the growth or amplification of the solution. We address the problem of
how to choose these parameters so as to minimize growth (i.e., to de-amplify the solution) after passage
through multiple tongues.

Keywords: Parametric excitation, slow passage, multiple resonances, amplification.

1. INTRODUCTION

Parametrically excited dynamical mathematical models are widely used to represent physical
and engineering systems, particularly the response of mechanical, elastic and hydrodynamic
systems to time-varying loads. If the variation is sinusoidal, then the system can generally be
reduced to the Mathieu equation, and is said to involve a single resonance. However, if the
variation has more than one frequency component, each of which is incommensurate with
the others, then the system is said to involve multiple resonances. The simplest example of
such a system is the Mathieu equation with two forcing frequencies,
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Figure 1. Form of the two large resonant tongues in a Mathieu equation with two forcing frequencies.
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i—tf 4+ (0 + €(a; coswt + a, coswyt))x = 0. (D
In this paper, we consider the effect of a slow linear variation of the parameter J, as may
be expected to occur during slow start-up or shut-down of engineering or physical systems.
In the case that ¢ is a constant and ¢ is a small parameter, equation (1) exhibits two large
resonance tongues in the —¢ plane emerging from the & axis at § = w?/4 and 6 = w3 /4, re-
spectively (Zounes and Rand, 1998). In addition there are an infinitude of smaller resonance
tongues. We will concentrate on the effect of passage through the primary resonances only.
Although there may be additional effects associated with moving through the higher-order
tongues, numerical experiments have shown that these will involve minimal amplification.
Consequently, we will not consider their effect in this paper. We also limit our analysis to
cases in which w; is sufficiently smaller than w,, resulting in well-separated tongues. In
equation (1), a; and a, are parameters which determine the relative amplitudes of the forc-
ing functions. See Figure 1 where the tongues for the case oy = a, = w; = 1, w, = w are
displayed.

In the case where ¢ is a constant, points lying inside the resonant tongues will corre-
spond to systems which have solutions x (#) which grow exponentially in time ¢ and are often
referred to as being unstable. If, on the other hand, J varies with ¢, it may pass through one
or more “resonance tongues”, during which time the solution x(¢) may be expected to grow.
(There are no real resonance tongues in the slow flow equation; the term is used to char-
acterize the two-frequency excitation in equation (1) in the language of the regular Mathieu
equation.) It may be expected that the slower the passage through a resonance tongue, or the
wider the tongue, the more time is spent inside the unstable region, and the larger is the re-
sulting growth. This question has been addressed in a previous work (Ng et al., 2003) which
dealt with slow passage through a single tongue. We briefly review the results in Ng et al.
(2003), where the following equation was studied:
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Figure 2. Numerical integration of equation (2) forc = 0, ¢ = 0.1, a = 1, ¢ = 0.1, x(0) = 1 and
dx/dt(0) = 0. The dashed vertical lines show nominal times at which the motion enters and exits the
resonant tongue (Ng et al., 2003).

Maximum value of x

Figure 3. Maximum value of x as a function of initial-condition phase y for equation (2) (Ng et al., 2003).
Results obtained by numerically integrating equation (2) fore =0, =0.1,a =1, £ = 0.1, x(0) = cos y
and dx/dt(0) = siny.

d2

d—;+(5+ea cost)x =0 where =0 + €>ut. )
Figure 2 shows the results of numerical integration of equation (2) in whiche = 0, ¢ = 0.1,
a = 1 and g = 0.1 for the initial conditions x(0) = 1 and dx/dt(0) = 0. Figure 3 shows
the effect of changing initial conditions by varying y in the equations
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Figure 4. Maximum value of x as a function of the coefficient of the parametric excitation, a. Results
obtained by numerically integrating equation (2) fore =0, ¢ = 0.1, © = 0.1, x(0) = 1 and dx /dt(0) = 0.
Points above the horizontal line at 10°=1 represent amplification, while points below the line represent
de-amplification.

d
x(0) =cosy and d—);(O) =siny. 3)

From Figure 3 we see that the phase y of the initial conditions has an important influence
on the overall growth involved in passage through a single resonance tongue. In Ng et
al. (2003), this growth effect has been called amplification. Note that while most initial-
condition phases y lead to an increase in amplitude, there is a small range of y values close
to y = 2.9558 which lead to de-amplification.

