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Abstract. In this paper, we investigate the interaction of subharmonic resonances in the nonlinear quasiperiodic
Mathieu equation,

ẍ + [δ + ε(cosω1t + cosω2t)]x + αx3 = 0. (1)

We assume that ε � 1 and that the coefficient of the nonlinear term, α, is positive but not necessarily small. We
utilize Lie transform perturbation theory with elliptic functions – rather than the usual trigonometric functions –
to study subharmonic resonances associated with orbits in 2m:1 resonance with a respective driver. In particular,
we derive analytic expressions that place conditions on (δ, ε, ω1, ω2) at which subharmonic resonance bands in a
Poincaré section of action space begin to overlap. These results are used in combination with Chirikov’s overlap
criterion to obtain an overview of the O(ε) global behavior of equation (1) as a function of δ and ω2 with ω1, α,
and ε fixed.
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1. Introduction

In this paper, we make use Chirikov’s overlap criterion [2] and the analytic machinery presen-
ted in [7] to investigate the interaction of subharmonic resonances in the nonlinear quasi-
periodic (QP) Mathieu equation,

ẍ + [δ + ε(cosω1t + cosω2t)]x + αx3 = 0. (2)

In particular, we derive analytic expressions that place conditions on (δ, ε, ω1, ω2) at which
subharmonic resonance bands in a Poincaré section of action space begin to overlap. We
assume that the parametric perturbation, ε (cosω1t+cosω2t), is small and that the coefficient
of the nonlinear term, α, is positive but not necessarily small. In this case, we may set α = 1
without loss of generality, because a rescaling of x can absorb α into the scaling coefficient.

The integrable structure of the unperturbed (ε = 0) Hamiltonian induced by the nonlinear
QP Mathieu equation,

H(x, y) = 1

2
y2 + 1

2
δx2 + 1

4
αx4, (3)

provides a framework for developing an analysis of the perturbed orbit structure. Lie transform
perturbation theory is utilized to single out perturbation harmonics of the QP Hamiltonian,
terms of the Hamiltonian that lead to subharmonic resonances associated with orbits in 2m:1
resonance with a respective driver. The resulting Hamiltonian is then transformed to ‘slow
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flow’ coordinates, yielding the so-called ‘resonance Kamiltonian’ whose level curves corres-
pond to invariant curves of the associated Poincaré map. The resonance Kamiltonian enables
one to derive analytic expressions for features of associated resonance bands in Poincaré
sections of action-angle space – like the locations of bounding separatrices of resonance
bands – suitable for the application of Chirikov’s overlap criterion. The transformation of
the unperturbed, nonlinear system to action-angle variables involves elliptic functions. Our
investigation, therefore, is not restricted to a neighborhood of the origin.

Nonlinear resonances, those associated with orbits in resonance with one or both drivers,
arise when the parametric perturbation is introduced into the unperturbed Hamiltonian. The
phase space for the nonlinear QP Mathieu equation in action-angle coordinates, (�, J ), is
densely filled with resonance bands. They emerge from resonant tori at action values, J , that
satisfy the 3-frequency resonance relation,

n1
ω1√
δ

+ n2
ω2√
δ

= 2m�(J ), (4)

where �(J ) is the frequency (with respect to τ = √
δ t) of the resonant orbit of the unper-

turbed system. Furthermore, solutions exhibit either 3-frequency QP behavior, corresponding
to invariant tori not destroyed under the perturbation, or are locked within the domain of a
resonance band.

The simultaneous influence of two or more perturbation harmonics of the Hamiltonian is
associated with the overlap of the corresponding resonance bands. This generally leads to
motion that is irregular in a large region of phase space, because the overlap of resonance
bands enables trajectories to move from one resonance band to another. The prediction of
such overlap can be made by applying Chirikov’s overlap criterion and, accordingly, we derive
analytic expressions that place conditions on (δ, ε, ω1, ω2) at which subharmonic resonance
bands in a Poincaré section of action space begin to overlap.

Chirikov’s overlap criterion is a heuristic scheme for estimating the size of the perturbation
parameter – in this case ε – at which the transition between local and global chaos occurs in a
Hamiltonian system. This is defined to occur when the two primary resonance bands in phase
space first begin to overlap, or equivalently, when the respective separatrices that bound these
regions first touch. Perturbation methods provide the location and size of the two primary
resonance bands in phase space as a function of ε, a calculation that is performed for each
resonance band independently. The critical value of ε at which the transition from local to
global chaos ensues, therefore, is the value of ε at which the corresponding separatrices of
two resonance regions by first touch.

We restrict the proceeding analysis to the interaction of subharmonic resonances associ-
ated with orbits in 2m:1 or 2k:1 resonance with a respective driver, cosω1t or cosω2t , since
resonances associated with a combination of driving frequencies are not visible at the O(ε)
level of analysis. In other words, we consider only resonances that satisfy either one of the
following resonance relations:

ω1

2m
√
δ

= �(Jm), (5)

ω2

2k
√
δ

= �(Jk). (6)
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The interaction of the primary resonances – those associated with orbits in 2:1 resonance with
either one of the two drivers – is of particular interest since resonance bands associated with
higher-order resonances occupy significantly smaller regions of phase space.

