


 How to Pump a Swing
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 We model a playground swing as a slightly elaborated simple pendulum. In this
 model, the term pumping describes a repeated change in the rider's position and/or
 orientation relative to the suspending rope or rod. Pumping can gradually increase
 the amplitude of the swinging. We will describe two ideal models for pumping a
 swing, based on observations of schoolchildren at play [13] and on ideas from 30
 years of papers in the American Journal of Physics [1?6, 9-11].

 Our idealization of pumping from a standing position is that the rider crouches at
 the high point of a swing and then suddenly stands up as the swing passes its lowest
 point. The rider is thus effectively lengthening the pendulum at the high points of the
 swing and shortening the pendulum at the low points. This can be done both on the
 forward and on the return cycle. The analysis will show that on each croLich-stand
 cycle the swing gets a boost in energy from the rider.

 Our idealization of seated pumping is quite different. It is based on a sudden
 rotation of the rider's body with respect to the SLipport rope, when the swing mo-
 mentarily comes to a stop at its highest points. These rotations directly increase the
 amplitude of the swing's oscillation by lifting the rider slightly above the previously
 highest level.

 After modeling these two idealized pumping strategies using differential equations,
 we will compare them. Our main conclusion is that seated pLimping is the better
 strategy at low amplitudes, but above a certain amplitude standing is more effective.
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 This will come as no surprise to experienced swing riders, but the argument provides
 a nice example of how modeling and qualitative analysis with differential equations
 can lead to a deeper understanding of a familiar system.

 Pumping from a Standing Position

 The pumped swing is modeled as a pendulum with variable length L. The rider is
 modeled as a point mass ra, and L is the distance from the rider's center of mass
 to the fixed swing support point O. Conservation of angular momentum for a point
 mass undergoing plane motion is

 dH

 ~dkt
 = iV,  (1)

 where H is the angular momentum of the body about O, and N is the net torque
 about O due to all forces acting on the point mass [7]. In our case H is raL20 and
 the torque about O due to the gravitational force is the product of the transverse
 component of this force, ? mg sin cj), and the lever arm L. The torque about O due
 to the tension T in the ropes is 0 (Figure 1). Thus, after dividing out the mass, we
 have the equation of motion

 d_

 dt  \L2(j)\ = ?gLsmc  (2)

 As the rider stands or crouches, the effective length L of the pendulum varies with
 time; however, as the rider does not decide when to change his position by looking
 at his watch, the length of the pendulum is not well modeled as an explicit function
 of time L = L(t). Instead, the rider modifies his stance in accordance with the
 position and velocity of the pendulum. Therefore, we model the pendulum length
 as an autonomous function of the state of the pendulum; that is, L = L(0, (j)).

 Following Tea and Falk [11], we assume that the rider squats for the first half of
 each swing of the pendulum, then suddenly stands up as the swing passes through
 0 = 0 and remains standing for the upward part of the motion. When the pendu?
 lum reaches its maximum height and comes to rest instantaneously, the rider again
 squats and repeats the forcing cycle, this time with the swing moving in the opposite
 direction (Figure 2).

 Suddenly standing up causes a decrease in L, and squatting causes an equal
 increase in L. We mathematically model the decrease in L when 0 ? 0 as beginning
 with the rider in a squatting position when t = t0 and ending at a time At later with
 the rider standing upright, where \(j)\ < e for t0 < t < t0 + At. Integrating equation

 mg cos cf)

 Figure 1. Geometiy and free-body
 diagram of a swing pumped from the
 standing position.
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 Figure 2. Pumping strategy for a standing rider.

 (2) over [t0,t0 + At] gives

 ^stand 0stand ^squat 0squat
 fto

 Jt0

 to+At

 gL sin <j)dt.

 Since |sin0| < e, the integral on the right-hand side is O(e), so as e ?> 0 we have

 r2 i+ _ 7-2
 ^stand V ^squat  0.