Finally we note from Figure 4, that the amplification is dependent on the magnitude of
the parametric excitation, a. The graph is not monotonically increasing; there are a series of
local maxima and minima. The reason for this phenomenon, which was not examined in Ng
et al. (2003), will be discussed later on in this paper.

2. TWO TONGUES

We first consider slow passage through a two-tongue system in the form of equation (1) with
o1 =0,=1,w; =2and w, = 24/2:

d’x )
el +(5+6(C0$2t+C0$2\/§t))x =0 where J0=o0 + € ut. @

Here w; and w, have been chosen so that the associated tongues are centered at 6 = 1 and
0 = 2, respectively.
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Figure 5. Numerical integration of equation (4) for ¢ = 0.5, € = 0.1, # = 0.1 and for the initial conditions
x(0) = 1 and dx/dt(0) = 0. The vertical lines show nominal times at which the motion enters and
exits the two resonant tongues. The letters A and B refer to the local maximum values of x associated
respectively with the first and second resonant tongues, cf. Figure 6.

Figure 5 shows the results of numerical integration of equation (4) in which ¢ = 0.5,
€ = 0.1 and ¢ = 0.1 for the initial conditions x(0) = 1 and dx/dt(0) = 0. We may say
that Figure 5 is the two-tongue version of Figure 2. As the motion passes through each of
the tongues, local amplification is observed, and the final amplification is the product of the
two individual amplifications.

Let us next consider the two-tongue version of Figure 3, that is a plot of the maximum
values of x as a function of initial-condition phase y. This is displayed in Figure 6 where
the curve marked A refers to the local maximum achieved after passage through the first
resonant tongue, and where the curve marked B refers to the local maximum achieved after
passage through the second resonant tongue. Here the curve marked B/A shows the ratio
of these maximum values and thus represents the amplification which occurs in the second
tongue. Note that although the amplification associated with passage through the first res-
onant tongue is highly dependent on the initial condition phase y both here and in the case
of the single tongue system, Figure 3, the amplification which occurs in the second tongue is
not dependent on y, except in the narrow interval where both A and B are smallest.

We also consider the effect of changing the values of the forcing amplitudes a and a,
in equation (1). We use the following generalization of equation (4) as an example:

d’x

el + (0 + €(a1 cos 2t + a, cos 2«/§t))x =0 where =0 +€’ut. (5)

Here we may think of each a; as changing the effective value of € to ¢; = €a;. Since € con-
trols the width of the resonance tongue, cf. Figure 1, the role of each «; is to vary the width
of the respective tongue. In the Introduction it was conjectured that the more time spent in
the unstable region (resonance tongue), the larger would be the resulting growth. Conse-
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Figure 6. Maximum values of x as a function of initial condition phase y for equation (4) with ¢ = 0.5,
e = 0.1 and g = 0.1. The curves marked A and B refer to the local maximum values of x associated
respectively with the first and second resonant tongues, cf. Figure 5. The curve marked B/A shows the
ratio of these maximum values and thus represents the amplification which occurs in the second tongue.
Results obtained by numerically integrating equation (4).

quently, our initial expectation is that as a; is increased the amplification will also increase.
To determine the validity of this expectation, equation (5) was numerically integrated. The
parameters were set (¢ = 0.5, ¢ = 0.1, u¢ = 0.1) and the initial conditions were chosen to
be x(0) = 1 and dx/dt(0) = 0. Two separate runs were performed: (a) o; was held fixed
at 1 while a, was allowed to vary from 0.1 to 1.5; (b) a, was held fixed at 1 while o; was
allowed to vary from 0.1 to 1.5.

If the rate of growth of the solution was dependent only on the time spent in the resonance
tongue, we would expect that as an a; value is increased, there would be a monotonic increase
in the amplification for fixed initial conditions. However, Figures 7 and 8, which show the
maximum values of x as a function of the respective a;, tell a different story. For small values
of each a;, we notice that the amplification is approximately equal to 1, i.e. the resonance
tongue has minimal effect on the amplitude of the motion. One can posit that this is so
because the width of the tongue is very small and, consequently, the motion does not have
enough time for substantial growth as it passes through. However in Figure 7, there is a
curious occurrence at a, & 0.65; for this value the amplification is a local minimum in the
curves marked B and B/A, and the response emerges from the second resonance tongue with
a smaller amplitude than it entered with. Also notice that there is a local maximum for the
amplification in the second tongue at a, &~ 1.35. Figure 8 exhibits three local maxima and
two local minima for curve B, representing the overall amplification of the solution. One
of the local minima occurs when there is a local minimum during passage through the first
resonance tongue at a; =~ 0.88 and the other occurs when there is a local minimum during
passage through the second resonance tongue at a; ~ 1.19.