We conclude this paper with a summary of the global behavior of the nonlinear QP Mathieu
equation (as a function of δ and ω2 with ω1 set to 1 and ε fixed) and compare it to the behavior
of the associated system linearized about the origin. Regions of instability1 associated with
2:1 resonances between the respective driving frequencies and the natural frequency of the
system are, to leading order, bounded by the transition curves

δ = 1

4
ω2 ± 1

2
ε + O(ε2) (7)

and

δ = 1

4
± 1

2
ε + O(ε2). (8)

The four transition curves given by Equations (7) and (8) partition the δ-ω parameter plane
into nine disjoint regions, as shown in Figure 7 at the end of this paper. We describe the
behavior of solutions of the nonlinear QP Mathieu equation in each region and make gen-
eral comments regarding the similarities and differences of the linear and nonlinear systems.
Detailed analyses of the (linear) QP Mathieu equation can be found in [4–6, 8].

2. Transformation of Hamiltonian for Application of Lie Transforms

The idea underlying the analysis is to assume that resonance bands in phase space are suf-
ficiently separated from one another and to restrict the analysis to a region of phase space
occupied by one. This assumption implies that ω1 and ω2 be sufficiently separated, as well.
The influence of the ‘distantly’ located resonance bands is assumed to be neglible compared
to the influence of the resonance band in the region of analysis.

As stated above, Lie transform perturbation theory is utilized to single out perturbation har-
monics of the QP Hamiltonian, terms of the Hamiltonian that lead to subharmonic resonances
associated with orbits in 2m:1 resonance with a respective driver. The resulting Hamiltonian is
then transformed to ‘slow flow’ coordinates, yielding the resonance Kamiltonian whose level
curves correspond to invariant curves of the associated Poincaré map. Before Lie transforms
can be applied, the QP Hamiltonian will be transformed into action-angle coordinates – via
two canonical transformations – and expanded in a Fourier series. The terms of the Fourier
series are the aforementioned harmonics.

The Hamiltonian induced by the nonlinear QP Mathieu equation, upon scaling time and
space according to τ → √

δ t and x → √
α/δ x, may be written

H(x, y, τ) = H0(x, y) + ε

2δ
x2

[
cos

(
ω1√
δ
τ

)
+ cos

(
ω2√
δ
τ

)]
, (9)

where x and y are canonically conjugate variables and

H0(x, y) = 1

2
y2 + 1

2
x2 + 1

4
x4.

1 A region of instability is defined as the set of parameter values for which the origin is unstable.
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Executing the sequence of canonical transformations,

(x, y) → (�, J ),

(�, J ) → (φ, j),

given by

x(J,�) = X0(J ) cn

(
4K(k)

�

2π
, k

)
,

y(J,�) = −X0(J )

√
1 +X2

0 sn

(
4K(k)

�

2π
, k

)
dn

(
4K(k)

�

2π
, k

)

and

J (j) = 2

3

√
1 + 2j (−Ẽ(j) + (1 + j)K̃(j)),

�(j, φ) = φ√
1 + 2j K̃(j)

,

puts the Hamiltonian in terms of the action-angle coordinates (φ, j); details of the derivation
of these two canonical transformations can be referenced in [6] or [7]. The terms Ẽ(j) ≡
2E
(
k(j)

)
/π and K̃(j) ≡ 2K

(
k(j)

)
/π are the normalized, complete elliptic integrals of the

first kind as functions of j ; k is the elliptic modulus. The elliptic modulus is usually determ-
ined by initial conditions, and in this case, k is explicitly defined in terms of the amplitude of
motion, x(0) = X0. When viewed as a function of j , k(j) satisfies

k2 def=
1
2X

2
0

1 +X2
0

= j

1 + 2j
.

The transformed Hamiltonian in the (φ, j) coordinate system is, thus,

H(φ, j, τ) = j + j 2 + ε H1(φ, j, τ ),

where

ε H1(φ, j, τ ) = ε

δ
j cn2

(
K̃(j)

J ′(j)
φ, k

)[
cos

(
ω1√
δ
τ

)
+ cos

(
ω2√
δ
τ

)]
(10)

and J ′(j) = dJ/dj is defined via the canonical transformation, (�, J )→ (φ, j).
The final step of this procedure is the expansion of the Hamiltonian (or more precisely the

elliptic function cn) in a Fourier series. When expressed as a sum of trigonometric terms, Lie
transform perturbation theory becomes directly applicable: individual harmonics leading to
resonance bands in phase space are explicitly identified.