 To simplify the notation for the angular velocities just before and just after the de-
 crease in L caused by the rider's suddenly standing up, we write (j)~ for ^Squat = <t>(to)

 and (j)+ for 0stand = <K^o + At). Thus the rider's standing up as (j) passes through 0
 produces the following boost in the angular velocity 0:

 6+= (h^\ 0".
 \ ^stand /

 (3)

 What is the effect of the increase in L caused by returning to a squat when 0^0
 at the high points in the motion? Assume the rider is standing at some time ti, and a
 bit later at time ti + At the rider is fully crouched, with |0| < e for t\ < t < t\ + At.
 Then the values of <j> before and after the rider returns to a crouch differ by no more
 than 2e. In the limit, therefore, as e ?? 0, returning to the squatting position produces
 no increase or decrease in the angular velocity, and hence in the kinetic energy, of
 the pendulum. To see whether the swing angle is affected, we integrate equation
 (2) from ti to some time t < t\ + At and obtain

 X2(t)0(i)-Ls2tandM)  /'  g L sin (j)dr.

 Dividing by L2(t) and integrating again, this time from t\ to t\ + At, gives

 /?ti+At i pt /?ti+At / r \2 rti+^t _-? pt
 gL sin (j) dr dt.
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 Figure 3. Phase trajectory for
 standing pumping. Lstand = 2.3,
 ?squat = 2.7, g = 9.8.

 The integral on the left is O(e) and that on the right is (9((At)2); thus, in the limit
 as At and e approach 0, we have 0+ = 0~. So, as physical intuition might suggest,
 the rider's sudden squatting motion does not affect the angular velocity or the angle
 of the swing. This conclusion is confirmed in Figure 3, which shows the results of a
 numerical integration of equation (2) for a rider following the strategy indicated in
 Figure 2.

 In each forcing cycle, the swing gains some energy when the rider rises from a
 squat as the swing passes through its vertical position. When the reverse move is
 made, however, from standing to squatting, which occurs when the swing has 0
 angular velocity, some potential energy is lost, but it is not as much as the potential
 and kinetic energy gain from standing up.

 Pumping from a Sitting Position

 In our idealization of pumping a swing while sitting down, the seated rider changes
 the orientation of her body with respect to the rope, causing an increase in system
 energy. This may change the distance from the support point O to the rider's center
 of mass, but in our current model we will ignore this effect and consider only the
 effect produced by rotation of the rider's body. We model the seated rider as a barbell
 of fixed length 2a attached at its center to a pendulum arm of constant length L,
 with the barbell (representing the rider's body) making a variable angle 9 with the
 current direction of the pendulum arm (Figure 4).

 Figure 4. Model of a swing pumped
 from the seated position.
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 Figure 5. Strategy for pumping while seated.

 The governing differential equation in this case is

 d

 dt  (L2 + a2) 0 + a29 = -gL sin 0.  (4)

 This equation may be derived using (1) by writing the angular momentum as a sum
 of two terms: the angular momentum of the system concentrated at the center of
 mass, mL2(j), plus the angular momentum of the system about its center of mass,
 raa2(0 + 6>).

 As before, we must look for an autonomous forcing function 0(0,0). Observing
 children at a local school playground led us to the following strategy for pumping a
 swing while seated. At the start of the forward motion, when the swing is at its highest
 point, the rider throws her head back and feet forward. She holds this position until
 the swing reaches its opposite extreme position and comes to rest instantaneously,
 so 9 ? 90? while 0 > 0. Then, before the swing begins its return trip, she pulls her
 head and torso forward and tucks her feet under the seat, holding this position for
 the entire return trip, so 9 ? 0 while 0 < 0. Then the forcing cycle is repeated; see
 Figure 5.

 We mathematically model the jump in 9 from 0? to 90? as beginning just after time
 0 and ending by time At, during which time interval |0| < e. Integrating (4) from 0
 to t < At gives

 (L2 + a2) 0(t)-0(O) +a2 0(t)-0(0)

 We then integrate again, from 0 to At, and obtain

 i / si
 Jo

 gL / sin <pdr.

 L2 + a2) 0(At) - 0(0) - 0(O)At  <9(At) - 0(0) - 0(0)At
 At

 -gL / / si
 Jo Jo

 sin d> dr dt.
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 Figure 6. Phase trajectory for seated
 pumping. L = 2.5, a = 0.5, g = 9.8.

 The integral on the right side is O ((At)2), and we know that |0(O) | < e and 0(0) = 0,
 so we conclude that in the limit, as At and e approach 0,

 (L2 + a2) A0 = -a2A6.