Based on these numerical integrations, we see that the amplification depends on both
the initial conditions and the respective coefficients of the parametric excitations, a;. The
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Figure 7. Maximum value of x as a function of the coefficient of the parametric excitation in the second
resonance tongue a,. The initial condition is chosen as x(0) = 1 and dx/dt(0) = 0. The curves
marked A and B refer to the local maximum values of x associated respectively with the first and second
resonant tongues. The curve marked B/A shows the ratio of these maximum values and thus represents
the amplification which occurs in the second tongue. Results obtained by numerically integrating

equation (5) forc =0.5,¢ =0.1, u =0.1, a; = 1.
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Figure 8. Maximum value of x as a function of the coefficient of the parametric excitation in the first
resonance tongue o;. The initial condition is chosen as x(0) = 1 and dx/dt(0) = 0. The curves
marked A and B refer to the local maximum values of x associated respectively with the first and second
resonant tongues. The curve marked B/A shows the ratio of these maximum values and thus represents
the amplification which occurs in the second tongue. Results obtained by numerically integrating

equation (5) forc =0.5,¢ =0.1, u =0.1, a, = 1.
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Figure 9. Contour plot of the maximum value of x (i.e., point B in Figure 5) as a function of both initial
condition phase y and the coefficient of the parametric excitation in the first resonance tongue a;.
Results obtained by numerically integrating equation (5) forc =0.5,¢ =0.1, u = 0.1, a5, = 1.
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Figure 10. Contour plot of the maximum value of x (i.e., point B in Figure 5) as a function of both initial
condition phase y and the coefficient of the parametric excitation in the second resonance tongue a,.
Results obtained by numerically integrating equation (5) fore =0.5,¢ =0.1, x = 0.1, a; = 1.

contour plots in Figures 9 and 10 give an indication of how the system depends on these
parameters. The line of minimum amplification does not coincide with the a; = 0 line
as would be expected if the amplification of the system depended only on the width of the
resonance tongue. The Mathieu equation with two tongues, equation (1), is therefore seen to
exhibit some interesting behavior. However, what is the underlying structure which causes
this? In order to answer this question, we investigate the following simplified system.
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3. SIMPLIFIED SYSTEM

Our understanding of what is happening in equation (1) may be described in words as fol-
lows. In the neighborhood of each of the resonance tongues (i.e., when § ~ w?/4 for
i = 1,2), the respective cosine term €a; cos w;t becomes important. Away from the res-
onant tongues, the cosine terms have little effect. Thus we are led to a simplified model
which omits the cosine terms except in the neighborhood of their respective resonance. Fur-
thermore, in the neighborhood of each one of the resonances, the model takes J equal to its
resonant value and omits the nonresonant cosine term. In equation (1), we may define the
boundaries of the neighborhood of the resonance tongues to be d = w?/4 + €a; /2, cf. Fig-
ure 1. Thus in the case of equation (4), with o = 0.5, ¢ = 0.1 and ¢ = 0.1, our simplified
system would take the form (cf. Figure 5)

x"+(0.5+0001)x = 0 for 0 <t <450, (6)
x"4+(1+4+0.1cos2t)x = 0 for 450 <t < 550, @)
x"+(0.540.001)x = 0 for 550 < < 1450, (8)
x"+(240.1cos2v2t)x = 0 for 1450 <t < 1550, )
x"+(0.54+0.001r)x = 0 for 1550 < ¢. (10)

In order to glean as much understanding as possible out of this simplified model, we shall
obtain solutions to equations (6)—(10) by using analytical techniques rather than numerical
integration.