The representation of the cn function as a Fourier series is given in [1] by Byrd and
Friedman:

cn(u, k) = 2π

kK

∞∑
n=0

gn(k) cos
[
(2n+ 1)

πu

2K

]
, (11)
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where

gn(k) = 1

2
sech

[(
n+ 1

2

)
π
K ′

K

]
,

K ≡ K(k), and K ′ ≡ K(
√

1 − k2). For the problem at hand, the expression for cn in the
(φ, j) coordinate system with the arguments given in Equation (10) becomes

cn

(
K̃(j)

J ′(j)
φ, k

)
=

∞∑
n=0

Gn(j) cos

[
(2n+ 1)

φ

J ′(j)

]
,

where the new coefficient, Gn, is defined by

Gn(j) = 2π

k(j)K(k(j))
gn(k(j)) = 4

k(j)K̃(j)
gn(k(j)). (12)

Note thatGn decreases roughly exponentially with increasing n. Squaring the above expansion
for cn, reducing trigonometric terms, and collecting harmonics, we obtain

cn2

(
K̃(j)

J ′(j)
φ, k

)
= G0(j)+

∞∑
m=1

Gm(j) cos

(
2mφ

J ′(j)

)
, (13)

where

G0 = 1

2
(G2

0 +G2
1 +G2

2 +G2
3 + · · ·) ∼ 1

2
− 1

16
j + 3

32
j 2,

G1 = 1

2
G2

0 +G0G1 +G1G2 +G2G3 + · · · ∼ 1

2
− 3

512
j 2,

G2 = G0G1 +G0G2 +G1G3 +G2G4 + · · · ∼ 1

16
j − 3

32
j 2,

...

Inserting this result into the above Hamiltonian and reducing trigonometric terms, we obtain
our sought-after result. The expanded Hamiltonian in the (φ, j) coordinate system is found to
be,

H(φ, j, τ) = j + j 2 + ε H1(φ, j, τ ), (14)

where

ε H1(φ, j, τ ) = ε

δ
jG0(j)

[
cos

(
ω1√
δ
τ

)
+ cos

(
ω2√
δ
τ

)]

+ ε

2δ
j

∞∑
m=1

Gm(j)

[
cos

(
2mφ

J ′(j)
+ ω1√

δ
τ

)
+ cos

(
2mφ

J ′(j)
− ω1√

δ
τ

)]

+ ε

2δ
j

∞∑
k=1

Gk(j)

[
cos

(
2kφ

J ′(j)
+ ω2√

δ
τ

)
+ cos

(
2kφ

J ′(j)
− ω2√

δ
τ

)]

in a form suitable for the direct application of Lie transform perturbation theory.
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3. Application of Lie Transforms

Without loss of generality, we shall focus our analysis on the resonance band associated with
subharmonic periodic orbits in 2m:1 resonance with the first driver; i.e., restrict j to a neigh-
borhood of jm for which ω1/2m

√
δ = �(jm). The analysis for resonance bands associated

with subharmonic periodic orbits in resonance with the second driver is identical. As outlined
in [7], a Lie-generating function W = W1 + O(ε) can be found so that the near-identity
canonical transformation (φ, j)→ (Q,P ),

φ = Q+ ε ∂W1

∂P
+ O(ε2),

j = P − ε ∂W1

∂Q
+ O(ε2),

yields the following Kamiltonian valid only in a neighborhood of the resonance band under
investigation in the (Q,P ) coordinate system:

K(Q,P, τ) = P + P 2 + ε

2δ
PGm(P ) cos

(
2mQ

J ′(P )
− ω1√

δ
τ

)
+ O(ε2). (15)

The Lie generating functionW = W1 +O(ε) defining the corresponding canonical transform-
ation is

W1(Q,P, τ) = PG0(P )√
δ


sin

(
ω1√
δ
τ
)

ω1
+

sin
(
ω2√
δ
τ
)

ω2




+ P

2
√
δ

∞∑
n=1

′ Gn(P )


sin

(
2nQ
J ′(P ) + ω1√

δ
τ
)

ω1 + 2n
√
δ �(P )

−
sin
(

2nQ
J ′(P ) − ω1√

δ
τ
)

ω1 − 2n
√
δ �(P )




+ P

2
√
δ

∞∑
k=1

Gk(P )


 sin

(
2kQ
J ′(P ) + ω2√

δ
τ
)

ω2 + 2k
√
δ �(P )

−
sin
(

2kQ
J ′(P ) − ω2√

δ
τ
)

ω2 − 2k
√
δ �(P )


 ,

where the prime indicates that n �= m. Finally, the time dependence in the Kamiltonian (15)
is removed by performing the canonical transformation (Q,P )→ (ψ, Y ) defined by

P = Y,

Q = ψ + ω1

2m
√
δ
J ′(Y ) τ.