 Thus, by suddenly increasing her body angle 6 by 7r/2 at the start of the forward
 motion, just when the swing is at its highest point, the rider increases the maximum
 angular displacement of the pendulum from the previous maximum value 0(0), a
 negative angle, to 0(0) ? a27r/ [2 (L2 + &2)], a negative angle with larger absolute
 value. Denoting the previous amplitude |0(O)| by 0~ and the new amplitude by 0+,
 we have

 a27r

 2 (L2 + a2) *
 (5)

 When the rider pulls herself upright at the start of the return motion, so A0 =
 -tt/2 and 0(0) > 0, we have 0(At) = 0(0) + a2ir/ [2 (L2 + a2)], so again the
 amplitude is increased in accordance with (5). That is, on each half-cycle to or fro
 the rider's sudden rotation of her body increases the amplitude of the swing by an
 approximately constant amount (Figure 6).

 The Two Pumping Styles Compared

 To compare standing pumping with seated pumping, we need to find how much
 the amplitude increases on each cycle.

 During any time intervals when the standing rider's position is unchanged, energy
 is conserved; thus

 -L202 ? gL cos 0 = constant. (6)

 Recall that our rider's strategy is to stand up when 0 reaches 0 and then squat when
 0 reaches 0. We apply (6) to a time interval from just after the rider stands up to just
 before she squats:

 ? stand?2 - 5-kstand COS (f>+ = -?2tand  i>+)2 -gU 'stand  cosO,
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 where 0+ represents the amplitude of the motion after the rider stands up. Dividing
 by gistand, we obtain

 -^stand / ' N
 1 ? COS (

 2<?  (</>+) ? (7)
 The amplitude that would have been achieved if the rider had not stood up, which
 we denote by 0~, is found in the same way by applying (5) to the interval starting as
 the rider crouched, when 0 = 0, and ending just before she stood up, when 0 = 0:

 -, ,? -^squat
 I ? COS 0 =

 2<?

 Dividing (7) by (8) gives us

 (<r)2- (8)

 1_C0S(A+ _?stand(>) _ /Lsquat\3
 1-COS0- r (X-\2 V^stand/

 -^squat

 where we have used (3). If we approximate cos0 by 1 ? 02/2 in (9), we obtain

 T \3/2 -^squat \

 ^stand /
 (10)

 Comparison of (10) and (5) shows that standing pumping multiplies the swing's
 current amplitude by a factor larger than 1, whereas seated pumping adds a fixed
 positive quantity to the current amplitude. Thus for small amplitudes, seated pumping
 is more effective, but for larger amplitudes standing pumping works better.

 A Combined Model

 Since people have upper bodies more massive than their lower legs, let's add realism
 by attaching the barbell representing the rider's body to the pendulum arm at a point
 away from the barbell's center. If we then apply a strategy of body rotation, we have
 a model that includes effects of both rotational motions of the rider and changes in
 the effective length of the pendulum. A similar model was proposed by Case and
 Swanson [31, but they assumed a nonautonomous forcing function 9 = 0n coscjt. We
 define 9 and 0 as in the previous model, and the governing differential equation is

 d_

 ~dt
 (h + h) 0 + h0 ~ (LN cos 9)(0 + 20)1 = -2L#sin0 + A^sin(0 + 9) (11)

 where I\ = 2L2, I<i ? b2 + c2, and N = c ? 6, and where b and c are the distances
 from the ends of the barbell to its attachment point. A derivation of this equation
 can be found in [31- Note that (11) reduces to (4) in the case when a = b = c. Again
 we use an autonomous function to describe the angle 9 = 0(0, 0). In this combined
 model, a change of 0 when 0 = 0 causes a direct change in the amplitude, as in our
 simplified model of seated pumping, as well as an effective change in L because the
 distance from the support to the center of mass of the rider now depends on 0.

 We will not give the details ofthe analysis here; instead, we will simply describe the
 two natural pumping strategies and the results of numerical simulation of the model.
 Our earlier strategy for pumping from a sitting position?setting 0 = 90? when 0 > 0
 and setting 0 = 0? when 0 < 0?produces a boost in 0 at either extreme point, as
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 Figure 7. Phase trajectoiy for seated rider in the 1:1
 pumping strategy. L = 2.5, b = 0.4, c = 0.6, g = 9.8.

 in the earlier symmetric barbell model (Figure 7). Since this strategy produces one
 boost in the amplitude with each to or fro swing of the pendulum, we may call it
 the 1:1 pumping strategy.

 A combination of the sitting-pumping and standing-pumping strategies is also
 possible with this model:

 1. Set 9 = 90? on the first half of each forward swing, and suddenly change to
 6 = 0? as the pendulum passes through 0 = 0.