In the case of equations (6), (8) and (10), we may obtain an exact solution in terms of
Airy functions. Airy’s equation (Bender and Orszag, 1978) is

x 0 (11)
— —TX =
dt?
and has the general solution
x(7) = ¢ Ai(r) + ¢; Bi(r) (12)

where c; and ¢, are arbitrary constants.
Comparison of equations (11) and (6) shows that if we set 7 = —50 — 0.1¢ we obtain
the general solution to equations (6),(8) and (10) in the form

x(f) = ¢1 Ai(=50 — 0.1¢) + ¢» Bi(—=50 — 0.1¢). (13)

Turning now to equations (7) and (9), we write these Mathieu equations in the form

d2 2
d—:+(%+ecoswt>x=0 (14)
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and we seek an approximate solution valid for small € by using the two-variable expansion
perturbation method (Cole, 1968; Rand, 2004) (also known as multiple scales (Nayfeh and
Mook, 1979)). This entails replacing time ¢ by two time variables, £ = ¢ and # = €t, to give,
if we neglect O (€?) terms,

0%x 0%x w?
6_gf2+266§677 + <T—|—ecosa)§>x =0. (15)

Next we expand x = x¢ + €x; + - - - and collect terms:

52 2 ‘

% = 0 = w=ApesZ 4B, 9
’x; o 9%x0

6_52 + le = —2@ — X0 COSCUé‘. (17)

Substituting the expression for x¢ in (16) into (17) and eliminating secular terms, we obtain

dA B dB A

— =, — = 18
dn 2w dn 2w (18)
which gives

A = esexp (5= ) +evexp (=50 ), (19)

2w 2w

n n
B = —esexp (5= ) +esexp (=50 ) (20)

2w 2w

which furnishes us with the following approximate solution to equation (14):

€t wt . wt n €t wt n . wt (21)
X = C3€X —_— COS — — S1In — Cyq €X _— COS — Sin — .
3P\ 25 2 2 “SP\ 7o, 2 2

Now by using equations (13) and (21) we can generate an analytical solution to equa-
tions (6)—(10). Starting with some given initial conditions, say x(0) = 1 and dx/dt(0) = 0,
we obtain values for the arbitrary constants ¢; and c¢; in equation (13). Then by requiring
continuity in x and dx/dt at t = 450 we obtain values for the arbitrary constants c; and
¢4 in equation (21). Similar calculations can be used for each of the regions (6)—(10). See
Figure 11, which displays the resulting analytical solution. Comparison with Figure 5 shows
that the simplified system has similar qualitative properties to the original system (4).

Next we use the foregoing analytical solution to investigate the effect of changing the
initial condition phase y on the maximum values of x. The results are displayed in Fig-
ure 12, which is to be compared to Figure 6, which shows similar information obtained by
numerically integrating the original system (1). Again the results show that the simplified
system has similar qualitative properties to the original system (4). In particular, the curve
marked B/A represents the amplification which occurs in the second tongue, and here, as in
Figure 6, there is very little dependence on y .
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Figure 11. Analytical solution to simplified system (6)—(10) for the initial conditions x(0) = 1 and
dx/dt(0) = 0. The vertical lines show nominal times at which the motion enters and exits the two
resonant tongues (cf. Figure 5).

Figure 12. Maximum values of x as a function of initial condition phase y for simplified system (6)—(10).
The curves marked A and B refer to the local maximum values of x associated respectively with the first
and second resonant tongues, cf. Figure 11. The curve marked B/A shows the ratio of these maximum
values and thus represents the amplification which occurs in the second tongue. Results obtained from
equations (13),(21), being the analytical solution to equations (6)—(10). When comparing with Figure 6,
note the difference in scale of vertical axis.
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Now, however, because of the simplified nature of the system presented in Figures 11
and 12, we can understand why the amplification of the second tongue shows little response
to a change in initial condition phase y. The reason is that the solution (21) in the first
tongue consists of both an exponentially growing term and an exponentially decaying term.
Although both terms are typically present when the constants ¢; and ¢4 are computed at
t = 450 (by requiring continuity in x and dx/dt), the ¢, term will be greatly diminished
at t = 550 when the motion leaves the neighborhood of the first tongue. Neglecting the c,4
term, we obtain the following approximate expressions for x and dx /dt:

€t wt . ot
X = c3exp o cos7 —s1n7 R (22)

dx wC; et . ot 4 wt 23)
—_— = ——-2¢ —_— Sin — COS — .
dr 2 P\ 2g 2 2

From these expressions we can see that the phase of the solution upon exiting the neigh-
borhood of the first tongue, i.e. the ratio of dx/dt to x, is independent of c¢; and ¢4, and it
is these constants which carry dependence on the original initial conditions. This explains
why the amplification associated with second tongue generally shows no dependence on y .
However, if the original initial conditions are such that c; is zero, or is nearly zero, then the
¢4 term cannot be neglected and the above argument is not applicable.