The transformed Kamiltonian in the (ψ, Y ) coordinate system takes the form, up to O(ε2),

Kr(ψ, Y ) = Y + Y 2 − ω1

2m
√
δ
J (Y )+ ε

2δ
YGm(Y ) cos

(
2mψ

J ′(Y )

)
. (16)

In the new coordinate system, the transformed Kamiltonian Kr(ψ, Y ) does not depend
explicitly on time and, therefore, remains constant. This means that the system is conservative
and, hence, integrable. We refer to Kr as the resonance Kamiltonian since we can infer the
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Figure 1. Level curves of the resonance Kamiltonian, Kr , as seen in the ψ-Y plane. The resonance band is
bounded by action values, Y ≈ 1.4 and Y ≈ 2.8.

dynamics of the original system only for action values near and within the resonance band
associated with 2m:1 subharmonic periodic orbits.

Transforming back to the original (x, y) coordinates, level curves of Kr correspond to
invariant curves of a Poincaré map induced by solutions of the nonlinear QP Mathieu equation
(2). For example, Figure 1 presents the level curves of Kr in the ψ-Y plane for m = 1. The
resonance band is bounded by action values, Y ≈ 1.4 and Y ≈ 2.8, and possesses two centers
and two saddle points.

If transformed back to (x, y) coordinates, this band is mapped into the elliptical annulus
centered at the origin in the x–y plane. The Poinaré map shown in Figure 2 illustrates schemat-
ically the predicted result of such a transformation. It was generated by numerically integrating
the nonlinear QP Mathieu equation utilizing the Dynamical System Toolkit, ‘dstool’ [3].

4. Overlap of Resonance Bands

In this section, we apply Chirikov’s overlap criterion to derive analytic expressions that place
conditions on (δ, ε, ω1, ω2) at which subharmonic resonance bands in a Poincaré section of
action space begin to overlap. This generally leads to motion that is quite irregular in a large
region of phase space. Overlap begins when the separatrices of the slow-flow described by Kr
first touch. Our aim is to find the critical value of ε, denoted εc, given δ, ω1, and ω2, which
estimates the onset of overlap.

Chirikov acknowledges that the overlap criterion provides only rough, overestimates for εc
and states the following reasons for any discrepancies:

• Although the phase space is densely filled with resonance bands, the first-order ap-
proximation for the onset of overlap accounts for only the overlap of the two primary
resonance bands. As ε is increased, resonance bands associated with high-order harmon-
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Figure 2. Schematic figure relating Figure 1, level curves of the resonance Kamiltonian in action-angle space, to
the flow in the original (x, y) coordinates via a Poincaré map.

ics, located between the two primary ones, occupy increasing regions of phase space and,
hence, facilitate the overlap.

• The overlap criterion ignores the mutual interaction of resonances since each corres-
ponding resonance band is examined independently. As discussed in [2, section 5.1],
separatrices become distorted as the resonance bands approach one another in phase
space.

• Finally, the finite width of the separatrix layers is not taken into account. The analysis
involving the resonance Kamiltonian treats the bounding separatrices as curves with no
‘thickness’.

We shall now proceed with the application of Chirikov’s overlap criterion to find the critical
value of ε for which the two primary resonance bands begin to overlap. In order to facilitate
the analysis, the following notation is used:

• RBω1(2:1) denotes the resonance band associated with subharmonic periodic orbits in
2:1 resonance with the cosω1t driver, RBω2(2:1) denotes the resonance band associated
with subharmonic periodic orbits in 2:1 resonance with the cosω2t driver, and RBω2(4:1)
denotes the resonance band associated with subharmonic periodic orbits in 4:1 resonance
with the cosω2t driver.

• The resonance band RBω1(2:1) emerges from a resonant torus at an action value, Y1, that
satisfies the resonance relation,

ω1

2
√
δ

= �(Y1), (17)
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RBω2(2:1) emerges from a resonant torus at an action value, Y2, that satisfies the reson-
ance relation,

ω2

2
√
δ

= �(Y2), (18)

and RBω2(4:1) emerges from a resonant torus at an action value, Y4, that satisfies the
resonance relation,

ω2

4
√
δ

= �(Y4). (19)

• The resonance band is bounded by separatrices with minimum and maximum action
values, respectively. The maximum action value acquired by RBω1(2:1) is denoted by
Ymax

1 , and the minimum action value acquired by RBω2(2:1) is denoted by Ymin
2 .

4.1. CASE 1: OVERLAP OF RESONANCE BANDS RBω1 (2:1) AND RBω2 (2:1)

Without loss of generality, assume ω1 < ω2 and fix δ. Since �(Y ) is an increasing function of
Y , it follows that Y1 < Y2, and as dictated by the overlap criterion, the separatrices bounding
the primary resonance bands first touch when the parameters of the system satisfy

Ymax
1 = Ymin

2 .