 2. On the return swing, set 0 = 90? at the highest point and maintain this for the
 first half-swing, then again suddenly change to 6 = 0? as the pendulum passes
 through 0 = 0 (Figure 8).

 This strategy gives a jump in the angular velocity 0 when 0 = 0, because the
 rider's sitting up at these times decreases the effective length of the pendulum just as

 3

 3
 Figure 8. The 2:1 pumping strategy for a seated rider.
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 Figure 9. Phase trajectory for seated rider in the 2:1
 pumping strategy. L = 2.5, b = 0.4, c = 0.6, g = 9.8.

 standing up would, only by a lesser amount. Numerical simulation of the off-center
 barbell model with a rider using this 2:1 strategy shows that the sudden rotation of
 the rider's body to 9 = 90?, when 0 = 0 at the start of the forward motion, causes a
 small increase in the angular displacement 0, just as it did in the symmetric barbell
 model (Figure 9). But employing this same rotation as the backward motion begins
 (when 0 is at its local maximum) now produces a small decrease in 0. This is to be
 expected, because this rotation is the opposite of that used by the seated rider in
 the symmetric model at the corresponding time. Formerly, the rider pulled herself
 up into an upright position at this time (Figure 5); but now she lies back, so her
 rotational motion now decreases 0 a bit.

 Numerical simulation confirms another result that our earlier analysis leads us to
 expect: The 1 : 1 strategy works best at small amplitudes, while the 2 : 1 strategy
 becomes more efficient once the amplitude has grown sufficiently large. We find
 switching from 1:1 to 2:1 pumping while seated in a real swing awkward, but we
 are optimistic that such a strategy could provide large amplitude motions. Perhaps
 some energetic readers will try this out in their local playground and let us know!

 Suggestions for Further Research

 The models of swing pumping discussed here leave many possibilities for further
 investigations. Here are a few.

 Exercise 1. Find the amplitude at which it is optimal for a given rider to switch from
 1:1 to 2:1 forcing, in the off-center barbell model.

 Exercise 2. We have neglected damping in this work. Physical sources of dissipation
 could include both air resistance and friction in the swing support. Using numerical
 integration, explore the effects of damping: Will it limit the maximum amplitude of
 oscillation for a given pumping strategy?

 Exercise 3- Evaluate the effects of non-rigid swing supports (for example, braided
 nylon ropes hung from a flexible tree branch) by making a model that includes these
 features and comparing it to the rigid support model [12].
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 Exercise 4. Investigate the energy cost of these strategies. Although you may not be
 tired after swinging, you did expend some energy to pump the swing. And even
 though the net work of pumping is equal to the net change in the swing energy,
 some of the pumping work involves absorbing energy. But people's muscles (unlike
 generators) cannot store up work that goes into them. Although the details of muscle
 energetics are not well understood [8], a reasonable question to explore might be:
 Which strategy gives the biggest change in amplitude per unit of positive work?

 Conclusion. We have described two kinds of swing pumping strategies. For the
 idealized standing mechanism, the energy increase comes from the extra work of
 standing when the centripetal acceleration is high. It, and its modification in the 2:1
 strategy for seated pumping, increases the amplitude of the swing in proportion to
 the present amplitude and thus leads to a geometrie increase in swing amplitude.
 For standard 1:1 seated pumping, the energy input comes from work against gravi?
 tational potential energy at the swing endpoints. The amplitude increase per cycle is
 independent of amplitude, so it leads to an arithmetic increase in swing amplitude.

 The ideal sitting strategy we proposed requires the transmission of a torque by
 the rope. But ropes are generally idealized as being incapable of carrying a torque.
 To be purists, we could say we are modeling swings that are suspended by rigid
 rods, but this would negate our claim to any playground realism. One can think of
 the rope or rod as merely a mediator of force and torque between the rider and
 the top hinge. Although we have not made the comparison in detail, we believe
 that the visible kinking of a playground swing rope and the consequent rotation of
 the tension force are reasonably approximated by the application of a torque and
 side ways force to the end of a rigid rod.

 Real swinging, both standing and sitting, involves a combination of the two mech-
 anisms described in this paper. Although our model leaves many questions about
 real swinging unanswered, it does explain the tendency of real swing riders to switch
 from sitting to standing, to achieve high amplitude.

 Acknowledgment. We thank Steve Strogatz and John Hubbard for suggesting this problem, and Joe Burns
 for helpful comments.
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