4. EFFECT OF «; ON THE SIMPLIFIED SYSTEM

The effect of the initial conditions has been related to the effect of a temporary “unstable
manifold” in each resonance tongue which generally causes the phase upon exit from the
first resonant tongue to be independent of the initial conditions. We now consider the effect
of varying the respective a; on the amplification in each resonant tongue. In order to do
so we need to generalize the simplified system (6)—-(10) which referred to equation (4) to
a corresponding system which refers to equation (5), i.e. which allows the a; to be varied
as parameters. Choosing the parameters ¢ = 0.5, ¢ = 0.1 and 4 = 0.1 as before, our
simplified system becomes

x"+(0.54+0.001)x = 0 for 0 <t <500—50a, 24)
xX"+04+01la,cos2t)x = 0 for 500—50a; <t < 500+ 50a;, (25)
x"+(0.540.001)x = 0 for 500+ 50a; < < 1500 — 50a,, (26)
x"+24+0.1 a,cos 2\/51‘))6 = 0 for 1500 —50a, <t < 1500 + 50a,, (27)
x"+(0.54+0.001)x = 0 for 1500+ 50a, < t. (28)
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Figure 13. Maximum value of x as a function of the coefficient of the parametric excitation in the second
resonance tongue a,. The initial condition is chosen as x(0) = 1 and dx/dt(0) = 0. The curves
marked A and B refer to the local maximum values of x associated respectively with the first and second
resonant tongues. The curve marked B/A shows the ratio of these maximum values and thus represents
the amplification which occurs in the second tongue. Results obtained from the analytic solution of the
simplified system (24)—(28) with o; = 1. When comparing with Figure 7, note the difference in scale of
vertical axis.

For brevity we omit the analytic solution of these equations, which are entirely analogous
to that presented above for equations (6)—(10). Using this solution, the response of the sim-
plified model was studied for two cases: (a) a; was held fixed at 1 while a, was allowed
to vary from 0.1 to 2; (b) a, was held fixed at 1 while «; was allowed to vary from 0.1 to
2.5. This range, which is different from that used in the analysis of the original model, was
chosen to show the similarity in the qualitative features of both systems.

The variation in the amplification of the simplified model (shown in Figures 13 and 14)
shares several key features with the original equation. First, both show that for small val-
ues of a;, the amplification in the respective resonant tongue is approximately one. If a; is
small then the first resonance tongue has little effect on either the phase or the amplification
because there is not enough time for the exponentially decaying term to die out (thus giving
rise to an output phase which is largely invariant to initial conditions) and there is not enough
time for the exponentially increasing term to grow, i.e. not enough time for significant am-
plification of the motion. Secondly, both Figures 13 and 14 show that as the respective a; is
varied, the growth is not monotonic, but rather exhibits local maxima and minima, indicating
that the effect of the resonance tongue is not solely dependent on its width.

Analysis of the simplified model can explain the presence of the local extrema in the
amplification curves. A plot of the exit-to-entry ratio of the vibration amplitude (based on
the a;-dependent version of equation (21)) versus the phase at entry shows similar features
to the curve A. The minimum amplification occurs when the c¢; coefficient goes to zero, i.e.

when the entry phase to the first resonance tongue is ¢; &~ arctan (% tan (% — %)) where
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Amplification

Figure 14. Maximum value of x as a function of the coefficient of the parametric excitation in the first
resonance tongue o;. The initial condition is chosen as x(0) = 1 and dx/dt(0) = 0. The curves
marked A and B refer to the local maximum values of x associated respectively with the first and second
resonant tongues. The curve marked B/A shows the ratio of these maximum values and thus represents
the amplification which occurs in the second tongue. Results obtained from the analytic solution of the
simplified system (24)—(28) with a, = 1. When comparing with Figure 8, note the difference in scale of
vertical axis.

t, corresponds to the time that the motion enters the associated resonance tongue. Since the
remaining term is exponentially decaying, the amplitude upon exit from the resonant tongue
is less than the amplitude at entry, i.e. de-amplification occurs.