Equations for the minimum and maximum action values acquired by a bounding separatrix
are derived in [7] and are given by

Ymin = Ym −
√√√√ Ym Gm(Ym)

δ
(

1 − ω

4m
√
δ
J ′′(Ym)

) ε + O(ε) (20)

and

Ymax = Ym +
√√√√ Ym Gm(Ym)

δ
(

1 − ω

4m
√
δ
J ′′(Ym)

) ε + O(ε). (21)

Substituting in m = 1 and G1 = 1/2,

Ymax
1 = Y1 +

√
Y1 ε

2δ
(

1− ω1
4
√
δ
J ′′(Y1)

) ,

Ymin
2 = Y2 −

√
Y2 ε

2δ
(

1− ω2
4
√
δ
J ′′(Y2)

) ,

and setting the resulting expressions for Ymax
1 and Ymin

2 equal, we obtain the following ap-
proximation, ε12, to the critical value, εc, for the onset of the overlap of RBω1(2:1) and
RBω2(2:1):√

ε12

δ
= Y2 − Y1√

Y2/2
1− ω2

4
√
δ
J ′′(Y2)

+
√

Y1/2
1− ω1

4
√
δ
J ′′(Y1)

. (22)
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To test the accuracy of the estimate ε12, consider the case for which δ = 0.20, ω1 = 1,
and ω2 = 1.65. For these parameter values, the resonance bands RBω1(2:1) and RBω2(2:1)
emerge from resonant tori located at the action values

Y1 = 0.168078,

Y2 = 1.651838,

respectively. Substituting Y1 and Y2 into Equation (22), the corresponding estimate for the
critical value of ε is

ε12 = 0.135.

Performing numerical experiments with dstool by which numerically generated solutions are
strobed at times tn = n2π/ω1 and tn = n2π/ω2, the actual critical value of ε is found to be
approximately

ε∗c = 0.085,

predictably lower than the estimates given above but of the same order of magnitude.
Figures 3 and 4 illustrate the growth and overlap of the primary resonance bands for

increasing ε. For fixed parameter values δ = 0.20, ω1 = 1, and ω2 = 1.65, dstool is
utilized to numerically generate Poincaré maps for the nonlinear QP Mathieu equation in
the (x, ẋ) phase space. The resonance bands – occupying elliptical, annular regions in phase
space – are displayed on the same set of axes, although RBω1(2:1) is produced by strobing the
numerically generated solutions at times tn = n2π/ω1, and RBω2(2:1) is produced by strobing
the solutions at times, tn = n2π/ω2. The onset of overlap is readily apparent. Before the two
resonance bands overlap, orbits remain confined to their respective resonance band. However,
when ε ≥ εc, orbits with initial conditions in RBω1(2:1) eventually ‘leak out’ and iterate into
the region of phase space occupied by RBω2(2:1).

4.2. CASE 2: OVERLAP OF RESONANCE BANDS RBω1 (2:1) AND RBω2 (2:1)
FACILITATED BY RBω2 (4:1)

Without loss of generality, assume ω1 < ω2 and fix δ. The resonance band associated with
subharmonic periodic orbits in 4:1 resonance with the cosω2t driver, RBω2(4:1), will occupy
a region of phase space between RBω1(2:1) and RBω2(2:1) whenever Y1 < Y4 < Y2. Since
�(Y ) is an increasing function of Y , this situation occurs precisely when

�(Y1) < �(Y4) < �(Y2),

or equivalently,

ω1 <
1

2
ω2 < ω2.

Under these conditions, RBω2(4:1) may facilitate the overlap of the primary resonance bands,
RBω1(2:1) and RBω2(2:1). That is, if RBω2(4:1) overlaps with RBω1(2:1) and RBω2(2:1) at
ε = ε14 and ε = ε42, respectively, and if RBω1(2:1) overlaps with RBω2(2:1) at ε = ε12, then

ε142 ≡ max {ε14, ε42} ≤ ε12. (23)
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Figure 3. Growth of the primary resonance bands in the nonlinear QP Mathieu equation for δ = 0.20, ω1 = 1,
and ω2 = 1.65. The numerically generated solutions are strobed at times tn = n2π/ω1 and tn = n2π/ω2 for
orbits with intial conditions in RBω1 (2:1) and RBω2 (2:1), respectively. Figure 4 displays the overlap of resonance
bands as ε is further increased.

More precisely, ε14 is defined by the relation

Ymax
1 = Ymin

4 ,

and ε42 is defined by the relation

Ymax
4 = Ymin

2 ,

where expressions for Ymin and Ymax are obtained by equations (20) and (21). Noting that
G1 = 1/2 and G2 = Y/16, and following an analysis similiar to the one given in Case 1, we
find the following expressions for ε14 and ε42:

√
ε14

δ
= Y4 − Y1√

Y 2
4 /16

1− ω2
8
√
δ
J ′′(Y4)

+
√

Y1/2
1− ω1

4
√
δ
J ′′(Y1)

(24)
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Figure 4. Growth and overlap of the primary resonance bands in the nonlinear QP Mathieu equation for δ = 0.20,
ω1 = 1, and ω2 = 1.65. The numerically generated solutions are strobed at times tn = n2π/ω1 and tn = n2π/ω2
for orbits with intial conditions in RBω1 (2:1) and RBω2 (2:1), respectively.

and√
ε42

δ
= Y2 − Y4√

Y2/2
1− ω2

4
√
δ
J ′′(Y2)

+
√

Y 2
4 /16

1− ω2
8
√
δ
J ′′(Y4)

. (25)

To test the accuracy of the estimates for εc as determined by equations (23), (24), and (25),
consider the case for which δ = 0.20, ω1 = 1, and ω2 = 2.55. For these parameter values, the
resonance bands RBω1(2:1), RBω2(4:1), and RBω2(2:1) emerge from resonant tori located at
the action values,

Y1 = 0.168078,

Y4 = 0.703178,

Y2 = 4.937229,

respectively. Substituting Y1, Y4, and Y2 into Equations (24) and (25), we find

ε14 = 0.128,

ε42 = 0.586,
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Figure 5. Growth of the primary resonance bands in the nonlinear QP Mathieu equation facilitated by RBω2 (4:1)
with δ = 0.20, ω1 = 1, and ω2 = 2.55. The numerically generated solutions are strobed at times tn = n2π/ω1
and tn = n2π/ω2 for orbits with intial conditions in RBω1 (2:1) and either RBω2 (4:1) or RBω2 (2:1), respectively.
Figure 6 displays the overlap of resonance bands as ε is further increased.

implying that

ε142 = 0.586.

Had we used Equation (22) from Case 1 for determining an estimate for εc, we would find
that the two primary resonance bands are predicted to touch when

ε12 = 0.611,

indicating that the resonance band RBω2(4:1) facilitates their overlap. Performing numerical
experiments with dstool, we discover that the actual critical value of ε is approximately

ε∗c = 0.250,

again, predictably lower than the estimates given above. See Figures 5 and 6 for a graphical
summary of the numerical results.

We should remark that if ω1 ≈ ω2/2, it follows that Y1 ≈ Y4, and the influence of
RBω2(4:1) on the overlap of the primary bands becomes neglible. In this case, RBω1(2:1)
apparently engulfs RBω2(4:1) before RBω2(4:1) overlaps with RBω2(2:1). For example, with
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Figure 6. Growth and overlap of the primary resonance bands in the nonlinear QP Mathieu equation facilitated
by RBω2 (4:1) with δ = 0.20, ω1 = 1, and ω2 = 2.55. The numerically generated solutions are strobed at
times tn = n2π/ω1 and tn = n2π/ω2 for orbits with initial conditions in RBω1 (2:1) and either RBω2 (4:1) or
RBω2 (2:1), respectively.

parameter values δ = 0.05, ω1 = 1, and ω2 = 2.15, the resonance bands RBω1(2:1),
RBω2(4:1), and RBω2(2:1) emerge from resonant tori located at the action values

Y1 = 2.76,

Y4 = 3.30,

Y2 = 15.37,

respectively. Substituting Y1, Y4, and Y2 into Equations (24) and (25), we find

ε14 = 0.002,

ε42 = 0.302,

implying that

ε142 = 0.302.

Had we used Equation (22) from Case 1 for determining an estimate for εc, we would find
that the two primary resonance bands touch when

ε12 = 0.248;
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i.e., our analysis predicts that RBω2(4:1) does not facilitate the overlap of RBω1(2:1) and
RBω2(2:1).

5. Summary of Global Behavior

In this section, we apply the results from the perturbation analysis to summarize the global
behavior of the nonlinear QP Mathieu equation (with ω1 = 1 and ω2 = ω), as a function
of parameter values, in relation to the linear system. The parameter, ε, is assumed fixed and
restricted to small values. Conclusions are valid through O(ε). Consequently, there exists an
exceptional set of parameter points (δ, ω) for which the following summary does not apply.
However, such points are exceptional in the sense that the corresponding area of parameter
space is of O(ε2).

For both the linear and nonlinear systems, regions of instability (i.e., unstable origin)
associated with 2:1 resonances between the respective driving frequencies and the natural
frequency of the system are, to leading order, bounded by the transition curves

δ = 1

4
ω2 ± 1

2
ε + O(ε2) (26)

and

δ = 1

4
± 1

2
ε + O(ε2). (27)

Outside the regions of instability, the dynamics of the linear system are simple. The origin is
stable and all solutions of the QP Mathieu equation

ẍ + [δ + ε (cosω1t + cosω2t)]x = 0, (28)

exhibit 3-frequency QP behavior when ω1 and ω2 are incommensurate. In contrast, the dynam-
ics of the nonlinear system, Equation (2), are much more complicated. Solutions may exhibit
3-frequency QP behavior, as for the linear system. However, the perturbation induces reson-
ance bands locally in phase space which can cause the system to exhibit irregular, stochastic
behavior. This is especially the case when solutions evolve in the stochastic layer that bounds
the resonance band. Furthermore, the existence of subharmonic motions associated with 2m:1
resonances implies that the origin is unstable for an entire class of parameter values not
predicted by the linear system.