So how is this associated with the parametric excitation coefficients a;? Consider first
the constant o; case. The amplification in the second tongue will be minimum for a certain
critical input phase. But the phase at entry to the second resonance tongue is the sum of the
phase upon exiting the first resonance tongue (which does not depend on a, in the simplified
model) and the net change of phase accumulated during the nonresonant motion between
exiting the first resonance tongue and entering the second resonance tongue. But the latter
motion is primarily a rotation, the phase accumulation of which depends on the time between
the exit from the first resonance tongue and the entry into the second resonance tongue,
which, from equation (26) depends on a,.

A similar explanation can be used for the variation observed when « is held fixed and
a1 is allowed to vary. The time when the motion hits the first nominal resonance tongue
boundary will vary with a; consequently the phase at entry to the first resonance tongue will
vary. For the special value for which the entry phase coincides with the critical value, the
amplification is minimized. Each critical entry phase value corresponds to the underlying
temporary ‘“stable manifold” in the resonance tongue. So we see that the variation of the
amplification with initial condition phase y and the parametric excitation coefficients a; are
related to the same feature.

Downloaded from http://jvc.sagepub.com at CORNELL UNIV on September 24, 2009


http://jvc.sagepub.com

SLOW PASSAGE THROUGH MULTIPLE PARAMETRIC RESONANCE TONGUES 1595

Figure 15. Contour plots of the maximum value of x (i.e., point B in Figure 11) as a function of the
coefficient of the parametric excitation in the first resonance tongue a; and the initial condition parameter,
y . Results obtained from the analytic solution of the simplified system (24)—(28) with a, = 1.

One major difference between the original equation (5) and the simplified system (24)-
(28) can be seen in the plots for constant a;. In the simplified model, Figure 13, the am-
plification in the first resonant tongue, curve A, is a constant regardless of the value of 5.
However, the numerical integration of equation (5), Figure 7, shows a variation in the am-
plification in the first resonant tongue, curve A. This indicates that, in the original equation,
the parameter coefficient o, of the second resonance tongue influences the amplification
characteristics of the first resonance tongue. This should come as no surprise to the reader;
there are no real resonances in equation (5). The dynamics of the system as it passes through
the first “resonance tongue” is dependent on the coefficient of parametric excitation in the
second tongue a, and conversely, during passage through the second “resonance tongue”,
the response is influenced by the coefficient of parametric excitation in the first tongue a;.

To see the relationship between amplification and parameters «; and initial condition
phase y, contour plots (Figures 15 and 16) were generated. Here again, there is a great
similarity between the simplified model results and the results based on numerical integration
of the original equation (5). The curve of minimum amplification in the y -a; plane does not
coincide with the a; = 0 line as it would if amplification depended only on the width of the
resonance tongue. In Figure 16, the minimum amplification line is parallel to the y = 0.
This means that for o fixed and a, varying, the maximum amplification takes place for the
same initial condition. This is because the motion becomes greatly de-amplified in the first
resonance tongue since it is caught on the “stable manifold”. The fact that the minimum
amplification curve is parallel to the a, axis when a; is fixed indicates that the simplified
model behaves as if a; has no effect on the dynamics of the first resonance tongue, a property
which, as discussed above, is not true for the original equation (5), as can be seen from its
analogous contour plot (Figure 10).
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Figure 16. Contour plots of the maximum value of x (i.e., point B in Figure 11) as a function of the
coefficient of the parametric excitation in the second resonance tongue a, and the initial condition
parameter, y . Results obtained from the analytic solution of the simplified system (24)—(28) with a; = 1.

S. THREE TONGUES

We extend our foregoing discussion of slow passage through two-tongue systems by consid-
ering the following three-tongue system:

d*x

prel + (0 + €(cos2r + cos 232t + cos24/3t))x =0 where 6 =0 + e ut.  (29)

Here the forcing frequencies have been chosen so that the tongues are centered respectively
at = 1,2 and 3. Figure 17 shows the results of numerical integration of equation (29) in
which 0 = 0.5, ¢ = 0.1 and ¢ = 0.1 for the initial conditions x(0) = 1 and dx/d¢(0) = 0.
Figures 18 and 19 show the maximum values of x as a function of the initial condition phase
y . Examination of these Figures shows that, as one might expect, in general each additional
resonance tongue produces additional growth. However, as a study of Figure 18 shows, the
total amplification can be controlled and even minimized to the point of de-amplification
by choosing the initial-condition phase so that the phase upon entering the first tongue is
appropriately selected. From Figure 19 we see that in general the amplification in the second
and third tongues is relatively unaffected by the initial condition phase due to the saddle-like
nature of the flow inside the first tongue, as discussed above. An exception occurs when
the spacing between the tongues is such that the motion happens to enter one of the tongues
along its “stable manifold”.
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Figure 17. Numerical integration of equation (29) for ¢ = 0.5, ¢ = 0.1, x# = 0.1 and for the initial
conditions x(0) = 1 and dx/dt(0) = 0. The vertical lines show nominal times at which the motion enters
and exits the three resonant tongues. The letters A,B and C refer to the local maximum values of x
associated respectively with the first, second and third resonant tongues, cf. Figure 6.