As shown in Figure 7, the transition curves given by Equations (26) and (27) partition the
δ-ω parameter plane into nine disjoint regions. We shall describe the characteristic behavior of
solutions of the nonlinear QP Mathieu equation in each of these regions, paying particular at-
tention to torus breakup (emergence of a resonance band) and origin stability. This discussion
is summarized pictorially in Figure 8.

5.1. REGION A (STABLE ORIGIN)

To first order in ε, solutions of the linear system exhibit 3-frequency QP behavior for para-
meter values chosen from region A. Similarly, all solutions of the nonlinear system, as
predicted by the perturbation analysis, exhibit 3-frequency QP behavior independent of initial
conditions; subharmonic resonance with either driver is impossible for these parameter values.
The absence of resonance bands, and hence the absence of irregular or stochastic motion in
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Figure 7. Primary regions of instability in the δ-ω parameter plane associated with subharmonic periodic orbits in
2:1 resonance with the two drivers, cos t and cosωt . The parameter, ε, is fixed and set to 0.10.

Figure 8. Schematic summary of the behavior of the nonlinear system. Resonance bands are represented by ‘thick’
circles.

the nonlinear system, is due to the absence of resonant tori in the unperturbed system. The
condition for the existence of resonance bands associated with 2:1 subharmonic periodic orbits
as determined by the resonance relation,

2
√
δ ≤ ω and 2

√
δ ≤ 1,

does not hold in region A.

5.2. REGIONS B1 AND B2 (STABLE ORIGIN)

To first order in ε, solutions of the linear system exhibit 3-frequency QP behavior for para-
meter values chosen from regions B1 and B2. Similarly, most solutions of the nonlinear system
as predicted by the perturbation analysis exhibit 3-frequency QP behavior. However, there is
exactly one resonance band in phase space associated with orbits in 2:1 resonance with one of
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the two drivers – there is no resonance band associated with the other driver – and solutions
with initial conditions inside the resonance band may exhibit irregular or stochastic behavior.
There are periodic solutions corresponding to the equilibria in the resonance band, as well.
The presence of the resonance band in phase space and the corresponding behavior of the
system, due to the nonlinear resonance, are not seen or predicted in the linear system.

5.3. REGIONS C1 AND C2 (UNSTABLE ORIGIN)

To first order in ε, the linear system possesses unbounded solutions for parameter values
chosen from regions C1 and C2, a consequence of the instability of the origin. In the nonlin-
ear system, however, the detuning effects from the amplitude-frequency dependence prevent
unbounded behavior. This results in a resonance band surrounding and including the origin.
Outside the resonance band, 3-frequency QP behavior is observed, a behavior that is not
encountered in the linear system for these parameter values.

5.4. REGIONS D1 AND D2 (UNSTABLE ORIGIN)

To first order in ε, the linear system possesses unbounded solutions for parameter values
chosen from regions D1 and D2, a consequence of the instability of the origin. The behavior
of the nonlinear system is more complicated. There are two resonance bands in phase space
associated with orbits in 2:1 resonance with the respective drivers. One of the resonance bands
surrounds and includes the origin, the other is bounded away from it. Solutions with initial
conditions inside either resonance band may exhibit irregular or stochastic behavior but are
globally bounded because of the detuning effects from the amplitude-frequency dependence.
Outside the resonance bands, 3-frequency QP behavior is observed, a behavior that is not
encountered in the linear system for these parameter values.

5.5. REGION E (STABLE ORIGIN)

To first order in ε, solutions of the linear system exhibit 3-frequency QP behavior for para-
meter values chosen from region E. Similarly, most solutions of the nonlinear system as
predicted by the perturbation analysis exhibit 3-frequency QP behavior. However, there are
two resonance bands in phase space associated with orbits in 2:1 resonance with the respective
drivers. Solutions with initial conditions inside either resonance band may exhibit irregular or
stochastic behavior but are globally bounded due to the detuning. There are periodic solutions
corresponding to the equilibria in the resonance band, as well. Outside the resonance bands,
only 3-frequency QP behavior is observed. Although the two resonance bands are bounded
away from each other, irregular motion in a large region of phase space is possible if the two
bands overlap.

5.6. REGION F (UNSTABLE ORIGIN)

To first order in ε, the linear system possesses unbounded solutions for parameter values
chosen from region F, a consequence of the instability of the origin. The behavior of the
nonlinear system is more complicated. There are two resonance bands in phase space associ-
ated with orbits in 2:1 resonance with the respective drivers. Both resonance bands surround
and include the origin: solutions with initial conditions near the origin exhibit irregular or
stochastic behavior, and detuning effects from the amplitude-frequency dependence prevent
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unbounded behavior. Outside the resonance bands away from the origin, 3-frequency QP be-
havior is observed, a behavior that is not encountered in the linear system for these parameter
values. The combination resonance at the origin leads to interesting dynamics, and we expect
to find a complicated bifurcation scenario in this region of parameter space.