6. CONCLUSION

Through numerical integration we found that the two-tongue Mathieu equation can exhibit a
wide range of amplification and de-amplification for varying a; parameter values and initial
conditions. Using a simplified model of the system, we showed that this feature is dependent
on a temporary stable—unstable manifold structure which causes almost all motions to exit
the first resonance tongue at a fixed phase for given parameters a;, o, ¢ and €. (This assumes
that the first tongue is sufficiently wide, i.e. that a is sufficiently large.)

In situations where it is desirable to minimize the growth of the solution after a slow
passage through a multi-tongue system, de-amplification may be induced by choosing the
initial conditions and the a; parameters appropriately. In the case of a system which has only
a single tongue, it is possible to minimize amplification by choosing the initial condition
phase y appropriately. In systems with two or more tongues, adjusting the initial condition
phase will not in general permit de-amplification to occur in any but the first tongue. How-
ever, in such a case we may adjust the relative forcing amplitudes a; (i = 2, 3, ...), which
will effectively control the phase of the solution at the entrance to the i’" tongue, and which
may therefore be used to minimize the amplitude of the final response.

As an example of this process, we consider the three-tongue system:

d2

d_t); + (0 + €(cos 2t + a; cos 232t + 0.3 COS 2\/§t))x =0 where d=0 +€ut (30)
in which e = 0.5, ¢ = 0.1 and # = 0.1. Equation (30) is a generalization of the previously
considered three-tongue system (29) in which the coefficients a, and a3 of (30) were taken
as unity in (29). Based on Figure 19, we choose the initial condition phase y ~ 0.37, giving
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Figure 18. Maximum values of x as a function of initial condition phase y for equation (29) with ¢ = 0.5,
€ =0.1 and ¢ = 0.1. The curves marked A, B and C refer to the local maximum values of x associated
respectively with the first, second and third resonant tongues, cf. Figure 17. Results obtained by
numerically integrating equation (29).

B/A |

C/B

@

0 1 2 3 .Y 4 5

Figure 19. This Figure is an enlargement of the lower portion of Figure 18, and includes two additional
curves. The curve marked B/A shows the ratio of maximum values B and A, and thus represents the
amplification which occurs in the second tongue. The curve marked C/B shows the ratio of maximum
values C and B, and thus represents the amplification which occurs in the third tongue.
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Figure 20. Numerical integration of equation (30) fore = 0.5, ¢ = 0.1, u = 0.1, a, = 1, a3 = 1
and for the initial conditions x(0) = cosy = 0.93233, dx/dt(0) = siny = 0.36162. The vertical lines
show nominal times at which the motion enters and exits the three resonant tongues. By selecting the
initial-condition phase y = 0.37, de-amplification has been achieved in the first tongue, but not in the
second or third tongues. Note the difference in vertical scale compared to Figure 17.
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Figure 21. Numerical integration of equation (30) fore = 0.5, ¢ = 0.1, u = 0.1, a, = 0.88, a3 = 0.9875
and for the initial conditions x(0) = cosy = 0.93233, dx/dt(0) = siny = 0.36162. The vertical lines
show nominal times at which the motion enters and exits the three resonant tongues. By selecting both
initial condition phase y = 0.37 and the parameter o, = 0.88 and a3 = 0.9875, de-amplification has
been achieved in all three tongues. Note the difference in vertical scale compared with Figure 20.
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the initial conditions x(0) = cosy = 0.93233, dx/dt(0) = siny = 0.36162. This choice
achieves de-amplification in the first tongue, but not in the second or third tongues. See
Figure 20.

In order to achieve de-amplification in all three tongues, we again choose the initial
condition phase y as 0.37, and in addition we choose the parameters a, = 0.88 and a3 =
0.9875, values obtained by numerical experimentation. The result is shown in Figure 21.
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