6. Conclusion

In contrast to the linear Mathieu equation,

ẍ + [δ + ε cosωt]x = 0,

where instability implies unboundedness, the nonlinear Mathieu equation,

ẍ + [δ + ε cosωt]x + αx3 = 0,

exhibits finite-amplitude motion as a result of nonlinear resonance. Motion is generally qua-
siperiodic (with two frequencies) away from the resonant orbit. However, solutions with initial
conditions near the resonant orbit may exhibit local irregular or stochastic behavior – seen
as chaotic – or even 2m:1 subharmonic periodic motion corresponding to newly-emerged
equilibria of an associated Poincaré map. Motion is prevented from becoming unbounded
because the period-amplitude relationship resulting from the nonlinearity, αx3, detunes the
resonance: As the amplitude of motion increases, the frequency increases (if α > 0), and the
system falls out of resonance. From a dynamical systems point of view, this resonant motion
carries with it a local region of phase space, which may be thought of as being separated from
the rest of phase space by a separatrix surface. This view becomes increasing more accurate
as ε → 0 because KAM effects, which destroy invariant tori, are smaller for small ε.

In this work, we extended such considerations to the nonlinear QP Mathieu equation (2),

ẍ + [δ + ε (cosω1t + cosω2t)]x + αx3 = 0.

There are infinitely-many resonances associated with each of the forcing frequencies, and
infinitely-many more associated with combinations of frequencies. Since resonances associ-
ated with a combination of driving frequencies are not visible at the O(ε) level of analysis
of the perturbation method, we restricted our analysis to orbits in 2m:1 or 2k:1 resonance
with a respective driver, cosω1t or cosω2t . Accordingly, each of the two drivers (with incom-
mensurate forcing frequencies) is treated as independently producing resonances, as though
each were the forcing term of the nonlinear Mathieu equation. This results in two primary
resonance bands, one for each driver, each carrying with it a local region of phase space.

The presence of the two resonant motions – manifested by two resonance bands in phase
space – produces a transition from local chaos to global chaos. It was the goal of this work
to characterize the dynamics of this process by means of Chirikov’s overlap criterion, which
states that the transition to global chaos will occur when separated regions of phase space
associated with the individually studied finite-amplitude resonant motions overlap. Using
a perturbation scheme based on Lie transforms and elliptic functions, we derived analytic
expressions for the critical value of ε, as functions of δ, ω1, and ω2, at which subharmonic res-
onance bands in a Poincaré section of action space begin to overlap. We found that Chirikov’s
criterion gives a reasonable and predictably larger approximation for the critical value of ε
when compared to numerical simulation of the nonlinear QP Mathieu equation. Also, we were
able to characterize regions of the δ-ω parameter plane in which there is no such transition
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because only one of the two resonant motions is present (cf. Regions B1, B2, C1, and C2 of
Figure 7). Moreover, we found that there is a region of parameter space in which Chirikov’s
criterion is inappropriate because both resonant motions lie in an overlapping region of phase
space even for small ε (cf. Region F in Figure 7).

References

1. Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Scientists and Engineers, Springer-Verlag,
New York, 1971.

2. Chirikov, B. V., ‘A universal instability of many-dimensional oscillator systems’, Physics Reports 52, 1979,
263–379.

3. Guckenheimer, J., Myers, M., Wicklin, F., and Worfolk, P., dstool: A Dynamical System Toolkit with an
Interactive Graphical Interface, Department of Applied Mathematics, Cornell University, Ithaca, NY, 1991.

4. Mason, S. and Rand, R., ‘On the torus flow y′ = a + b cos y + c cos x and its relation to the quasiperi-
odic Mathieu equation’, in Proceedings of the 1999 ASME Design Engineering Technical Conferences, 17th
Biennial Conference on Mechanical Vibration and Noise, Las Vegas, NV, September 12–15, 1999, Paper
No. DETC99/VIB-8052 (CD-ROM).

5. Rand, R., Zounes, R., and Hastings, R., ‘Dynamics of a quasiperiodically forced Mathieu oscillator’, in Non-
linear Dynamics: The Richard Rand 50th Anniversary Volume, A. Guran (ed.), World Scientific, Singapore,
1997, pp. 203–221.

6. Zounes, R., ‘An analysis of the nonlinear quasiperiodic Mathieu equation’, Ph.D. Dissertation, Center for
Applied Mathematics, Cornell University, Ithaca, NY, 1997.

7. Zounes, R. and Rand, R., ‘Subharmonic resonance in the nonlinear Mathieu equation’, International Journal
of Non-Linear Mechanics 37(1), 2001, to appear.

8. Zounes, R. and Rand, R., ‘Transition curves for the quasiperiodic Mathieu equation’, SIAM Journal on Applied
Mathematics 58, 1998, 1094–1115.


